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Abstract: The transmission and storage of weather radar products will be an important problem
for future weather radar applications. The aim of this work is to provide a solution for real-time
transmission of weather radar data and efficient data storage. By upgrading the capabilities of
radar, the amount of data that can be processed continues to increase. Weather radar compression
is necessary to reduce the amount of data for transmission and archiving. The characteristics of
weather radar data are not considered in general-purpose compression programs. The sparsity and
data redundancy of weather radar data are analyzed. A lossless compression of weather radar data
based on prediction coding is presented, which is called spatial and temporal prediction compression
(STPC). The spatial and temporal correlations in weather radar data are utilized to improve the
compression ratio. A specific prediction scheme for weather radar data is given, while the residual
data and motion vectors are used to replace the original values for entropy coding. After this, the
Level-II product from CINRAD SA is used to evaluate STPC. Experimental results show that the
STPC achieves a better performance than the general-purpose compression programs, with the STPC
yield being approximately 26% better than the next best approach.

Keywords: data compression; weather radar; spatial prediction; temporal prediction; radar
signal processing

1. Introduction

Meteorological disasters have always been among the most devastating natural phenomena
on Earth, which are capable of spreading destruction and result in loss of life across wide areas.
Weather radars provide continuous, high-resolution, and multi-parameter observation abilities in
large geographical areas in real time. With the increasing use of ground, airborne, and on-board
weather radars, weather radar data represents an important source of information for a large variety
of meteorological scientists. High-resolution weather radar and weather radar network have been
proposed to promote the monitoring and prediction capability of meteorological disasters [1–3].
However, high-resolution weather radar and multi-radar observations generate a large amount of
data that need to be processed, stored, and transmitted in real time. Since the Collaborative Radar
Acquisition Field Test (CRAFT) became operational in 2004, many uses require real-time access
to the radar data [4,5]. Low-latency transmission of radar data would be an ongoing goal for all
countries. Meanwhile, in order to promote the detection capability of meteorological disasters,
multi-radar data need to be shared online [6,7]. The high-resolution weather radar promotes the
detection capability, while the real-time and effective transmission of high-resolution data is limited by
the channel bandwidth, especially the satellite channel.

Usually, weather radar data collection and recording are in the unit of files, which typically contain
four, five, six, or ten minutes of base data, depending on the volume coverage pattern (VCP). A data
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file consists of a volume scan header record and volume data records. Level-II products include the
digital radial base data (Reflectivity, Mean Radial Velocity and Spectral Width) and Dual Polarization
variables (Differential Reflectivity, Correlation Coefficient, and Differential Phase) output from the
signal processor in the Radar Data Acquisition unit [8].

There are some generic off-the-shelf compression approaches, which are effective for compressing
weather radar data. The weather radar compression approaches can be classified as lossy compression
and lossless compression. The lossy compression approaches allow for the sacrifice of some features
of data to achieve a higher compression ratio. A typical lossy approach is PPI (Plan Position
Indicator) data compression using image compression approaches, such as JPEG [9] and JPEG2000 [10].
Ma et al. [11] clipped weather radar data based on user demands, which can compress data to
a great extent. Ai et al. [12] proposed a lossy weather radar compression approach based on
Wavelet transformation and compared the compression performance with several lossy compression
approaches. Vishnu et al. [13] proposes a lossy compression approach that is based on extracting the
radar echo image contour and quantization coding. Lossy compression approaches can provide
a higher compression ratio than lossless compression, since quantization is applied. The high
frequency details are quantized as quantization errors and removed during compression processing.
The quantization error leads to a certain degree of fidelity reduction in the reconstructed data.
Mishra et al. [14] proposed an unconventional weather radar paradigm that employs compressed
sensing techniques to reduce the radar scan time without any significant loss of target information.
Kawami et al. [15,16] proposed an effective three-dimensional compressive sensing method for the
phased array weather radar (PAWR), which achieves normalized errors of less than 10% for a 25%
compression ratio that outperforms conventional two-dimensional methods. These approaches use
the compression sensing technique to reduce the amount of data based on the sparsity of weather
radar signals. This approach is a lossy compression because the CS reconstruction is affected by
signal sparsity and can only reconstruct the original signal without any loss in high probability.
Some lossless methods can be applied for the weather radar data, such as Bzip2 [17], Gzip [18],
and LZW [19] programs. Lakshmanan [20] and Kruger [21,22] compared several typical lossless
compression algorithms used in weather radar data. The results showed that general-proposed lossless
compression algorithms are usually based on arithmetic coding and good performance on general
data, although the weather radar data characteristics are not taken into account.

