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Abstract: Based on stable hydrogen and oxygen isotope data (δ18O, δD) and meteorological
observation data for complete hydrological annual precipitation from 2016 to 2017 in the monsoon
marginal region of northern China (Fengxiang and Ningwu), the isotopic characteristics of
precipitation and the sources of water vapor in these two regions combined were studied. The results
showed that δ18O and δD values in the wet season (June through September) were higher than in the
dry season (October to May of the following year) in Fengxiang and Ningwu. The intercept and slope
of the meteoric water line in the two regions were somewhat low, revealing that the water vapor in the
rainfall comes mainly from the tropical ocean. On a synoptic scale, significantly positive correlations
among dry season precipitation, δ18O, and temperature manifested temperature effects, but in the
wet season, the temperature effect was not significant. On a monthly scale, a relationship did not
exist between the change in trend of the average value of monthly weighted δ18O in precipitation and
the average temperature change value in the two regions. However, in the wet season, significantly
negative relationships can be found between the average monthly weighted δ18O in precipitation
and rainfall amount, which indicated a remarkable rainout effect. Further investigation revealed
that continuous precipitation made the values of δ18O and δD more negative under the same source
of water vapor (the rainout effect). Because the annual rainfall in the monsoon marginal region
of Northern China is mainly made up of monsoon rainfall, the oxygen isotope index of geological
and biological records, such as stalagmites and tree rings, which inherit meteoric water isotope
information, can be used to reconstruct past rainfall changes in northern China.

Keywords: northern monsoon marginal area; precipitation; stable isotope; water vapor source

1. Introduction

The use of stable oxygen isotopes in different geological biological carriers (such as stalagmites,
tree rings, and ice cores) to reconstruct past climate changes has achieved remarkable results [1–7].
In particular, stalagmites have attracted a lot of attention from paleoclimatological researchers because
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of its high resolution proxies and accurate dating method. In China, use of the oxygen isotope
composition of stalagmites has been very successful in the Asian Monsoon Study, although there
are currently some disputes about its significance [8]. For example, Cheng et al. (2016) stated that
the oxygen isotope composition of stalagmites in the Chinese monsoon area reflected changes in
rainfall in the entire larger spatial extent from the marine source area to the cave site, and further
reflected intensity changes in the Asian monsoon over a wide spatial range [5]. Maher and Thompson
(2012) and Tan (2014) suggested that variations in the oxygen isotope composition of stalagmites was
mainly controlled by variations in water vapor sources in the Indian and Pacific Oceans and did not
reflect changes in local rainfall [9,10]. In addition, some researchers have suggested that the oxygen
isotope composition of Chinese stalagmites is controlled by changes in monsoon intensity in the upper
reaches of India. However, the oxygen isotope composition of stalagmites in southern China cannot
reflects changes in rainfall in the northern China [8,11–13]. Tan et al. (2015) recently suggested that
the indicative significance of the oxygen isotope composition of stalagmites in southern China was
different at different time scales and in different regions [14]. There is a negative correlation between
the oxygen isotope composition of stalagmites and rainfall changes in some areas and within local
areas [14–19]. The oxygen isotope composition recorded by geological entities is essentially inherited
information on δ18O in precipitation. Therefore, to study the oxygen isotope characteristics and control
factors of modern precipitation, one must not only understand the modern hydrological cycle, but also
explain the significance of oxygen isotope geology in the carrier, and moreover, provide a scientific
basis for reconstruction of past climatic change in different areas.

