
atmosphere

Article

Evaluations of WRF Sensitivities in Surface
Simulations with an Ensemble Prediction System

Linlin Pan *, Yubao Liu, Jason C. Knievel, Luca Delle Monache and Gregory Roux

National Center for Atmospheric Research, Boulder, CO 80301, USA; yliu@ucar.edu (Y.L.);
knievel@ucar.edu (J.C.K.); lucadm@ucar.edu (L.D.M.); roux@ucar.edu (G.R.)
* Correspondence: lpan@ucar.edu

Received: 26 January 2018; Accepted: 9 March 2018; Published: 13 March 2018

Abstract: This paper investigates the sensitivities of the Weather Research and Forecasting (WRF)
model simulations to different parameterization schemes (atmospheric boundary layer, microphysics,
cumulus, longwave and shortwave radiations and other model configuration parameters) on a
domain centered over the inter-mountain western United States (U.S.). Sensitivities are evaluated
through a multi-model, multi-physics and multi-perturbation operational ensemble system based on
the real-time four-dimensional data assimilation (RTFDDA) forecasting scheme, which was developed
at the National Center for Atmospheric Research (NCAR) in the United States. The modeling system
has three nested domains with horizontal grid intervals of 30 km, 10 km and 3.3 km. Each member
of the ensemble system is treated as one of 48 sensitivity experiments. Validation with station
observations is done with simulations on a 3.3-km domain from a cold period (January) and a
warm period (July). Analyses and forecasts were run every 6 h during one week in each period.
Performance metrics, calculated station-by-station and as a grid-wide average, are the bias, root mean
square error (RMSE), mean absolute error (MAE), normalized standard deviation and the correlation
between the observation and model. Across all members, the 2-m temperature has domain-average
biases of −1.5–0.8 K; the 2-m specific humidity has biases from −0.5–−0.05 g/kg; and the 10-m
wind speed and wind direction have biases from 0.2–1.18 m/s and −0.5–4 degrees, respectively.
Surface temperature is most sensitive to the microphysics and atmospheric boundary layer schemes,
which can also produce significant differences in surface wind speed and direction. All examined
variables are sensitive to data assimilation.

Keywords: WRF sensitivities; surface simulation; operational ensemble system

1. Introduction

Mesoscale numerical weather prediction (NWP) models provide very valuable weather forecast
guidance for lead times of hours to days. The Weather Research and Forecasting (WRF) model
is a state-of-the-art mesoscale NWP modeling system designed for both atmospheric research
and operational forecasting [1]. The WRF model offers operational forecasting as a flexible and
computationally-efficient platform, while incorporating recent advances in physics, numerics and data
assimilation contributed by developers from the expansive research community. The WRF model is
currently in operational use at the United States (U.S.) at National Centers for Environmental Prediction
(NCEP) and other national meteorological centers, as well as in real-time forecasting configurations at
laboratories, universities and private companies. The WRF model has a large worldwide community
of registered users because it is open source and runs on many computing platforms.

The number of physics options in the WRF model is simultaneously a strength and a challenge.
As of Version 3.8.1, there are 17 schemes for microphysics, 13 for the atmospheric boundary layer
(ABL), 14 for cumulus convection, 3 for shallow convection, 8 for shortwave radiation, 6 for longwave

Atmosphere 2018, 9, 106; doi:10.3390/atmos9030106 www.mdpi.com/journal/atmosphere

http://www.mdpi.com/journal/atmosphere
http://www.mdpi.com
http://dx.doi.org/10.3390/atmos9030106
http://www.mdpi.com/journal/atmosphere


Atmosphere 2018, 9, 106 2 of 16

radiation, 8 for the surface layer and 9 for the land surface. Many studies show that surface variables
can be sensitive to ABL physics [2–10], which impacts surface wind and wind energy resource
simulations [11–14]. Precipitation forecasts and simulations of severe weather can be sensitive
to cloud microphysics and cumulus parameterizations [15–23]. Surface variables (e.g., wind) can
also be sensitive to the land surface model, land use and topography [24–28]. Data assimilation
has an impact on atmospheric or oceanic models in general, and it also plays an important role in
WRF model simulations [29]; post-processing can also improve the results [30]. However, further
studies of the sensitivities of the different schemes, particularly those that are newly implemented,
are needed. The system used in this study is an operational system developed for weather forecast
for the Western United States. The system is mainly designed for surface high-resolution weather
forecasts. The motivation of the sensitivity study is to choose better parameters for the modeling
system. The Western United States has complex mountain areas, so that it is a big challenge for weather
forecasting. This study will provide useful information for parameter setting for WRF simulation in
the complex terrain area similar to the western United States of America (USA). The sensitivity of
surface variables to the ABL scheme, cumulus parameterization, microphysics and boundary/initial
condition will be investigated.