In order to reduce the amount of weather radar data and improve transmission efficiency of radar
products, many solutions have been proposed for the data structure analysis and the compression
algorithm design on Level II products. McCarroll et al. [23] specifically analyzed the Level II products
of the super-resolution WSR-88D data structure, including trailing-zeros, raw data distribution and
difference data distribution. Based on the analysis of radar data, a lossless compression approach is
presented, which is based on a radial-by-radial basis focusing on the delta (difference) between range
bins of super-resolution radar data. Ai et al. [24] described the redundancy in PPI image and proposed
a lossless compression approach using optical prediction in PPI images. The premise of these works
involves the exploration of using this data structure to reduce the amount of data.

In this paper, the characteristics of weather radar data are analyzed, a block-based prediction method
is presented to reduce the correlation, and finally, we proposed a weather radar lossless compression
approach that is called STPC (spatial and temporal prediction compression). STPC was tested on level-II
product data from several S-band Doppler weather radars. The STPC performance was compared
with general-purpose compression programs and a weather radar-specific compression approach.

2. Characteristics of Weather Radar Data

In this paper, we focus on Level-II data since that is the best data that is routinely transmitted.
The volume scan header can usually be compressed by the general lossless entropy coding algorithm,
while the size of volume scan header is negligible when compared with the size of volume data.
General compression programs can be easily applied and work well for the weather radar, but the
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characteristics of weather radar data are not taken into account. The structure of weather radar data
has three characteristics: sparsity, spatial redundancy, and temporal redundancy.

2.1. Sparsity

Volume data contain a large number of missing data range bins, especially in reflectivity data.
The missing data range bins refers to data that were sampled beyond the threshold for 8-bit reflectivity
level codes or the when the corresponding range bin is in an area of the atmosphere that weather does
not exist [23]. Weather radar data are much sparser than image and video data streams contributing to
the large amount of missing data. The missing data indicator has different representation in different
radar formats. Missing data are represented as NaN (Not a number) or a special value. Figure 1 shows
the statistics related to the total number of missing data in weather radar data, which is composed of
two components for the 360 radials in the first elevation cut of the CINRAD SA radar (Beijing Metstar
Radar Company, Beijing, China) on 20 May 2016 at 07:48 a.m.: the number of trailing missing data,
which are those at the end of a radial, and the number of non-trailing missing data.

Atmosphere 2018, 9, x FOR PEER REVIEW  3 of 15 

 

algorithm, while the size of volume scan header is negligible when compared with the size of 
volume data. General compression programs can be easily applied and work well for the weather 
radar, but the characteristics of weather radar data are not taken into account. The structure of 
weather radar data has three characteristics: sparsity, spatial redundancy, and temporal 
redundancy. 

2.1. Sparsity 

Volume data contain a large number of missing data range bins, especially in reflectivity data. 
The missing data range bins refers to data that were sampled beyond the threshold for 8-bit 
reflectivity level codes or the when the corresponding range bin is in an area of the atmosphere that 
weather does not exist [23]. Weather radar data are much sparser than image and video data streams 
contributing to the large amount of missing data. The missing data indicator has different 
representation in different radar formats. Missing data are represented as NaN (Not a number) or a 
special value. Figure 1 shows the statistics related to the total number of missing data in weather 
radar data, which is composed of two components for the 360 radials in the first elevation cut of the 
CINRAD SA radar (Beijing Metstar Radar Company, Beijing, China) on 20 May 2016 at 07:48 a.m.: 
the number of trailing missing data, which are those at the end of a radial, and the number of 
non-trailing missing data. 

 
Figure 1. Missing data statistics of an example CINRAD elevation cut. The tested data is the first 
elevation cut of the CINRAD SA radar on 20 May 2016 at 07:48 a.m., which has 360 radials in an 
elevation cut. Each radial has 460 range bins. 

