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Abstract: With the economic growth and increasing urbanization in the last three decades, the air
quality over China has continuously degraded, which poses a great threat to human health.
The concentration of fine particulate matter (PM2.5) directly affects the mortality of people living
in the polluted areas where air quality is poor. The Beijing-Tianjin-Hebei (BTH) region, one of the
well organized urban regions in northern China, has suffered with poor air quality and atmospheric
pollution due to recent growth of the industrial sector and vehicle emissions. In the present study,
we used the back propagation neural network model approach to estimate the spatial distribution
of PM2.5 concentration in the BTH region for the period January 2014–December 2016, combining
the satellite-derived aerosol optical depth (S-DAOD) and meteorological data. The results were
validated using the ground PM2.5 data. The general method including all PM2.5 training data and
10-fold cross-method have been used for validation for PM2.5 estimation (R2 = 0.68, RMSE = 20.99 for
general validation; R2 = 0.54, RMSE = 24.13 for cross-method validation). The study provides a new
approach to monitoring the distribution of PM2.5 concentration. The results discussed in the present
paper will be of great help to government agencies in developing and implementing environmental
conservation policy.

Keywords: aerosol optical depth; PM2.5; MODIS; air pollution; artificial neural network;
Beijing-Tianjin-Hebei (BTH) region; back propagation neural network

1. Introduction

The exposure of people to fine particulate matter (PM2.5, particles with aerodynamic diameter less
than 2.5 µm) is associated with cardiovascular suffering and respiratory problems [1–4]. The sources
of PM2.5 are both natural and anthropogenic emissions. Although it accounts for a small proportion
of the particles in Earth’s atmosphere, PM2.5 degrades the air quality and enhances atmospheric
photochemical reactions [5,6]. In recent years, with intensive economic development and urbanization,
the concentration of PM2.5 has increased in most cities, including Beijing, the capital of China [7].
Such increases in PM2.5 degrades air quality, posing a serious threat to human health and affecting
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day-to-day weather conditions. High concentrations of PM2.5 with favorable meteorological conditions
(relative humidity and air temperature) are responsible for the dense fog and haze conditions.

In the wake of poor air quality in major cities such as Beijing, the Chinese government has
established ground-based monitoring stations in major cities that provide data on atmospheric
pollution and air quality (including the PM2.5 concentration). The routine ground monitor
stations cannot provide the spatiotemporal concentration of PM2.5. For the spatial distribution of
PM2.5, the satellite-derived aerosol optical depths (S-DAODs) have been used to estimate PM2.5

concentration [8–12]. A number of studies have employed regression models of AOD–PM2.5 to
estimate the ground-level PM2.5 concentration from S-DAOD data [10,13–17]. However, these statistical
models still have a key problem, in that statistical approaches were limited to specific regions and
times [18–21]. There are actually no effective statistical models to estimate PM2.5 concentration with
high precision in large regions [22,23]. In addition, earlier studies tended to obtain PM2.5 concentration
by using low spatial resolution AOD products (10 km), until the 3 km Moderate Resolution Imaging
Spectroradiometer (MODIS)AOD product (Collection 6) was recently released [24]. Although there
could be slightly higher errors over land in the 3 km MODIS AOD product compared to the 10 km
product, the 3 km MODIS AOD product has more capabilities for estimating PM2.5 concentration on
finer scales.

Efforts have not been made to use any statistical model for estimating PM2.5 concentration using
the 3 km MODIS AOD product in the Beijing-Tianjin-Hebei (BTH) region. As an attempt, we developed
a back propagation neural-network (BPNN) model to estimate PM2.5 concentration in the BTH region
by combining meteorological data and the 3 km MODIS AOD data. At the same time, the effectiveness
of the BPNN model in estimating PM2.5 concentration was validated using ground data.

2. Materials and Methods

2.1. Study Area

The BTH region is the one of the largest urban economic circles (UECs) in Northern China
(Figure 1), and covers an area of 218,000 km2 with total a population of 110 million (about 8% of
China’s population). The region consists of two municipalities (Beijing and Tianjin) and one province
(Hebei), which includes eleven prefecture-level cities (Shijiazhuang, Baoding, Langfang, Tangshan,
Zhangjiakou, Chengde, Qinhuangdao, Cangzhou, Hengshui, Xingtai, and Handan) [25–27].
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Figure 1. Study area. PM2.5: particulate matter with aerodynamic diameter less than 2.5 µm. 
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was five times higher than the national standard (15 µg/m3) and eight times higher than the WHO 
guidelines (10 µg/m3) [27]. 
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Figure 1. Study area. PM2.5: particulate matter with aerodynamic diameter less than 2.5 µm.

