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Abstract: Hourly organic carbon (OC) and elemental carbon (EC) concentrations in PM2.5 were
measured from June 2013 to May 2014 in Wanzhou, the second largest city in the Chongqing
Municipality, in the southwest of China. Results show that the annual average concentrations of OC
and EC were 13.16 ± 7.98 and 3.12 ± 1.51 µgC·m−3, respectively. Clear seasonal variations of OC and
EC concentrations were observed, with their concentrations at minima in summer and maxima in
winter. The diel concentration profile of OC and EC presented a bimodal pattern, which was attributed
to the cooperative effects of local meteorological conditions and source emissions. The daily average
OC/EC ratio ranged from 2.05 to 8.17 with an average of 4.15 for the whole study period. Strong
correlations between OC and EC were found in winter and spring, indicating their common sources,
while their correlations were poorer in summer and autumn, indicating that the influence of biogenic
emissions and secondary organic carbon (SOC) were significant during those seasons. The estimated
SOC concentrations were 2.19 ± 1.55, 7.66 ± 5.89, 5.79 ± 3.51, and 3.43 ± 2.26 µgC·m−3, accounting
for 29.2%, 52.7%, 27.4%, and 30.5% of total organic carbon in summer, autumn, winter, and spring,
respectively. The analysis of back trajectories suggested that high PM2.5, OC, and EC concentrations
were associated with air masses originating from or passing over several industrial centers and urban
areas in western and northwestern China. Air trajectories from the southeast with short pathways
were the dominant trajectories arriving at Wanzhou, indicating that local sources had a big influence
on PM2.5, OC, and EC concentrations.
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1. Introduction

Carbonaceous aerosol—which contributes 20–60% to PM2.5 mass in urban settings [1–4]—has
been found to have a large impact on environmental conditions, such as visibility and climate
change [5–8]. Carbonaceous aerosol is usually separated into elemental carbon (EC) and organic carbon
(OC). EC has a graphitic-like structure and comes mainly from incomplete combustion processes.
EC has a strong absorptivity of solar radiation and plays an important role in visibility reduction
and aerosol radiative forcing [5,9,10]. EC-containing particles are also associated with adverse health
effects [11,12]. OC consists of thousands of organic compounds, containing polycyclic aromatic
hydrocarbons, polychlorinated biphenyls, and other hazardous components, which have possible
mutagenic and carcinogenic effects. OC can be directly emitted from sources (primary OC, POC) or
produced from the gas-to-particle conversion of volatile organic compounds (secondary OC, SOC) [13].

Atmosphere 2018, 9, 37; doi:10.3390/atmos9020037 www.mdpi.com/journal/atmosphere

http://www.mdpi.com/journal/atmosphere
http://www.mdpi.com
http://dx.doi.org/10.3390/atmos9020037
http://www.mdpi.com/journal/atmosphere


Atmosphere 2018, 9, 37 2 of 15

OC aerosols can impact climate directly by scattering solar radiation, and they can also absorb light
which cause visibility degradation [7].

As the basic components of carbonaceous aerosol, temporal and spatial variations of OC and
EC concentrations in PM2.5 have been presented in several studies [14–17]. Some studies focused on
the emission factors and emission inventories of carbonaceous aerosol, and also on applying them to
numerical models and comparing the results with observations [18–21]. The concentration of SOC was
also estimated in several studies using the carbon isotopic composition [22,23]; chemical transport
models [24,25], and the EC tracer method [17,26]. China has drawn significant attention worldwide
due to its rapid industrialization and increased consumption of fossil fuels and biofuels, which result
in increased primary sources of carbonaceous aerosol [27,28]. Several studies on carbonaceous
aerosol have been conducted in megacities and coastal cities in China, such as Beijing, Tianjin,
and Shijiazhuang in the Jing-Jin-Ji Region [29–31]; Guangzhou, Xiamen in the Pearl River Delta
Region (PRDR) [13,32,33]; Fuzhou, and Quanzhou in the Western Taiwan Strait Region (WTSR) [3];
Shanghai [34,35]; and Xi’an [36]. However, spatial and temporal distributions of carbonaceous aerosol
in China overall require more attention.