The missing data statistics show that 46.87% of range bins in the elevation cut are missing data, 
while 82.76% of these missing data are trailing missing data. It can be seen that the trailing missing 
data occupies a large proportion of the weather radar data. In general, the proportion of missing 
data in the elevation cut increases with a higher elevation angle. Removing the trailing missing data 
in radials can reduce the amount of data and computation complexity. The process is applied in 
compression as preprocessing, which is a lossless operation. The decoder can fully reconstruct 
trailing missing data in radials by filling missing data, since the size of a radial is known by the 
decoder from header information. The preprocessing is specific to weather radar data due to a large 
number of trailing missing data in weather radar data. 
  

Figure 1. Missing data statistics of an example CINRAD elevation cut. The tested data is the first
elevation cut of the CINRAD SA radar on 20 May 2016 at 07:48 a.m., which has 360 radials in an
elevation cut. Each radial has 460 range bins.

The missing data statistics show that 46.87% of range bins in the elevation cut are missing data,
while 82.76% of these missing data are trailing missing data. It can be seen that the trailing missing data
occupies a large proportion of the weather radar data. In general, the proportion of missing data in the
elevation cut increases with a higher elevation angle. Removing the trailing missing data in radials
can reduce the amount of data and computation complexity. The process is applied in compression
as preprocessing, which is a lossless operation. The decoder can fully reconstruct trailing missing
data in radials by filling missing data, since the size of a radial is known by the decoder from header
information. The preprocessing is specific to weather radar data due to a large number of trailing
missing data in weather radar data.

2.2. Spatial Redundancy

The raw weather radar data contain a substantial amount of spatial redundancy and temporal
redundancy. The spatial redundancy contains two types of high degrees of serial correlation. One is
the high degree of serial correlation between range bin values in a radial. Consecutive range bins
with the same value form runs can be reduced by the RLE (Run length encoding) coding algorithm.
The image data for most WSR-88D base products and radial-format-derived products were packed in a
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4-bit RLE format [25,26]. The other is the high degree of serial correlation in adjacent radials in volume
data. Taking CINRAD SA Radar as an example, the volume data has 360 radials that were sampled at
1◦ azimuths in an elevation cut. There is strong spatial correlation in neighbor radials, which means
that there is similar value distribution in neighbor radials in an elevation cut. This type of spatial
redundancy can be utilized by the differential encoding algorithm or prediction algorithm. Figure 2a
is a weather radar reflectivity PPI, which has 360 radials sampled at 1◦ azimuths. Figure 2b shows the
correlation coefficients between two neighbor radials in reflectivity data. The value of most correlation
coefficients is close to 1. It means that the values for most range bins between neighbor radials are
very similar. Most of the information in the current radial can be predicted from the adjacent radial.
In addition, the current radial can be fully reconstructed by simply transmitting the residual data
between current radial and adjacent radial. The residual data is obtained using differential encoding
or prediction, stored using entropy coding. If the prediction between current radial and the reference
radial is accurate, the spatial redundancy in the radials can be largely removed. In the condition,
the residual would be close to the memoryless source. According to the Shannon coding theorem,
the minimal average code length is determined by the zero-order entropy of memoryless source.
The probability distribution of residual fits well with Laplace distribution and the zero-order entropy
of residual is lower than the raw data [27].
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Figure 2. Reflectivity Plan Position Indicator (PPI) of CINRAD SA data and its spatial correlation in
neighbor radials. (a) Reflectivity PPI of CINRAD SA data. The tested data is the first elevation cut of
the CINRAD SA radar on 20 May 2016 at 07:48 a.m.; and, (b) the statistics of the correlation coefficients
between neighbor radials.