Due to various factors (including huge population, high-speed urbanization, industrial processes,
transportation, coal consumption for winter heating, etc.), the BTH region suffers from serious air
pollution. During the past several years, the PM2.5 concentrations in the BTH region have reached
an alarming level. The annual average PM2.5 concentration in some cities of the BTH region was five
times higher than the national standard (15 µg/m3) and eight times higher than the WHO guidelines
(10 µg/m3) [27].

2.2. Data

The data used in the present study mainly include ground-measured PM2.5, satellite data,
and meteorological data (details are given in Table 1).

Table 1. Data sets used in this study. AOD: aerosol optical depth.

Data Type Data Acquired Time Spatial
Resolution Source

Ground-level PM2.5 PM2.5 (µg/m3) 2014.1–2016.12 N/A Tianqihoubao

Satellite Data Aqua MODIS AOD
products 2014.1–2016.12 3 km × 3 km

National Aeronautics
and Space

Administration
(NASA), MODIS Team

Meteorological Data

Temperature (◦C)

2014.1–2016.12 Global climate data

Surface Pressure (pa)
Relative humidity (%)

Precipitation (mm)
Visibility (km)

Wind speed (m/s)

2.2.1. Ground PM2.5 Measurements

The Ministry of Environmental Protection of the People’s Republic of China (MEPCN) has set
up more than 900 air-quality monitoring sites in China for the purpose of monitoring air quality
(PM2.5 and PM10 concentration); hourly and 24 h average (daily-mean) PM2.5 data are available
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through the national urban air quality real-time publishing platform [28]. Figure 1 shows the locations
of 79 ground PM2.5 monitoring stations. We have used the daily-mean PM2.5 concentration data to
validate the model estimate of PM2.5.

2.2.2. Meteorological Data

The meteorological parameters (precipitation, air temperature, surface wind speed,
relative humidity, surface pressure, and average visibility) were used in the present study together with
satellite data. The meteorological parameters (annual averages, monthly averages, and daily averages)
were downloaded from the global climate data (GCD) [29] which provide historical climate data based
on more than 9000 stations distributed globally since 1929. In the BTH region, daily meteorological
data from eight stations have been used in the present study for the period 2014–2016. In order to
generate the gridded maps of variables from these stations, the ordinary kriging method has been
used to interpolate meteorological parameters [30–32].

2.2.3. Satellite AOD Dataset

There are two types of MODIS AOD products with 10 km and 3 km spatial resolution. The 10 km
MODIS AOD product is important to study local estimate of climate and its dynamics. However,
for local climate study, fine resolution data are required [33]. The MODIS collection 6 (C6) with 3 km
spatial resolution were released in the year 2013 [34,35]. The latest version of AOD product (C6) [36]
have been validated using AOD observations [37]. In spite of a limitation that expected errors over
land, we considered the 3 km × 3 km MODIS AOD product for the period 2014–2016 compared to the
10 km MODIS AOD product. The 3 km data product provides finer information that provides effective
supplements for the existing 10 km product in estimating PM2.5 [24].

2.3. Methodology

The approach used in the present study contains two modules: data pre-processing and model
construction (flow chart, Figure 2). The model construction module consists of the artificial neural
network (ANN) model construction and model validation.

Atmosphere 2018, 9, x FOR PEER REVIEW  4 of 14 

 

2.2.1. Ground PM2.5 Measurements 

The Ministry of Environmental Protection of the People’s Republic of China (MEPCN) has set 
up more than 900 air-quality monitoring sites in China for the purpose of monitoring air quality 
(PM2.5 and PM10 concentration); hourly and 24 h average (daily-mean) PM2.5 data are available 
through the national urban air quality real-time publishing platform [28]. Figure 1 shows the 
locations of 79 ground PM2.5 monitoring stations. We have used the daily-mean PM2.5 concentration 
data to validate the model estimate of PM2.5. 