Wanzhou is a mountainous city in southeastern China, with an area of 3457 km2 and a population
of approximately 1.8 million. Along with other small cities in China in recent years, Wanzhou has
experienced especially rapid urbanization and industrialization, with the annual growth rates of GDP
and amount of automobiles (0.21 million vehicles by the end of 2014) increasing by more than 10% in
the last five years (http://www.cqtj.gov.cn/tjnj/2014/indexch.htm). However, carbonaceous aerosol
exposure has been investigated only in the urban district in Chongqing. The EC and OC concentrations
in Wanzhou have been studied much less, for instance, Zhang et al. [37] and Peng et al. [38]. In those
studies, the sampling dates were limited to only a few months of data; the diurnal variation and source
evaluation were not adequately discussed. This work presents the results of a year-long measurement
of the hourly EC and OC concentrations at a Wanzhou urban site. The purposes of this study are:
(1) to investigate the diurnal and seasonal characteristics of PM2.5-associated OC and EC in Wanzhou;
(2) to estimate the concentrations of secondary OC and its contributions to total OC in four seasons;
(3) to identify the sources and factors affecting carbonaceous aerosols in Wanzhou.

2. Measurements and Methodology

2.1. Experimental Site

Wanzhou is a district of Chongqing Municipality in southwestern China, about 228 km away
from downtown Chongqing, located in the hinterland of the Three Gorges Reservoir (TGR) on the
Yangtze River. Wanzhou experiences a sub-tropical monsoon climate, with sufficient annual rainfall
and abundant sunshine. Influenced by the valley–mountain topographic conditions, the wind speed is
very low, frequently less than 1.0 m·s−1 all the year.

All measurements were conducted on the roof of the experimental building about 27 m above the
ground (30.79◦ N, 108.37◦ E) within the Chongqing Three Georges University (Figure 1). The site is
surrounded by busy streets, schools, residential buildings, shops and restaurants and so represents an
urban area of Wanzhou.
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Figure 1. Location of the sampling site in Wanzhou. 

2.2. Experimental Methods 

Particulate carbonaceous aerosol was measured using a Sunset Laboratory semi-continuous 
OC/EC analyzer (Model 4, Sunset Laboratory Inc., Forest Grove, OR, USA) with a thermal-optical 
transmittance (TOT) protocol for pyrolysis correction. The ambient air was first sampled into a PM2.5 
cyclone inlet with a flow rate of 8 L·min−1, and then passed through a carbon parallel-plate diffusion 
denuder (from Sunset Lab.) to remove volatile organic compounds that may cause a positive bias in 
the OC concentrations measured [39]. The OC and EC were collected on a quartz fiber filter with an 
effective collection area of 1.13 cm2. The analyzer was programmed to collect aerosol for 45 min at 
the start of each hour, followed by the analysis of carbonaceous species during the remainder of the 
hour. 

After sampling, the instrument oven was first purged with helium, and then the filter was heated 
according to a NIOSH-type temperature protocol [40], with a slight modification to the heating 
temperature according to previous studies [1,26]. The oven temperature was first increased to a 
maximum of 870 °C, thermally desorbing OC and pyrolysis carbon (PC) into a manganese dioxide 
(MnO2) oxidizing oven. Then the temperature was reduced to 550 °C; the carrier gas was switched to 
10% oxygen in helium. A second temperature ramp was then initiated in the oxidizing gas stream 
and EC was oxidized off the filter and into the oxidizing oven. As the carbon components flowed 
through the MnO2 oven they were converted to CO2 and detected by a Non-Dispersive Infrared 
Absorption (NDIR) CO2 sensor. OC and EC were automatically quantified by dividing their peak 
areas by the internal calibration peak made by methane gas (5% CH4 in helium). The correction for 
the PC converted from OC to EC was performed by monitoring the transmittance of a pulsed He-Ne 
diode laser beam at 670 nm through the quartz filter during the sample analysis. Control calibrations 
by sucrose were conducted regularly and instrumental blanks (measured by an automatic reanalysis 
of the just analyzed filter) were determined once per day at 0:00 o’clock with the following average 
values: OC = 0.20 ± 0.10 μg; EC = 0.00 μg (the midnight sample collection were 15 min shorter). 
Dynamic blanks were also measured by adding a quartz fiber filter that was not prefired upstream 
of the denuder and using the same sampling time as during the measurement (in total 60 dynamic 
blank samples were collected) with the following averages: OC = 0.43 ± 0.25 μgC·m−3; EC = 0.01 
μgC·m−3. The uncertainty of this system is reported to be 5% [41]. 