A lot of modern rainfall monitoring was carried out over different regions of the world [20–22].
It was that in western Africa, the primary driver of the interannual variability of δ18O in precipitation
was ENSO [20]. Samuels–Crow et al. (2014) suggested that in the tropical Andes, tropical convection
acts as a main controlling factor on precipitation δ18O instead of temperature [21]. In the Asian Summer
Monsoon region, the isotopic composition of precipitation is strongly related to the cloud-top height
and convection in the dominant moisture source region and its transport paths [22]. In recent years,
researchers also monitored precipitation isotopes in many areas of China. Studies in the Tibetan Plateau
region showed that the northern limit of the summer monsoon is north of the Yalongzangbo River
in the middle of the Tibetan Plateau, around 34◦ N–35◦ N [23]. North of 35◦ N, precipitation oxygen
isotope composition was dominated by the westerlies (hereafter called “the westerlies domain”)
and depicted a close link between δ18O and local temperature, there is a weak relationship with
precipitation amount. South of 30◦ N, the precipitation oxygen isotope composition was dominated
by the Indian monsoon (hereafter the “monsoon domain”), showing an antiphase between δ18O and
precipitation amount. In this case, the precipitation oxygen isotope composition exhibits a unique
feature characterized by abrupt depletion of precipitation δ18O around May, decreasing to the most
severely depleted δ18O value around August. In the monsoon domain between 30◦ N and 35◦ N,
seasonal cycles show more complex δ18O variations, and this region is defined as a transition domain,
suggesting shifting influences between the westerlies and the Indian monsoon [24]. Studies of the
eastern monsoon region have shown that this can be divided into three subregions. Among these, the
northeastern region had the lowest isotopic values, north China had midrange values, and southern
China had the highest isotopic values. In north China and northeastern China, temperature was the
main factor affecting changes in precipitation δ18O, and a substantial effect existed only in the summer
rainfall period. In fact, the summer monsoon can reach these two regions in summer. In the southern
region, both an amount effect and a reverse temperature effect were found to exist. The amount effect
may mask the temperature effect to some extent or even appear as a reverse temperature effect [25].
In the southern region, higher D-excess values during winter and early spring are considered to
correspond to a lesser proportion of remote moisture, whereas lower D-excess values during summer
and autumn correspond to larger amounts of remote moisture transported by summer monsoons [26].
Studies of the northwestern arid regions of China have shown that the slope of the local meteoric water
line (LMWL) is lower than that of the global meteoric water line (GMWL). The low LMWL slope is
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associated with non-equilibrium conditions affecting falling raindrops under dry conditions, leading
to a potential for significant subcloud evaporation. On a seasonal time scale, monthly δ18Op values
are more positive in summer and more negative in winter. This seasonal change is similar to that of
temperature, reflecting continental climate characteristics [27]. Terrestrial moisture evaporated from
Europe and central Asia may be the main moisture source around the Tianshan Mountains [28].

The scope of this paper is to enhance the understanding of the hydrological processes in
the northern monsoon marginal region of China by emphasizing the isotope record of geological
environmental. Here, we choose two sites, Ningwu and Fengxiang, which are located in northern
China, to monitor the event-based precipitation stable isotope data (δ18O, δD) for a complete
hydrological year from 2016 to 2017. The controlling environmental factors are further analyzed.
The temperature, precipitation amount, and relative humidity in the two sites during 2016–2017 are
similar with their average values during 1982–2010, respectively, indicating their representativeness.

2. Data and Methods

2.1. Study Area

Fengxiang is located in the Western Guanzhong Plain (Figure 1), which is characterized by
mountains to the north, the Southern Plateau, and the West River Valley. The annual average
temperature is 11.4 ◦C, and the annual average precipitation is 625 mm. Ningwu is located in
the north-central part of Shanxi Province (Figure 1). There are many mountains in this area, and
the average annual rainfall is 445 mm. Because more than 70% of precipitation occurs from June to
September in Fengxiang and Ningwu, these two areas are considered to belong to the North China
monsoon marginal area.
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Figure 1. Precipitation sample collection site. (The blue dashed line denotes the northern limit of the
Asian summer monsoon [29] (A,B) represent Fengxiang and Ningwu, respectively). The data of the
map was downloaded from the National Geomatics Center of China (http:ngcc.sbsm.gov.cn/).

2.2. Sample Collection

Precipitation collection was carried out for a complete hydrological year from July 2016 to August
2017 in Fengxiang (107◦27′20.1′ ′ E, 34◦31′28.32′′ N, 767 m) and from August 2016 to August 2017 in
Ningwu (112◦18′14.55′ ′ E, 39◦0′33.4′ ′ N, 1373 m). The collection method involved placing a water
container in an open area. To prevent precipitation from evaporating, liquid samples were collected

http: ngcc.sbsm.gov.cn/
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immediately after precipitation ceased, filtered using a filter head with an aperture of 0.45 m, and
finally stored in 5-mL HDPE bottles with waterproof seals. Solid samples were melted at room
temperature in bags before being sealed in bottles. The time and place of sampling were recorded for
each sample. All samples were kept in cold storage (4 ◦C) [30–33]. In total, 49 and 52 precipitation
samples were collected as individual events in Fengxiang and Ningwu, respectively.

2.3. Sample Analysis

All the samples were stored frozen before isotope ratio analysis using an L2130-i liquid water
isotope analyzer and an IWA-35EP liquid water isotope analyzer (LGR, Institute of the Earth
Environment, Chinese Academy of Sciences, Beijing, China). The results were expressed as δ-values
relative to V-SMOW (Vienna Standard Mean Ocean Water). The precision of the L2130-i liquid water
isotope analyzer measurement was <0.50‰ for δD and <0.20‰ for δ18O, and that of the IWA-35EP
liquid water isotope analyzer measurement was <0.20‰ for δD and <0.03‰ for δ18O. Isotopic monthly
precipitation values were calculated using the weighted mean value (VMA). Taking δ18O as an example,
the expression for the weighted mean was:

δ18Oe

N

∑
i=1

Miδ
18Om∗i/

N

∑
i=1

MI (1)

where δ18Oe was the calculated δ18O deviation value, δ18Om*i was the actual measured δ18O deviation
value, and Mi was the amount of the i-th precipitation event.