2.2.2. Meteorological Data 

The meteorological parameters (precipitation, air temperature, surface wind speed, relative 
humidity, surface pressure, and average visibility) were used in the present study together with 
satellite data. The meteorological parameters (annual averages, monthly averages, and daily 
averages) were downloaded from the global climate data (GCD) [29] which provide historical 
climate data based on more than 9000 stations distributed globally since 1929. In the BTH region, 
daily meteorological data from eight stations have been used in the present study for the period 
2014–2016. In order to generate the gridded maps of variables from these stations, the ordinary 
kriging method has been used to interpolate meteorological parameters [30–32]. 

2.2.3. Satellite AOD Dataset 

There are two types of MODIS AOD products with 10 km and 3 km spatial resolution. The 10 
km MODIS AOD product is important to study local estimate of climate and its dynamics. However, 
for local climate study, fine resolution data are required [33]. The MODIS collection 6 (C6) with 3 km 
spatial resolution were released in the year 2013 [34,35]. The latest version of AOD product (C6) [36] 
have been validated using AOD observations [37]. In spite of a limitation that expected errors over 
land, we considered the 3 km × 3 km MODIS AOD product for the period 2014–2016 compared to 
the 10 km MODIS AOD product. The 3 km data product provides finer information that provides 
effective supplements for the existing 10 km product in estimating PM2.5 [24]. 

2.3. Methodology 

The approach used in the present study contains two modules: data pre-processing and model 
construction (flow chart, Figure 2). The model construction module consists of the artificial neural 
network (ANN) model construction and model validation.  

 
Figure 2. Flow chart showing approach for the estimation of the PM2.5. ANN: artificial neural network. 

Figure 2. Flow chart showing approach for the estimation of the PM2.5. ANN: artificial neural network.

2.3.1. Data Pre-Processing

We considered the World Geodetic System 1984 geographical coordinate system.
The meteorological dataset was interpolated to 3 km resolution using an ordinary kriging
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method to generate the daily gridded maps [30]. For the PM2.5 concentration, we considered
daily-average PM2.5 concentration, meteorological parameters (precipitation, air temperature,
surface wind speed, relative humidity, surface pressure, and average visibility), and AOD data
collocated in time and space. Sometimes, satellite-derived AOD are missing due to coverage and
cloudy conditions, so validation with ground observed PM2.5 may not be valid.

2.3.2. ANN Model

We used the artificial neural network (ANN) algorithm to model PM2.5 concentration based on the
meteorological variables and satellite-derived AOD data. The ANN algorithms are black-box models
of artificial intelligence [38]. There have been more than 30 different neural network models that were
developed and widely used [39,40]. We used a back-propagation neural network (BPNN) algorithm to
build the PM2.5 estimation model for predicting the PM2.5 concentration [41]. The estimation of the
PM2.5 concentration model consists of seven neurons in the input layer, seven neurons in the hidden
layer, and one neuron in the output layer. The seven parameters in the input layer include precipitation,
air temperature, surface pressure, wind speed, relative humidity, average visibility, and MODIS AOD
products. The neuron in the output layer is PM2.5 concentration. Figure 3 shows the schematic diagram
of the ANN model used in the present study.
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Figure 3. Topological structure of the back propagation neural-network (BPNN) model. IW is the
weight matrix of the input layer to the hidden layer; LW is the weight matrix between the hidden layer
and the output layer; b is the threshold vector. 1 means the first hidden layer; 2 is the output layer.

2.3.3. Model Evaluation

To assess the performance of the model, the ground PM2.5 measured data were used for
validation. We computed correlation coefficients, mean absolute percentage prediction error (APE),
and root-mean-square error (RMSE). In addition, the 10-fold cross-validation method was used and it
was found that the model over-estimated PM2.5 concentrations [42]. The whole dataset was split into
ten, and approximately 90% of the total dataset datasets were used for model training and only 10% of
the datasets for the validation of PM2.5 concentration.