The sampling period was chosen to represent the four seasons, as follows: summer, 18 June 2013 
to 31 August 2013; autumn, 1 September 2013 to 30 November 2013; winter, 1 December 2013 to 28 

 

Figure 1. Location of the sampling site in Wanzhou.

2.2. Experimental Methods

Particulate carbonaceous aerosol was measured using a Sunset Laboratory semi-continuous
OC/EC analyzer (Model 4, Sunset Laboratory Inc., Forest Grove, OR, USA) with a thermal-optical
transmittance (TOT) protocol for pyrolysis correction. The ambient air was first sampled into a PM2.5

cyclone inlet with a flow rate of 8 L·min−1, and then passed through a carbon parallel-plate diffusion
denuder (from Sunset Lab.) to remove volatile organic compounds that may cause a positive bias in
the OC concentrations measured [39]. The OC and EC were collected on a quartz fiber filter with an
effective collection area of 1.13 cm2. The analyzer was programmed to collect aerosol for 45 min at the
start of each hour, followed by the analysis of carbonaceous species during the remainder of the hour.

After sampling, the instrument oven was first purged with helium, and then the filter was
heated according to a NIOSH-type temperature protocol [40], with a slight modification to the heating
temperature according to previous studies [1,26]. The oven temperature was first increased to a
maximum of 870 ◦C, thermally desorbing OC and pyrolysis carbon (PC) into a manganese dioxide
(MnO2) oxidizing oven. Then the temperature was reduced to 550 ◦C; the carrier gas was switched
to 10% oxygen in helium. A second temperature ramp was then initiated in the oxidizing gas stream
and EC was oxidized off the filter and into the oxidizing oven. As the carbon components flowed
through the MnO2 oven they were converted to CO2 and detected by a Non-Dispersive Infrared
Absorption (NDIR) CO2 sensor. OC and EC were automatically quantified by dividing their peak
areas by the internal calibration peak made by methane gas (5% CH4 in helium). The correction for
the PC converted from OC to EC was performed by monitoring the transmittance of a pulsed He-Ne
diode laser beam at 670 nm through the quartz filter during the sample analysis. Control calibrations
by sucrose were conducted regularly and instrumental blanks (measured by an automatic reanalysis
of the just analyzed filter) were determined once per day at 0:00 o’clock with the following average
values: OC = 0.20 ± 0.10 µg; EC = 0.00 µg (the midnight sample collection were 15 min shorter).
Dynamic blanks were also measured by adding a quartz fiber filter that was not prefired upstream of
the denuder and using the same sampling time as during the measurement (in total 60 dynamic blank
samples were collected) with the following averages: OC = 0.43 ± 0.25 µgC·m−3; EC = 0.01 µgC·m−3.
The uncertainty of this system is reported to be 5% [41].

The sampling period was chosen to represent the four seasons, as follows: summer, 18 June 2013
to 31 August 2013; autumn, 1 September 2013 to 30 November 2013; winter, 1 December 2013 to
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28 February 2014; and spring, 1 March 2014 to 31 May 2014. Due to instrument malfunction, data from
12 January to 7 February 2014 was excluded from our results. A total of ~300 days of data was
collected on the instrument during this study. The meteorological parameters were also collected by an
automatic weather station (WS500-UMB, GER) during the sampling period. As the sampling interval
was set at 5 minutes, data for temperature, relative humidity (RH), and wind speed were averaged in
the same periods as OC and EC.