In this study, 48 experiments were conducted with an ensemble prediction system (EPS) [30].
Each member of the ensemble is treated as a different experiment to investigate model sensitivities to
different configurations. The paper is organized as follows: model configurations, the experimental
design and observation data sources used for verification are given in Section 2, followed by the
evaluation of the sensitivities and additional comments in Section 3. Section 4 summaries the
main results.

2. Model Setting, Experiments’ Design and Observation Data Sources

The study area focuses on the complex topography and high mountain ranges (e.g., Rocky
Mountains and the Sierra Nevada) of the western United States. The modeling system has three
domains (Figure 1a), with horizontal grid intervals of 30 km (98 × 84 points), 10 km (196 × 172) and
3.3 km (76 × 76). The model has 37 vertical levels. The advanced research WRF (ARW) Version 3.8.1 is
used in this study. The WRF model integrates the fully-compressible non-hydrostatic equations of
motion and can be run at cloud-resolving scale (e.g., around 3 km). In its standard configuration,
it uses fifth order upwind advection and third order Runge–Kutta split explicit time integration [31];
it has low dispersion errors, and it allows a time step that is longer than in some other mesoscale
models [32,33]. The experiments are listed in Table 1. Our two control configurations of the model use
the Kain–Fritsch cumulus scheme [34], Lin microphysics [35], rapid radiative transfer model (RRTM)
longwave radiation [36], Dudhia shortwave radiation [37], Yonsei University (YSU) ABL [38] and
the Noah land-surface model [39]. One control configuration uses the Global Forecast System (GFS)
as the boundary and initial condition, and the other control configuration uses the North American
Mesoscale Forecast System (NAM) as the boundary and initial conditions. Then, different ABL,
radiation, microphysics and cumulus parameterizations are tested, totaling 48 experiments (Table 1).
For detailed descriptions of these schemes, please refer to the WRF model user’s guide [40] and web
site (http://www2.mmm.ucar.edu/wrf/users/).

Each cycle is run every 6 h from 1200 UTC, 18 January 2016, through 1800 UTC, 26 January
2016 (the first period of study), and then, from 1200 UTC, 1 July 2016, through 1800 UTC, 9 July 2016
(the second period of study). The first 12 h at the start of each of the one-week periods is discarded
to remove spin-up effects. Each cycle comprises a six-hour analysis (with data assimilation) and a
24-h forecast (without data assimilation). The first cycle gets the initial condition from the large-scale
model (e.g., NAM or GFS), and the following cycle gets the initial condition from the restart file from
the previous cycle. The results are verified by World Meteorological Organization (WMO) and NCEP
Meteorological Assimilation Data Ingest System (MADIS) station observations [29]. Locations of the
344 surface stations in Domain 3 are given in Figure 1c.

http://www2.mmm.ucar.edu/wrf/users/
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Table 1. List of experiments. YSU: Yonsei University; GFS: Global Forecast System; NAM: North
American Mesoscale Forecast System.

Experiment
Descriptions of the Experiment Setting

Abbreviation
Descriptions Boundary Conditions

1 Control run with YSU ABL scheme, Kain–Fritsch cumulus scheme, single
momentum 6-class microphysics, Dudhia Shortwave GFS GCTRL