3. Results and Discussion

3.1. Descriptive Statistics

Table 2 shows details of PM2.5 and the model inputs. The annual mean and standard deviation
of MODIS AOD were 0.64 and 0.60, respectively, in the study region. The annual mean value and
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the standard deviation (SD) of ground-level PM2.5 concentration, respectively, were 81.33 µg/m3 and
53.19 µg/m3. The annual mean visibility values varied in the range 0.30–29.9 km, and surface air
temperature varied in the range −10.10 ◦C to 38.10 ◦C. The annual mean precipitation was 2.52 mm,
and relative humidity was 55.04%, which implies relatively dry atmospheric conditions. The wind
speed varied in the range 1.50–39.60 m/s.

Table 2. The details of PM2.5 measurements and the model input parameters.

Parameters Mean SD Min Max

PM2.5 (µg/m3) 81.33 53.19 3.00 739.00
MODIS AOD 0.64 0.60 0.03 4.49

Temperature (◦C) 17.94 11.50 −10.10 38.10
Surface Pressure (pa) 1017.25 10.71 994.60 1054.40

Relative Humidity (%) 55.04 20.35 10.00 100.00
Precipitation (mm) 2.52 11.86 0.00 311.60

Visibility (km) 15.24 8.78 0.30 29.90
Wind Speed (m/s) 9.53 4.03 1.50 39.60

3.2. Model Validation

We used PM2.5 concentration data from 79 ground stations to build the BPNN model and validated
the estimated PM2.5 values with the ground-observed data. Figure 4 shows the scatter plots between
the model-derived PM2.5 predictions and the actual ground-measured PM2.5 concentration.

We considered two methods to validate the effectiveness of the PM2.5 concentration model in the
present study. Figure 4a shows the validation results by comparing all the PM2.5 observations with
corresponding predictions from the PM2.5 model estimation. The results show a good estimate of PM2.5

concentration (R2 = 0.68, RMSE = 20.99, APE = 20.70%). The scatter plots are distributed around the
1.0 slope of the fitting values, showing good estimate of the ground-observed data. Figure 4b shows
the 10-fold cross-validation results with R2 0.54, RMSE 24.13, and APE 22.50%. The results obtained
show that the PM2.5 concentration estimated from the model provide a very close estimation with the
observed data. By comparing the two validation methods of the model-estimated PM2.5 concentration,
the R2 of 10-fold cross-validation results decrease by approximately 0.13, and RMSE increases by
approximately 3.14, which suggests that the estimated PM2.5 concentration is not substantially
over-fitted. Finally, our results show that the BPNN PM2.5 concentration estimation model provides an
accurate estimate because of the relative lower prediction error [22].
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Figure 4. Comparison of model-derived satellite PM2.5 with the ground measurements over
79 sites during 2014–2016. (a) The comparison results between all the observed PM2.5 data and
the corresponding predictions derived from the PM2.5 estimation model trained using all surface
measured PM2.5 data; and (b) 10-fold cross-validation results.
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3.3. Estimation of PM2.5 Concentration

The PM2.5 estimating model input variables were gridded into the same spatial resolution with
the 3 km MODIS AOD products. The spatial distributions of the daily PM2.5 concentration for the
period January 2014 to December 2016 were obtained from the estimated PM2.5 model. Figure 5 shows
the annual mean PM2.5 concentration in the BTH region. From the annual mean spatial distribution
of PM2.5 concentration of the BTH region, we observed high concentrations of PM2.5 in central
and southern BTH, especially in several cities and their surroundings (Beijing, Tianjin, Tangshan,
Shijiazhuang, Baoding, Xingtai, etc.). The northern BTH region showed low PM2.5 concentration,
especially in the Zhangjiakou and Chengde areas. The areal distribution of the PM2.5 concentration
is controlled by the strong northerly wind in the northern parts of the BTH region during autumn
and winter seasons that spreads fine particulate pollutants in the southern parts. At the same time,
more population and industry cluster in central and southern parts of the BTH region, and are the
main sources of pollution. In addition, the annual mean PM2.5 concentration for the years 2015 and
2016 were found to be lower compared to 2014 (Figure 5). Figure 6 shows changes in distribution of
the annual mean PM2.5 concentration during 2014–2016. The results show that most of the BTH region
exhibited a decrease in the annual mean PM2.5 concentration during 2015 and 2016 compared with
2014, while a small increase in concentration was observed in Zhangjiakou, Chengde, and other small
areas in the BTH region.
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Figure 6. Changes in the annual mean PM2.5 concentration from 2014 to 2016 in the BTH region.
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in spatial concentration of PM2.5 in the BTH region during 2015 and 2016; (c) Difference in spatial
concentration of PM2.5 in the BTH region during 2014 and 2016.