3. Results and Discussion

3.1. Seasonal Variations of OC and EC in PM2.5

As shown in Figure 2, OC and EC exhibited similar daily variations in Wanzhou. The daily
average concentration of OC ranged from 3.84 to 44.09 µgC·m−3 with an average concentration of
13.16 ± 7.98 µgC·m−3, while EC concentration varied from 0.76 to 8.34 µgC·m−3 with an average
concentration of 3.12 ± 1.51 µgC·m−3. OC and EC concentrations in this study are compared with
those measured in other Chinese cities in Table 1. In spite of the incomparability of OC and EC data
between the methods of NIOSH TOT, Interagency Monitoring of Protected Visual Environments
(IMPROVE), thermal optical reflectance (TOR), and the two-step thermal procedure, total carbon
(TC, TC = OC+ EC) measurements by those methods agree well [42,43]. The level of TC in Wanzhou
was found to be similar to the urban sites in Shanghai, Quanzhou, and to the suburban site in Xiamen,
but lower than the urban sites in Chongqing, Chengdu, Beijing, Tianjing, Guangzhou, and Wuhan in
China. TC concentration contributed 25.3% to PM2.5 mass in Wanzhou. This fraction was comparable
to that in most Chinese sites (17.6–41.4%).Atmosphere 2018, 9, x FOR PEER REVIEW  5 of 14 
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Figure 2. Time series of OC (a) and EC (b) Concentrations, and OC/EC ratios (c) During the sampling time. 

Figure 3 shows that monthly average OC values varied by nearly fourfold, from a low of 6.45 ± 
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emissions. Though there was no central-heating period in winter as with northern cities in China, 
local emissions (coal and wood burning, small stoves used, etc.) also increased rapidly due to 
decentralized heating on cold days. At the same time, there was an increased combustion source 
attributed to the residents using wood-burning to cook their traditional bacon [37]. In addition, the 
urban area of Wanzhou is located in a valley surrounded by mountains that trap the pollutants within. 
As can also be seen from Table 2, the wind speed was lowest (0.78 m·s−1 in winter, 0.84, 0.95, 0.79 m·s−1 
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Conversion of OC to organic matter (OM) is recognized as one of the most critical factors of
uncertainty in mass closure calculations [44]. Turpin and Lim [45] suggested the use of different
conversion factors according to site type: 1.6 ± 0.2 for urban areas, 1.9–2.3 for aged aerosols, and 2.2–2.6
for biomass burning. Taking into account that our site is an urban station, we used a value of 1.6 (OM
= 1.6 × OC). Total carbonaceous aerosol (TCA) was calculated by the sum of EC and organic matter
(OM). As Table 1 shows, TCA accounted for 38% of PM2.5, implying that TCA represented a major
fraction of the PM2.5 mass in Wanzhou. This fraction was in accordance with findings in other Chinese
sites (26.7–51.3%).

Table 1. Comparison of organic carbon (OC) and elemental carbon (EC) concentrations (µgC·m−3),
and percentages of TCA in PM2.5 with other sites in China.

Locations Sampling Period OC EC TC/PM2.5 TCA/PM2.5
OC &

EC Method Reference

Wanzhou 18 June 2013–31 May 2014 13.16 3.12 25.6% 38% TOT This study

Downtown
Chongqing March 2005–February 2006 30.13 6.39 28.3% 42.3% TOR [46]

Tongliang,
Chongqing 2 March 2002–26 February 2003 36.9 10.7 41.1% 51.3% TOR [47]

Chengdu 19 April 2009–31 January 2010 22.3 9.0 19% 32% TOR [48]

Tianjin January, April, July 2007 22.7 5.1 23.9% 35% TOR [30]

Beijing April 2009–February 2010 18.2 6.3 19.8% 28.7% TOR [31]

Fuze District,
Quanzhou November 2010–August 2011 13.5 2.4 18.9% 28.5% TOT [3]

Guangzhou
16 August–17 September 2004; 17.5 5.7 21.6% 32%

TOT [33]
1 Februry–8 March 2005 23.9 4.4 21.8% 32.9%

Shanghai October 2005; January, April,
July 2006 14.7 2.8 19.4% 28.9% TOT [34]

Wuhan July 2011–February 2012 19.4 2.9 17.6% 26.7% TOT [49]

Jimei, Xiamen April 2009–January 2010 15.8 2.7 28.9% 42.8% TOT [50]

Figure 3 shows that monthly average OC values varied by nearly fourfold, from a low of
6.45 ± 1.19 µgC·m−3 (July 2013) to 26.84 ± 9.63 µgC·m−3 (January 2014), while the monthly average
EC values varied by nearly threefold, from a low of 1.93 ± 0.40µgC·m−3 (July 2013) to 5.08 ± 1.96µgC·m−3