2 Betts–Miller–Janjic cumulus scheme including D3 GFS GC33B

3 Betts–Miller–Janjic cumulus scheme GFS GCBMJ

4 Grell–Devenyi ensemble cumulus scheme GFS GCGDE

5 Multi-scale Kain–Fritsch cumulus scheme GFS GCMKF

6 New Tiedtke cumulus scheme GFS GCTI2

7 Relative Humidity (RH)-based method for cloud fraction GFS GICLD

8 Thompson microphysics GFS GMTHO

9 WRF Double Momentum (WDM) 5-class scheme GFS GMWS5

10 Morrison microphysics scheme GFS GMMOR

11 Similar to experiment 1 (GCTRL) except without data assimilation GFS GNODA

12 Bougeault and Lacarrere (BOU) ABL scheme GFS GPBOU

13 Mellor–Yamada–Janjic (Eta) Turbulent Kinetic Energy (TKE) ABL scheme GFS GPMYJ

14 Mellor-Yamada-Nakanishi-Niino (MYN) 2.5 level TKE ABL scheme GFS GPMYN

15 Quasi-Normal Scale Elimination (QNS) ABL scheme GFS GPQNS

16 University of Washington (UW) (Bretherton and Park) ABL scheme GFS GPUWA

17 YSU ABL scheme with modified mixing GFS GPYSU

18 Community Atmospheric Model (CAM) short wave radiation GFS GRCAM

19 Goddard shortwave scheme GFS GRGOD

20 Stochastic kinetic-energy backscatter Scheme (SKEBS) 1 GFS GSKEB

21 Stochastic kinetic-energy backscatter Scheme (SKEBS) 2 GFS GSKE2

22 Stochastic kinetic-energy backscatter Scheme (SKEBS) 3 GFS GSKE3

23 Stochastic kinetic-energy backscatter Scheme (SKEBS) 4 GFS GSKE4

24 Stochastic kinetic-energy backscatter Scheme (SKEBS) 5 GFS GSKE5

25 Control run with YSU ABL scheme, Kain–Fritsch cumulus scheme, single
momentum 6-class microphysics scheme NAM NCTRL

26 Betts–Miller–Janjic cumulus scheme NAM NC33B

27 Betts–Miller–Janjic cumulus scheme NAM NCBMJ

28 Grell–Devenyi ensemble cumulus scheme NAM NCGDE

29 Multi-scale Kain–Fritsch cumulus scheme NAM NCMKF

30 New Tiedtke cumulus scheme NAM NCTI2

31 RH-based method for cloud fraction NAM NICLD

32 Thompson microphysics NAM NMTHO

33 WDM 5-class scheme NAM NMWS5

34 Morrison microphysics scheme NAM NMMOR

35 Similar to experiment 25 (NCTRL) except without data assimilation NAM NNODA

36 Bougeault and Lacarrere (BouLac) ABL scheme NAM NPBOU

37 Mellor–Yamada–Janjic (Eta) TKE ABL scheme NAM NPMYJ

38 MYNN 2.5 level TKE ABL scheme NAM NPMYN

39 Quasi-Normal Scale Elimination ABL scheme NAM NPQNS

40 UW (Bretherton and Park) ABL scheme NAM NPUWA

41 YSU ABL scheme with modified mixing NAM NPYSU

42 CAM short wave radiation NAM NRCAM

43 Goddard shortwave scheme NAM NRGOD

44 Stochastic kinetic-energy backscatter (SKEB) Scheme 1 NAM NSKEB

45 Stochastic kinetic-energy backscatter (SKEB) Scheme 2 NAM NSKE2

46 Stochastic kinetic-energy backscatter (SKEB) Scheme 3 NAM NSKE3

47 Stochastic kinetic-energy backscatter (SKEB) Scheme 4 NAM NSKE4

48 Stochastic kinetic-energy backscatter Scheme (SKEBS) 5 NAM NSKE5
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(observation mean subtracted from forecast mean), mean absolute error (MAE), root mean square 
error (RMSE), normalized standard deviation (forecast’s standard deviation/observation’s standard 
deviation) (Std) and the correlation (Cor) between forecasts and observations. The model outputs are 
linear interpolated to the observation point and height adjustment for temperature with empirical 
lapse rate (6.5 K/km). 

The results for normalized standard deviation and correlation between analyses/forecasts and 
observations are given in Figures 2–5. Figure 2 presents the normalized standard deviation and 
correlation in analyses from the one-week period in January. Correlations between analyses and 
observations are around 0.87 for air temperature at 2 m above ground level (AGL) (T2), 0.8 for 
specific humidity at 2 m AGL (Q2) and 0.5 for wind speed at 10 m AGL (WS10) (Figure 2). The lower 
correlation in WS10 is caused by the variability in the wind field. The lowest correlations are from 
the experiments without data assimilation (11 GNODA, 35 NNODA), which also have some of the 
highest normalized standard deviations. Some ABL scheme experiments (12 GPBOU and  
36 NPBOU) have even higher normalized standard deviations in WS10 (Figure 2). Generally, 
normalized standard deviations in WS10 are high and substantially above 1.0, among the 

Figure 1. Model topography of (a) Domain 1, (b) Domain 2 and (c) Domain 3 and surface stations
(white dots) in Domain 3 (c). The area within the green rectangle in (a) is Domain 2 (D2), and the area
within the white rectangle is Domain 3 (D3). Topography (m above mean sea level) is shaded.