Figure 3a shows the reflectivity PPI of CINRAD SA data, while Figure 3b shows the frequency
histogram of range bin values in raw data. The precision of CINRAD reflectivity data is 0.5 dBZ.
48.87% of range bins in the data are represented as missing data. 99.53% of the range bin values
are distributed in the range of [−10, 60], and can be represented by 140 symbols. Some lossless
compression algorithms (such as differential encoding and linear prediction) can alter the distribution
of range bins values. A more concentrated range distribution of data means that the data can be more
efficiently compressed. The differential range bins can be calculated, as following:

Di = Ri − Ri−1 (1)

where Di is the differential value of i-th radial; Ri is i-th radial in raw data; and, Ri−1 is previous radial
of Ri in raw data. Differential encoding reduces the dynamic range of data by differentiating adjacent
radial data. These methods only change data structure and the decoder can perfectly reconstruct the
radials. Figure 3c shows the reflectivity PPI of differential CINRAD SA data. Figure 3d shows the
frequency histogram of differential range bins values. In this histogram, 96.34% of the differential
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values varies in the range of [−20, 20], and can be represented by 80 symbols. There is strong
correlation between adjacent radials, which can be efficiently compressed using differential encoding.
The structure of differential values has better compression performance using entropy coding than raw
data. One of the major drawbacks to differential encoding is the significant degradation in the edge
area of echo signal and the area with large amplitude changes. As seen in Figure 3c, the differential
coding in the edge area results in larger difference values. The prediction algorithm can be introduced
to solve this problem and promote data compression ratio.
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Figure 3. The distribution of raw data and differential data. The differential data is calculated by
difference between the current radial and its previous radial. (a) Reflectivity PPI (dBZ) of CINRAD SA
data; (b) frequency histogram of range bin values in raw data; (c) reflectivity PPI (dBZ) of differential
CINRAD SA data; and, (d) frequency histogram of differential range bins values that are calculated
from Equation (1).

2.3. Temporal Redundancy

The raw weather radar data also contains two types of temporal redundancy. The temporal
redundancy is related to the volume coverage pattern. Two typical VCPs were widely used in the
weather radar. VCP 11 provides 14 unique elevation scans covering elevation angles of 0.5◦–19.5◦

in 5 min. VCP 21 provides nine unique elevation scans between the same lower and upper limits in
6 min. For both of the VCPs, the difference between each of the lowest five elevation angles is 0.95◦.
The difference increases at higher elevation angles [28]. As most of the weather phenomena is a slow
change process, the signal that is sampled at a close time and approximate spatial position contains
temporal redundancy. One type of temporal redundancy includes the elevation cuts correlation in the
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neighbor elevation angles in a volume. The other includes the elevation cuts correlation at the same
elevation angle in neighbor volumes. Table 1 shows the correlation of the elevation cuts between five
neighbor elevation angles in a volume. The weather radar data tested are the reflectivity CINRAD SA
files from China Meteorological Administration. The data files were randomly selected by day and
hour at the station 9200 in Guangzhou. The data’s VCP is VCP 21.

Table 1. Correlation of elevation cuts in neighbor elevation angles in a volume.

Layer 1 2 3 4 5

1 1
2 0.8379 1
3 0.3115 0.8588 1
4 0.1856 0.3719 0.8640 1
5 0.0683 0.2129 0.7337 0.8938 1

Table 1 shows that there is a strong correlation between the elevation cuts at adjacent elevation
angles. As the elevation angle increases, the correlation decreases sharply due to the geometric
distortion caused by the elevation difference. The matching algorithm can correct geometric distortions
between elevation angles.

Table 2 shows the elevation cuts correlation coefficient (CC) between the volume at 7:48 and
neighbor volumes at the same elevation angle. The correlation in volumes is significantly stronger
than the correlation in elevation cuts at different elevation angles, because there is no geometric
distortion. Both the forward data and the subsequent backward data have strong correlation, but in
order to ensure real-time coding, only the forward data can be used for prediction coding. In addition,
the temporal correlation also drastically decreases with increasing intervals. Prediction using less
neighboring data can effectively reduce the computational complexity of the encoder.

Table 2. Elevation cuts correlation at the same elevation angles in neighbor volumes.

Time 7:24 p.m. 7:30 p.m. 7:36 p.m. 7:42 p.m. 7:48 p.m. 7:54 p.m. 8:00 p.m. 8:06 p.m. 8:12 p.m.

CC 0.8780 0.8966 0.9154 0.9428 1 0.9482 0.9142 0.8945 0.8803

3. Proposed Approach

3.1. Lossless Compression Flow

In this paper, the data compression method concentrates on reflectivity product, although similar
compression technology can also be applied for other raw moments, such as velocity, spectrum width,
differential reflectivity, correlation coefficient, and differential phase.