(January 2014). Both monthly OC and EC concentrations increased during autumn and peaked during
winter. The seasonal concentrations of OC and EC are summarized in Table 2. The seasonal average
OC concentrations in PM2.5 were 7.47 ± 2.37 µgC·m−3 for summer, 14.81 ± 8.39 µgC·m−3 for autumn,
21.11± 9.22µgC·m−3 for winter, and 11.25± 4.65µgC·m−3 for spring, while the average EC concentrations
during the four seasons were 2.12 ± 0.51, 3.53 ± 1.51, 4.32 ± 1.86, and 2.76 ± 1.12 µgC·m−3, respectively.
The OC and EC concentrations exhibited similar seasonal variations, with the descending order:
winter > autumn > spring > summer. The seasonal characteristics of carbonaceous aerosols in Wanzhou
can be explained as the combined impact of climatic conditions and local emissions. Though there
was no central-heating period in winter as with northern cities in China, local emissions (coal and
wood burning, small stoves used, etc.) also increased rapidly due to decentralized heating on cold
days. At the same time, there was an increased combustion source attributed to the residents using
wood-burning to cook their traditional bacon [37]. In addition, the urban area of Wanzhou is located
in a valley surrounded by mountains that trap the pollutants within. As can also be seen from Table 2,
the wind speed was lowest (0.78 m·s−1 in winter, 0.84, 0.95, 0.79 m·s−1 in spring, summer, and autumn,
respectively) and RH was relatively higher in winter (78.0%, 80.2%, 69.2%, and 80.6% in winter, spring,
summer, and autumn); these unfavourable geographical and meteorological conditions limited the
dilution and dispersion of pollutants. In autumn, the enhanced emissions from biomass burning and
frequent stable weather conditions mainly resulted in higher carbonaceous concentrations. In spring,
the higher wind speeds facilitated the dispersion of pollutants. In the summer, rainfall was much
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more abundant (60–70% of annual precipitation in the summer, about 1181.5 mm on average) [51],
and carbonaceous aerosol could be efficiently removed by wet scavenging [36]. The seasonal variations
of OC and EC in this study were similar to other studies conducted in China [3,27,31,50].
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Table 2. Seasonal averages (±standard deviation) of OC and EC concentrations, OC/EC ratios,
and meteorological data in Wanzhou.

Summer Autumn Winter Spring

OC/(µgC·m−3) 7.49 ± 2.37 14.81 ± 8.39 21.11 ± 9.22 11.25 ± 4.65
EC/(µgC·m−3) 2.12 ± 0.51 3.53 ± 1.51 4.32 ± 1.86 2.76 ± 1.12

OC/EC 3.55 ± 0.64 4.09 ± 1.04 5.03 ± 0.91 4.15 ± 0.74
Temperature/(◦C) 29.7 ± 2.5 18.9 ± 4.6 8.7 ± 2.2 17.7 ± 3.7

Relative Humidity/(%) 69.2 ± 12.9 80.6 ± 12.1 78.0 ± 11.5 80.2 ± 10.7
Wind Speed/(m·s−1) 0.95 ± 0.33 0.79 ± 0.17 0.78 ± 0.24 0.84 ± 0.25