3. Evaluation of the Sensitivities of the System

The sensitivity of the model to each configuration is assessed through domain average bias
(observation mean subtracted from forecast mean), mean absolute error (MAE), root mean square
error (RMSE), normalized standard deviation (forecast’s standard deviation/observation’s standard
deviation) (Std) and the correlation (Cor) between forecasts and observations. The model outputs are
linear interpolated to the observation point and height adjustment for temperature with empirical
lapse rate (6.5 K/km).

The results for normalized standard deviation and correlation between analyses/forecasts and
observations are given in Figures 2–5. Figure 2 presents the normalized standard deviation and
correlation in analyses from the one-week period in January. Correlations between analyses and
observations are around 0.87 for air temperature at 2 m above ground level (AGL) (T2), 0.8 for specific
humidity at 2 m AGL (Q2) and 0.5 for wind speed at 10 m AGL (WS10) (Figure 2). The lower correlation
in WS10 is caused by the variability in the wind field. The lowest correlations are from the experiments
without data assimilation (11 GNODA, 35 NNODA), which also have some of the highest normalized
standard deviations. Some ABL scheme experiments (12 GPBOU and 36 NPBOU) have even higher
normalized standard deviations in WS10 (Figure 2). Generally, normalized standard deviations in
WS10 are high and substantially above 1.0, among the experiments with ABL schemes (13 GPMYJ,
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15 GPQNS, 37 NPMYJ and 39 NPQNS), different from the control scheme of YSU. Thus, WS10 in
analyses is sensitive to different ABL schemes due to differences in the representation of the surface
process in different ABL models. The normalized standard deviation of T2 is smaller than 1.0 (Figure 2),
which might be because the WRF model has a tendency to have a warm bias during the coolest time
of night and a cool bias during the warmest time of day, which is consistent with the findings of a
previous study [29]. Results are similar for 1–24-h forecasts (Figure 3). The correlation coefficients are
around 0.8, 0.7 and 0.4 for T2, Q2 and WS10, respectively, which are smaller than the results for the
analysis period because data assimilation is used for all the experiments except GNODA and NNODA.
The variation of the standard deviation of T2 and Q2 during the forecast period is smaller than that
for T2 and Q2 during the analysis period. Results are similar for the week in July (Figures 4 and 5).
The correlation coefficient in July is slightly higher than that in January, especially for T2 and Q2.
However, the variation of standard deviation is smaller in July, especially for T2 and Q2 (Figure 5b).
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Figure 2. Boxplot of the averages on Domain 3 of (a) correlation and (b) normalized standard deviation
of air temperature at 2 m above ground level (T2) (red), Q2 (blue), and wind speed (WS) (green);
and (c) Taylor diagram of the analysis during the one-week study period in January 2016. Numbers refer
to experiments.
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Bias, MAE and RMSE of T2 (Figures 6 and 7) and bias and MAE of Q2 (Figures 8 and 9), WS10
(Figures 10 and 11) and wind direction (WD10) at 10 m (Figures 12 and 13) for the January period are
shown in the figures. The experiments without data assimilation stand out in all plots (not shown).
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T2 is sensitive to microphysics and ABL schemes (Figures 6 and 7). For the experiments with
NAM as boundary and initial conditions, the difference in T2 bias is around 0.5 K among different
ABL schemes. The YSU ABL scheme (control one) and MYN ABL scheme produce a smaller bias,
while the BOU ABL scheme has larger bias at around 0.2 K. With GFS as the boundary and initial
conditions, the range of bias is from −1.5 K–0.2 K. Results from the YSU ABL scheme and MYN
ABL scheme are similar. The bias of the QNS ABL scheme is slightly higher. Among the different
ABL schemes, more members with the GFS boundary and initial conditions are negative biases
compared to those with the NAM boundary and initial conditions, which tend to have positive
biases. Different shortwave radiation scheme can cause bias differences of around 0.2 K. The impacts
of different cumulus parameterizations to T2 bias are similar; bias is positive for NAM boundary
conditions, and the bias is negative for the GFS boundary conditions. Different microphysics can
produce big differences in T2 bias, which reflects the impact of cloud on the surface temperature.
The bias of the stochastic kinetic-energy backscatter (SKEB) scheme with the NAM boundary and
initial conditions is slightly larger than the results from GFS boundary and initial conditions. MAE and
RMSE among the different experiments with data assimilation are not meaningfully different, and the
two metrics convey similar information (Figure 6). MAEs are all around 1.2 K and RMSEs around 1.8 K.