By comparing the annual mean PM2.5 concentration of 2014 with 2016 (Figure 6c), we observed
a decline in concentration in the cities having high concentration (average values greater than
10.00 µg/m3). In several major cities (Beijing, Tangshan, Shijiazhuang, and Xingtai), PM2.5 varied
in the range 15.00–25.00 µg/m3. However, Zhangjiakou city and outskirts showed higher PM2.5

values (>5.00 µg/m3), and in the center of the Zhangjiakou city PM2.5 varied by up to 25.00 µg/m3.
A declining trend in the annual mean PM2.5 concentration was observed from 2014 to 2016 in most areas
of the BTH region. In order to further evaluate the estimation of PM2.5 concentration, we validated the
change in trend of PM2.5 concentration by using the ground-observed data. Figure 7 shows the change
in yearly average trend of 12 cities from the actual ground-measured data and model estimation.
Similar trends between ground-measured PM2.5 and model estimation are clearly seen in Figure 7.
A decreasing trend occurred in 10 cities of the BTH region, including Baoding, Beijing, Shijiazhuang,
Tangshan, Tianjin, Xingtai, Cangzhou, Langfang, Hengshui, and Handan (Figure 7). A small increasing
trend of PM2.5 concentration in the Zhangjiakou region was observed. The evaluation result also
demonstrated the accuracy of PM2.5 concentration estimation.
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4. Conclusions

In this study, we estimated the spatio-temporal distribution of PM2.5 in the BTH region using the
ANN model, with the inputs of MODIS AOD and meteorological data. The PM2.5 estimation model
using the BPNN approach was able to estimate PM2.5 concentration with high accuracy. The model
input variables—especially the 3 km AOD product—were used to estimate the spatial distribution
of PM2.5 concentration. The results provide a reasonably good estimate of PM2.5, but we still have
limitations and uncertainties in the estimation.

The surface measurements of PM2.5 concentration are at the ground level, whereas the satellite
AOD product accounts for pollution in the atmospheric column. The vertical profile of AOD or vertical
profile of PM2.5 concentration were not considered in the model; in the future, such consideration
will improve the estimation of PM2.5. In addition, the composition and concentration of PM2.5 greatly
vary due to different sources (natural and anthropogenic) in different regions, and concentrations
vary in space and time. For example, the natural source mainly includes sea salt, dust, volcanic
eruptions, forest fires, and grassland fires, and the anthropogenic sources mainly consist of fossil fuel
combustion and industrial processes. At the same time, there are many uncertain sources which also
seriously affect PM2.5 concentration, and are not considered in the present study. In future studies,
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a more refined PM2.5 estimation model will be conducted to account for seasonal variability and also
different [43–45].

The approach based on a BPNN model for PM2.5 concentration shows the feasibility of monitoring
the PM2.5 concentration in large-scale regions. In order to further improve the estimation of PM2.5

concentration, we will make following efforts:

• Sometimes there are gaps in the area covered by the satellites; the higher temporal resolution will
reduce the gaps in AOD data. Satellite remote sensing data from Terra MODIS AOD, Landsat 8,
the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi National Polar-Orbiting
Partnership (Suomi NPP), and Environment and Disaster Monitoring Small Satellite (HJ-1) may
provide better AOD data [46,47].

• Light detection and ranging (Lidar) data will be considered in the future to estimate the aerosol
vertical profile and components, which would be helpful in understanding the vertical distribution
and source of PM2.5 concentration [48]. In addition, the interpolation of meteorological data
should also be studied to obtain the most accurate spatial distribution data, which can improve
the estimation precision of the PM2.5 concentration distribution.

The method proposed in the present study can be extended to large areas, when the dense network
of ground observing stations is expanded.

The estimate of PM2.5 over in China will be of great help in understanding the dynamics of
pollutants, and will also help the government in making efforts to minimize atmospheric pollution
and improve air quality, public health, and the climate—especially during the winter season.
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