3.2. Diel Variations of OC and EC in PM2.5

The diel variations of OC and EC in different seasons are illustrated in Figure 4a,b. Pronounced
EC diel variations were observed in different seasons, a bimodal pattern with a morning rush peak
(8:00–10:00) and an evening peak (19:00–20:00). This bimodal trend was consistent with the local
meteorological conditions and source emission. The EC distinct morning peak clearly corresponded to
the morning traffic rush hour. The EC evening peak could be attributed to afternoon traffic emissions
and cooking, combined with low mixing heights. The boundary layer usually becomes deeper in the
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afternoon because of strong solar radiation and turbulent eddies, providing a larger volume for diluting
pollutants; hence the EC trough can be observed during this period (14:00–16:00). In comparison with
EC, OC also showed a bimodal pattern, but there had broad maxima from 7:00 to 12:00 in summer,
autumn, and spring. This phenomenon may be caused by the relative importance of sources of OC
other than traffic existing at the site, such as secondary organic aerosol formation. In winter, the OC
displayed a clearly bimodal pattern, with morning peak and evening peak occuring at 12:00 and
19:00–20:00 local time, respectively. The midday peak could be due to the longer existence of the
inversion layer in the mountain area in winter. This phenomenon was also observed in EC diel
variation; the EC morning peak time was delayed by about one to two hours during the winter.
The later onset of the morning buildup and the earlier onset of the evening accumulation in winter
compared to summer corresponded with the later sunrises and earlier sunsets in winter. The highest
concentrations of both EC and OC were observed during the winter evenings and nights when there
was the highest need for residential heating. However, the main factor for the higher night-time OC
and EC concentrations (in all seasons) was probably a lower on average nocturnal mixing boundary
layer in comparison with the daylight hours. Therefore, regardless of the season, the diel minima of
EC and OC were found during the afternoon with both the highest temperature and a thicker mixing
boundary layer.
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The OC/EC ratio was rather variable within the day (Figure 4c). The diel variations of
OC/EC ratios exhibited two peaks around the time 12:00 and 19:00 in summer, autumn, and spring.
The midday OC/EC maximum can be due to the formation of SOC when the photochemical activity
was intensive under favourable meteorological conditions. The evening OC/EC maximum may be
owing to the surface inversion formed after sunset, trapping more secondary organic carbon in the
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shallow boundary layer. Unlike other seasons, the OC/EC ratio exhibited a third peak at 3:00 in
winter. One possible reason for this phenomenon was residential heating (coal and wood burning,
small stoves used, etc.) used during the cold winter night. The diel variations of OC/EC ratios in
different seasons showed minimum values during the morning rush hour (8:00–9:00) when OC and
EC concentrations build up, probably due to the increased contributions from primary emissions.
In general, the OC/EC ratio in winter was higher than the other three seasons. There may be two
reasons for this phenomenon: one is attributed to the increased combustion emissions as depicted in
Section 3.1, the other one is that the adverse meteorological conditions in winter limited the dilution
and dispersion of pollutants, and created conditions for the condensation or adsorption of volatile
organic compounds.

3.3. Relationship between OC and EC

As mentioned above, EC comes mainly from incomplete combustion emissions such as coal
consumption, vehicle exhaust, and biomass burning. OC originates from both primary and secondary
sources. Since primary OC and EC are mostly generated from the same sources, EC can be used as a
tracer for primary combustion generated OC [52]. The relationship between OC and EC is very useful
in assessing the original sources of carbonaceous particles [32,53]. As shown in Figure 5, the higher
correlations between EC and OC were in winter (0.95) and spring (0.91). The poorer correlation
(but still high) was observed in the summer (0.77). The strong winter and spring correlations indicated
the presence of common dominant sources for OC and EC (e.g., biomass burning, coal combustion,
and motor vehicle exhaust) in the vicinity of the site. On the contrary, the lower correlation in summer
and autumn indicated some independent OC sources without the presence of EC such as biogenic and
secondary organic aerosols [26]. The regression slopes varied from 3.11 to 4.71, implying that there is a
seasonal variability in emission sources and SOA contributions.
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The OC/EC ratio has been used to study the emission and transformation characteristics of
carbonaceous aerosol. Typical emission sources of carbonaceous fractions include vehicle exhaust
(2.5–5.0) [54], coal combustion (2.5–10.5) [55], and biomass burning (4.3–79.7) [56,57], respectively.
It should be noted that the OC/EC ratios presented above were all measured by the TOT method,
and were comparatively higher than the values by TOR [58]. As shown in Figure 2 and Table 2,
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the daily average OC/EC ratio varied between 2.05 and 8.17 with an average of 4.15 for the whole
study period. The OC/EC ratio showed seasonal variations with a high value in winter (5.03) and
a low value in summer (3.55). This seasonal pattern of higher wintertime OC/EC ratio was also
observed in PRDR [33] and Shanghai [34]. The elevated OC/EC ratio in winter could be attributed to
several reasons. Firstly, coal combustion and biomass emission for winter heating contribute more to
OC than EC, and also increase the emission of volatile organic precursors. Peng et al. [38] found that
TC in PM2.5 had a stronger relationship with water-soluble potassium (K+) in winter than in summer,
suggesting biomass burning contributed significantly to the carbon pollution in Wanzhou. Secondly,
a stable atmosphere and low temperatures can facilitate the accumulation of air pollutants and create
conditions for the condensation or adsorption of volatile organic compounds. Thirdly, the low mixing
layer height in winter would enhance the SOC formation [59].