All members have a negative bias in Q2, and like the T2 bias, the Q2 bias is sensitive to different
ABL schemes (Figure 8). With NAM as the boundary and initial conditions, Q2 bias ranges from
−0.35 g/kg (11 NNODA) to −0.05 g/kg (39 NPQNS). With GFS as the boundary and initial conditions,
Q2 bias ranges from −0.5 g/kg–−0.1 g/kg. Magnitudes of the negative biases are slightly higher from
the GFS boundary and initial conditions than that from the NAM boundary and initial conditions.
The spread of Q2 biases among different cumulus parameterizations and different microphysics is
around 0.1 g/kg. The impacts of different SKEB schemes with different backscattered dissipation rates
for potential temperature and stream function are similar. The differences in MAE are around 0.2 g/kg
(Figure 7b). Values range from 0.4 g/kg–0.6 g/kg.

WS10 is most sensitive to the ABL scheme (Figure 9), more through bias than MAE, which does
not vary much among experiments. The impacts of different microphysics and cumulus schemes on
WS10 are comparatively small. All WS10 biases in the experiments are positive (Figure 9), ranging
from 0.2 m s−1 (32 NMTHO) to 1.18 m s−1 (12 GPBOU). Performances with GFS and NAM boundary
and initial conditions are similar. Both ABL schemes and microphysics have impacts on the WD10 bias
(Figure 10). Biases range from −0.5◦–4.0◦. Experiments without data assimilation have the smallest
biases. Differences between experiments with GFS and NAM as the boundary and initial conditions
are very small. Differences in MAE among all experiments are minor; they are all around 65 degrees
(Figure 10b).

Many of the sensitivities in July are similar to those in January (Figures 11 and 12). Biases in
forecasts of T2 vary from −1.25 K–0.2 K, and MAEs range from 1.4 K–2.5 K if including the experiments
without data assimilation. The results for Q2, WS10 and WD10 are also similar (not shown).

The sensitivity properties have similar results in winter and summer; however, the bias and
MAE are bigger in summer than in winter (Figure 13). Both T2 and Q2 bias increase with time for the
short-term forecast in summer. However, only Q2 bias increases with time for the short-term forecast
in winter. T2 bias does not have a clear tendency in winter and ranges from 0.1 K–0.3 K, which is
smaller than the values (0.2 K–0.5 K) in summer. Neither WS10 nor WD10 have a clear tendency
during both winter and summer. The domain average bias in WS10 is around 0.5 m s−1 in both winter
and summer. We also did a one-year run for the GFS control member, and basically, the results are
similar. Figure 14 gives the variation of surface 2-m temperature bias in 2016. It tends to have a
bias from −0.6 K–+0.6 K at most of the time. Data assimilation can also influence the sensitivity of
different configurations since the data assimilation will force the model close to the observations, so the
sensitivity will be reduced. Furthermore, sensitivities may depend on underlying surface properties,
including topography, land use and soil types.
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4. Conclusions

A mesoscale ensemble prediction system is used in this sensitivity study. The advantage of using
an ensemble system to do the experiments is that they can be run in parallel. It is demonstrated that
analyses and forecasts of T2, Q2, WS10 and WD10 can be sensitive to the ABL scheme. Q2 bias is
consistently negative, and WS10 bias is consistently positive. T2 bias differs among the experiments by
as much as 2.0 K. Q2 bias ranges from −0.5 g/kg–−0.05 g/kg, and WS10 bias ranges from 0.2 m s−1

(YSU ABL scheme with NAM boundary conditions) to 1.2 m s−1 (BOU ABL scheme with GFS boundary
conditions). Different microphysics schemes produce big differences in T2 bias during the 1–24-h
forecast period, which presumably reflects the impact of cloud on surface conditions. Microphysics can
also influence WS10, but has relatively smaller impact on Q2. The choice of cumulus parameterization
does not produce a clear signal in T2, Q2, WS10 and WD10. In some cases, the choice of boundary
and initial conditions from GFS vs. NAM does have a noticeable impact on T2, Q2, WS10 and WD10.
Through this sensitivity study, we have better knowledge of the sensitivities of different options of the
model setting over the mountain areas in the western United States and get optimal settings for the
real-time system based on the performances of different parameters. These optimal settings can also
be used in an area similar to the Western United States. This study also provides useful information
for ensemble member selections for the physical perturbations.
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