The preprocessing step is applied to remove the trailing missing data from radials at the beginning.
This step reduces the amount of raw data and increases the encoding speed. It is a lossless step because
the radials can be fully reconstructed by the decoder using the size of radials from header information.
The preprocessing step is specific to weather radar data due to a large number of trailing missing data
in weather radar data.

The radar data are transmitted in packets of radials (typically 50 radials at a time) instead of
complete volume scans to avoid a systematic delay in the transmission of data [29]. The volume data
is processed in units of radials. Each radial is divided into blocks (corresponding to 1 × 16 range bins
in the raw radial) for encoding. Block-based processing is conducive to reducing the coding system
delay and improving the accuracy of prediction.

Prediction coding is used to reduce the spatial and temporal redundancy in weather radar data.
Prediction uses the residual between the current block and predicted block instead of the raw value of
current block. Usually, the dynamic range of residual is smaller than the raw data. The decoder can
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reconstruct the raw block by adding the residual to the block, which is indicated by the motion vector
in the reference radial. Prediction outperforms differential encoding, especially in the area where the
range bin values are large changes that must be represented outside of the difference byte range.

Entropy coding is a lossless encoding process according to the source entropy. Run-length
encoding (RLE) and variable-length coding (VLC) are two widely-used entropy coding techniques.
In the paper, the VLC are used for encoding the residual and motion vector of the predicted block to
reduce the redundancy. RLE is widely used in weather radar data compression, but the size of radial
data may expand by RLE if the radial contains a small number and size of runs of data. The VLC is
an entropy coding, which allows for different blocks to be encoded with different numbers of bits.
The range bins can be encoded in a few bits or a byte, while the range bins in raw data are represented
in bytes. More frequent source symbols are assigned shorter codewords and vice versa. The average bit
rate is reduced by VLC. The encoded bit stream is packed in full 8-bits byte for transmission or storage,
but the bytes themselves have no intrinsic meaning. Entropy coding techniques determine the number
of bits that are assigned to each symbol by the symbol’s frequency of occurrence. Coding efficiency is
determined by the value range of symbol. Usually, the distribution of residual data and motion vectors
of weather radar data are in a small range and there are many zeros clustering together. Thus, VLC
can compress the data effectively.

The work flow of STPC is shown as Figure 4.

1. Preprocess the raw data, eliminating the trailing missing data. The purpose of the procedure is to
reduce the amount of data just received.

2. The redundancy between radials is reduced by using spatial prediction, while the redundancy
between volumes can be removed by using temporal prediction.

3. The mode selection algorithm selects better by comparing the performance of the two
prediction methods.

4. The residuals and motion vectors are encoded using entropy coding to compress the
data redundancy.

5. Adaptive arithmetic algorithm is applied to encode the other data (such as header information).
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3.2. Prediction Coding

The prediction technique takes advantage of the weather radar data with its extremely high spatial
and temporal correlation. Radial Prediction creates a prediction model from one or more previously
encoded radials. The model is formed by shifting range bins in the reference radial(s). The prediction
uses block-based prediction and the radial is segmented into blocks. According to the characteristics
of weather radar data, the block size is 1 × 16. It means that a block contains 16 continuous range bins
in current radial. Each block in current radial is predicted from an area of the same size in a reference
radial. The offset between the two areas is the motion vector. The difference between the current block
and the predicted block is the residual. The raw data can be completely represented by residual data
and motion vectors. If the reference radial and the current radial are in an elevation cut, the prediction
mode is spatial prediction. If the reference radial and the current radial in the same elevation and
in different volumes, the prediction mode is temporal prediction. In order to ensure the real-time
compression algorithm, the reference radial must be encoded in radials.