3.4. Estimation of Secondary Organic Carbon Concentration

Appel et al. [60] pointed out that high OC/EC ratios indicated the formation of SOC from
gaseous precursors through the photochemical process. Chow et al. [53] observed that the ratios
of OC/EC exceeding 2.0 can be used to identify SOC formation. In this study, all the values
of OC/EC were larger than 2.0, indicating the formation of SOC during the sampling period.
Castro et al. [61] suggested using the minimum OC/EC ratios in the EC tracer method to calculate
SOC; the equation is as follows:

SOC = OC − EC × (OC/EC)min (1)

where (OC/EC)min is the minimum of the OC/EC ratios observed during the sampling time.
An estimation of SOC in Wanzhou was made according to Equation (1). It must be noted that
this method can give only semi-quantitative information because of the high uncertainties associated
with them. As discussed in Sections 3.2 and 3.3, the ratios of OC/EC can be affected by the meteorology
and local sources. Taking these into consideration, the (OC/EC)min observed for each season was
used in calculation: the values were 2.52 in summer, 2.05 in autumn, 3.57 in winter, and 2.84 in
spring. These values were comparable with those of Guangzhou (2.3–4.5) [33], Shanghai (2.7–4.1) [34],
and Xiamen (2.4) [50].

The seasonal variations of SOC concentrations and SOC/OC ratios are depicted in Figure 6.
The seasonal variations of the estimated SOC concentrations were 2.19 ± 1.55 µgC·m−3, 7.66 ± 5.89,
5.79 ± 3.51, and 3.43 ± 2.26 in summer, autumn, winter, and spring, respectively. The relative
proportion of the estimated SOC in OC was highest in autumn (52.7%) and roughly comparable in
spring (30.5%), summer (29.2%), and winter (27.4%). This implied that the relative contribution of
SOC to OC in PM2.5 was only comparable to that of POC to OC in autumn, while in the other three
seasons, OC was dominated by POC. High SOC/OC ratio in autumn in Wanzhou could be due to
the abundant sunlight and less precipitation as well as a stagnated atmospheric condition which
provided favorable conditions for photochemical production of SOC and accumulation of pollutants.
In wintertime, the averaged SOC concentrations were also higher compared to those in summer and
spring, but its abundance in OC was smallest. The rather high absolute SOC contribution in winter
could be due to the low mixing heights and stagnated weather conditions favoring the formation and
accumulation of secondary organic aerosols. However, the stagnating weather conditions usually
lead to high concentrations of all pollutants (both primary and secondary OC). The similar seasonal
variation trend was also found in Beijing [42], Shanghai [34], and Tianjin [31].
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3.5. Back Trajectory Analysis

In order to investigate the effect of air mass pathway on the characteristics of carbonaceous aerosol,
3-day back trajectories arriving at Wanzhou at a height of 100 m above the ground level were calculated
using a Geographical Information System based software [62] and gridded meteorological data from
the US National Oceanic and Atmospheric Administration (NOAA). The trajectory computations
were carried out once a day, with a start time of 00 UTC. The run time of every trajectory was 72 h.
The three-dimensional vertical velocity field was used to calculate the vertical motion of the air parcel.
Five clusters were obtained by the clustering algorithm for the sampling times, and the cluster-mean
trajectories are shown in Figure 7. The air masses associated with cluster 1 originated from the
middle part of Guangxi Province and then crossed the eastern part of Guizhou Province. Cluster 2
originated from the northern Tibetan Plateau, and moved southeasterly over the Qaidam basin, north
of Sichuan Province, with a relatively higher travelling height. Cluster 3 originated from northeastern
China, and passed over the middle of Henan and the northwest of Hubei. Cluster 4 came from the
middle of Sichuan Province, and passed over several urban districts of Sichuan. Cluster 5 represented
the short trajectories that came from the southeast areas around Wanzhou with a relatively lower
travelling height.

Statistics of PM2.5, OC, EC, and TC daily average concentrations associated with each cluster’s
backward trajectories are summarized in Table 3. The cluster-averaged PM2.5, OC, and EC levels
were highest in cluster 4, i.e., 86.69, 17.09, and 4.23 µg·m−3, respectively. This is mainly because air
masses of cluster 4 passed over several industrial centers and urban areas, such as Chengdu, a highly
populated as well as industrially dense city [48], and Suining, Guang’an, and Dazhou. These cities are
rich in mineral resources, such as oil, natural gas, and coal mines, etc. Cluster 2 and cluster 5 showed
similar carbonaceous aerosols concentrations, but the PM2.5 concentration was higher in cluster 2.
Cluster 2 passed though sources of Asian dust and several industrial cities, therefore its pathways
were likely to bring aerosols to Wanzhou. Cluster 5 mainly came from local sources and was the
primary type of air masses arriving in Wanzhou. There are large-scale industrial complexes including
chemical industrial plants and the power plants in the southeast areas of Wanzhou. Thus, the southeast
wind brought in a large amount of pollutants from the industrial activities from this region’s sources.
The cluster-averaged low concentrations appeared in cluster 1 and cluster 3. The clean air masses from
the south and northeast areas would disperse air pollution in Wanzhou.
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Table 3. Trajectory number and PM2.5, OC, EC, and TC mean concentrations of each cluster.

Cluster Number Percent of Total Trajectories
Mean Concentration (µg·m−3)

PM2.5 OC EC TC

1 37 12.2% 48.46 7.18 2.13 9.31
2 27 8.9% 76.70 14.74 3.53 18.25
3 63 20.8% 42.58 10.02 2.34 12.36
4 59 19.5% 86.69 17.09 4.23 21.31
5 117 38.6% 65.65 14.39 3.19 17.57

4. Conclusions

In this study, OC and EC concentrations in PM2.5 were measured hourly with a semi-continuous
thermal optical analyzer at an urban site in Wanzhou (in southwest China) during four seasons from
June 2013 to May 2014. The annual average concentrations of OC and EC were 13.16 ± 7.98 µgC·m−3

and 3.12 ± 1.51 µgC·m−3. OC and EC showed seasonal variations as expected, with the highest
values in winter and the lowest concentrations in summer, which was mainly associated with seasonal
changes in source emissions and mesoscale meteorology. Pronounced and similar diel variations of
EC concentrations in different seasons were found, which both displayed a bimodal pattern with
peaks appearing in the morning and evening rush hour. The diel variations of OC concentrations
also showed a similar bimodal pattern to EC in summer, autumn, and spring, but the morning peaks
were broad. In wintertime, the diel OC concentration exhibited a clear bimodal pattern with the
morning peak occurred at midday. Additionally, OC had its diel maxima during the night in all of the
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seasons. The seasonal and diel variations of OC and EC concentration were mostly dominated by the
seasonal and diel variability of meteorological conditions and source emissions. Strong relationships
between OC and EC concentrations were found in winter and spring, indicating their common
sources. The correction was lower in summer and autumn, implying the presence of other sources.
The secondary organic carbon concentrations in PM2.5 were estimated by using an EC-tracer method
and the results showed that SOC concentrations were on average about 2.19 ± 1.55, 7.66 ± 5.89,
5.79 ± 3.51, and 3.43 ± 2.26 µgC·m−3, accounting for 29.2%, 52.7%, 27.4%, and 30.5% of total organic
carbon in summer, autumn, winter, and spring, respectively. This result demonstrated that the relative
contribution of SOC to OC in PM2.5 was only comparable to that of POC to OC in autumn, while in
the other three seasons, OC was dominated by POC. Five transportation pathways that contributed
to OC, EC, and PM2.5 in Wanzhou were identified by trajectory clustering. The air masses with high
PM2.5 and carbonaceous concentrations originated from or passed over several industrial centers and
urban areas in western and northwestern China. By contrast, the lowest PM2.5 and carbonaceous
concentrations observed were those coming from south and northeast areas, which brought in clean
air masses to Wanzhou with a longer pathway. However, air trajectories from the southeast were the
dominant trajectories, which indicated the influence of local sources by their short pathway.
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