Figure 5 shows the prediction processing between the current radial and reference radial. Motion
estimation is used to search for the best matching block in the encoded radial (reference radial) to save
the offset of the matching block (motion vector). The criteria for the best matching block involve the
minimization of the sum of absolute difference (SAD) between the current block and the predicted
block. The SAD of a block is calculated as follows:

SAD =
blocksize

∑
i=1
|C(i)− P(i)| (2)

where C(i) is i-th range bin in current block and P(i) expresses the i-th range bin in the predicted
block. The current block is at the location of (x1,y1) and the best matching block is at the location
of (x2,y2). The coordinate x is the number of range bin in a radial, while the coordinate y is the
radial index. The motion vector is the offset between the current block and best matching block in
coordinate. The motion vector contains the offset in x coordinate and radial index with multi-reference
radials applied. The value range of motion vector is determined by the search range and the number of
reference radials. The number of reference radials affects the compression performance. More reference
frames and a wider search range improves the prediction accuracy, but also requires more computation.
In the spatial prediction mode, the reference radials are the previous radials of current radial in an
elevation cut. In temporal prediction mode, the reference radials are the radial in the same position of
current radial in previous volume and its neighbor radials.

The xi,j of current range bin at the location of pi,j, which denotes the i-th radial in one elevation
cut of the weather radar data, is represented using the prediction, as:

xi,j = vnxk,l + rn (3)

where i and k are the number of radial in the elevation cut; j and l expresses the number of range bins
in the radial; vn is the motion vector that indicates the direction from i-th radial to k-th radial and forms
j-th range bin to l-th range bin, with the range bins in a block having the same motion vector; rn is
the residual value that is the range of the bins difference between current block and predicted block;
and, vn and rn are prediction coefficients, which are used to replace the raw range bin value xi,j for
transmission and storage.

Encoding the MV requires a large number of bits. The motion vector of current block can be
predicted from the motion vector of the previously encoded block because the motion vectors between
neighbor blocks are often highly spatially correlated. A predicted vector, MVp, is formed based on
previously calculated motion vectors and the same position block in the previous radial. Motion
vector difference (MVD) is the difference between the current vector and the predicted vector. MVD
is encoded and transmitted instead of MV. The method of forming the prediction MVp depends on
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the motion compensation block and on the availability of nearby vectors. Figure 6 shows positional
relationship between the MV used for prediction and the current MV. The MVD is calculated as:

MVp = round
( MVi,j−1 + MVi−1,j

2

)
(4)

MVD = MVi,j −MVp (5)

where i is the radial number and j is the j-th block in a radial. MVD contains two parameters: radial
index offset and range bin offset.
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3.3. Entropy Coding

The residual has a smaller dynamic range than raw data, and thus, can be efficiently replaced by
fewer symbols. LZW coding is applied for the residual and MVD. LZW coding uses a variable-length
coding table to encode a source symbol, wherein the variable-length coding table is obtained through
evaluating the probability of occurrence of symbols. The symbol with high probability use shorter
codes, while lower ones use longer codes. It is a lossless compression algorithm that reduces the
average length of data.

4. Testing and Results

The data tested is the Level-II S-band CINRAD SA data from China Meteorological Administration.
The data files were randomly selected at the station 9200 in Guangzhou. The data products have 460
range bins for each of the 360 radials in an elevation cut.

Figures 7–9 shows that the reflectivity, radial velocity and spectral width residual and their
frequency histogram of CINRAD data, which is used in Figure 3 using different prediction modes.
Figure 7 shows that the dynamic range of residual values is decreased using prediction. The absolute
value of residual data using SPTC is significantly reduced, while the residual becomes sparser and
has more zero values, which are beneficial for a higher compression ratio. The spatial and temporal
redundancy can be effectively reduced using SPTC. The histograms show that the distribution of
residual values is clustered around the zero value. Using STPC, 99.59% of the residual values are
distributed in [−5, 5]. This data structure is suitable for variable length coding, because a higher
probability of occurrence of values that are near zero can be encoded with a shorter codeword to reduce
the average code length. Compared with the radial-to-radial difference, STPC has a better performance
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on the region of large amplitude variation. SPTC is based on the prediction of data, while the strong
spatial and temporal correlation of weather data is the basis of accurate prediction. Figures 8 and 9
show that STPC is still valid for radial velocity and spectral width data with significantly improved
performance for radial-to-radial difference approach.
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Figure 7. Residual and frequency histogram of range bin values for CINRAD elevation cut using
different prediction mode: (a) Residual data using spatial prediction; (b) frequency histogram of
residual data using spatial prediction; (c) residual data using temporal prediction; (d) frequency
histogram of residual data using temporal prediction; (e) residual data using STPC; and, (f) frequency
histogram of residual data using STPC.



Atmosphere 2018, 9, 96 11 of 15
Atmosphere 2018, 9, x FOR PEER REVIEW  11 of 15 

 

(a) (b)

(c) (d)

(e) (f)  
Figure 8. The distribution of radial velocity data, radial velocity differential data and radial velocity 
residual data using STPC: (a) Radial velocity PPI of CINRAD SA data; (b) frequency histogram of 
radial velocity data; (c) radial velocity PPI of differential data; (d) frequency histogram of radial 
velocity differential data; (e) radial velocity PPI of residual data using STPC; and, (f) frequency 
histogram of radial velocity residual data using STPC. 

Figure 8. The distribution of radial velocity data, radial velocity differential data and radial velocity
residual data using STPC: (a) Radial velocity PPI of CINRAD SA data; (b) frequency histogram of
radial velocity data; (c) radial velocity PPI of differential data; (d) frequency histogram of radial velocity
differential data; (e) radial velocity PPI of residual data using STPC; and, (f) frequency histogram of
radial velocity residual data using STPC.
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Figure 9. The distribution of spectral width data, spectral width differential data and spectral width
residual data using STPC: (a) Spectral width PPI of CINRAD SA data; (b) frequency histogram of
spectral width data; (c) spectral width PPI of differential data; (d) frequency histogram of spectral
width differential data; (e) spectral width PPI of residual data using STPC; and, (f) frequency histogram
of spectral width residual data using STPC.

Table 3 shows the entropy of raw elevation cut and the entropy of residual using different
prediction mode. The entropy of the predicted residual is obviously lower than that of the raw data
and the differential data. Prediction can effectively remove the redundancy in the data, reduce the
entropy of the data, and provide the probability to improve the compression ratio. However, the
increase of the entropy caused by the motion vector is not considered in this present study.
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Table 3. Entropy of raw elevation cut and residual using different prediction mode.

Base Data Raw Data Difference Spatial Temporal STPC

DBZ 4.60 3.58 2.53 2.38 2.21
VEL 5.46 4.35 2.88 2.96 2.72
WID 3.40 3.18 1.94 1.92 1.65

In the experiment for the compression efficiency of STPC, sixty volumes data from CINRAD
data were selected randomly for the compression experiment. The general-purpose compression
programs Bzip2, Gzip, WinZip, and a weather-specific compression scheme, called linear prediction
(LP) [29], were compared with STPC in terms of compression size. Bzip2 is a compression method
based on block sorting, while Gzip uses arithmetic coding, including Lempel-Ziv and Huffman coding.
The motion search was set in a range of [−16, 16] range bins for the reference radial in STPC. Four
reference radials are used for each radial, which includes one spatial reference radial (the previous
radial of current radial) and three temporal radials (the radial in the same position of current radial in
previous volume, its previous radial and its following radial). Table 4 shows that the proposed method
achieved the highest compression and the compression ratio reached 7.87. The high compression ratio
contributes to the prediction removing the correlation in the data. The data structure of residual and
motion vectors is easier to compress than raw data.

Table 4. Compression ratio of different method.

Method Bzip2 Gzip Winzip LP STPC

Ratio 5.82 4.93 4.88 5.67 7.87

5. Conclusions

These results prove the outstanding performance of STPC for Level-II weather radar data.
Prediction is an efficient lossless compression method for weather radar level-II data. Results have
shown that STPC achieves a higher compression ratio than generic off-the-shelf compression programs
and meets the requirement of real-time processing. The compression method can be applied to the
storage of super-resolution weather radar data and data communication in a multi-radar network.

The weather radar data is different from the image or video data. Due to the radar detection
system, a large amount of invalid data in the weather radar data is defined as missing data. The weather
radar data structure makes the compression easier and the amount of data processed is significantly
less than the video data, which allows for the weather radar data compression algorithms to easily meet
real-time processing requirements. Lossy compression algorithms can further increase the compression
ratio of weather radar data. The quantization technology can further promote the compression rate,
but also lead to the quantization error, which will affect the quality of the weather radar products
generated by the base data. According to different application requirements, designing corresponding
lossy compression algorithms still requires significant work.
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