In addition, the rainout effect of precipitation and the transfer process of atmospheric air mass
for precipitation events involving δ18O and δD stable isotopes were tested by the air mass trajectory
method. The analysis was based on the HYSPLIT model (http://ready.arl.noaa.gov/HYSPLIT.php).
Because the 850-hPa height (~1500 m asl) was approximately considered as cloud-base or precipitation
height, an 850-hPa starting height (~1500 m asl) was used in the model [34–36]. The selection time was
00:00, and the backward duration was set as 120 h. Finally, the graph was visualized in ArcMap 10.2.

Related meteorological information for Fengxiang and Ningwu was provided by the Meteorological
Bureaus of Fengxiang and Ningwu 5 km and 1.8 km from our sampling site, respectively.

3. Results and Discussion

3.1. Seasonal Variation of Stable Isotopes in Precipitation

From July 2016 to August 2017 in Fengxiang, δD varied from −85.11‰ to 14.23‰, with a
mean value of −35.70‰. The δ18O varied from −11.92‰ to 0.83‰, with a mean value of −5.52‰
(Figure 2A). Increased precipitation in the wet season (June to September) accounted for 70.3% of total
precipitation. The average value of δD was −37.32‰, and the average value of δ18O was −5.24‰.
Reduced precipitation in the dry season (October to May of the following year) accounted for 29.7% of
total precipitation. The average value of δD was −33.88‰ and the average value of δ18O was −5.85‰.

http://ready.arl.noaa.gov/HYSPLIT.php
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Figure 2. Seasonal variation of δD, δ18O, and meteorological information of precipitation.
(A,B) represent Fengxiang and Ningwu, respectively. (a) indicates individual precipitation δ18O
(‰, V-SMOW); (b) indicates individual precipitation δD (‰, V-SMOW); (c) indicates individual
precipitation amount (mm); (d) indicates daily surface air temperature (◦C); and (e) indicates daily
surface air humidity (%).

From August 2016 to August 2017 in Ningwu, δD varied from −149.71‰ to 2.00‰ with a
mean value of −61.39‰. The δ18O varied from −19.96‰ to 1.72‰ with a mean value of −8.72‰
(Figure 2B). Increased precipitation in the wet season (June to September) accounted for 78.7% of total
precipitation. The average value of δD was −52.56‰ and the average value of δ18O was −7.23‰.
Reduced precipitation in the dry season (October to May of the following year) accounted for 21.3% of
total precipitation. The average value of δD was−75.51‰ and the average value of δ18O was−11.11‰.

Stable hydrogen and oxygen isotope values in Fengxiang and Ningwu precipitation showed
seasonal variation and the patterns of variation for temperature and precipitation were similar
(Figure 2). Seasonal variation of δD and δ18O showed significantly more positive values occurring
during summer and more negative values occurring during winter. The most negative values generally
occurred in October, which may be related to the greater rainout fraction of precipitation falling on
the ground during the monsoon period. Some strongly positive δ18O values were found in some
precipitation events in May before the monsoon; these may be related to high temperature, low
precipitation amount, and high evaporation. The isotopic contents of precipitation were mainly
controlled by the effect of subcloud evaporation.

3.2. Local Meteoric Water Line

Using all the event-based samples in this study, a local meteoric water line (LMWL) in Fengxiang
was established as (Figure 3A):

δD = 7.05δ18O + 3.24 (r = 0.944, n = 49) (2)

Using the event-based values, the LMWLs for the dry and wet seasons, respectively, were:

δD = 7.13δ18O + 7.87 (r = 0.968, n = 23), (3)

δD = 7.20δ18O + 0.37 (r = 0.943, n = 26). (4)
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Similarly, using all the event-based samples in this study, a local meteoric water line (LMWL) in
Ningwu was established as (Figure 3B):

δD = 6.88δ18O − 1.31 (r = 0.972, n = 52). (5)

Using the event-based values, the LMWLs for the dry and wet seasons, respectively, were:

δD = 7.59δ18O + 8.82 (r = 0.982, n = 20), (6)

δD = 6.59δ18O − 4.92 (r = 0.958, n = 32). (7)

The slope and intercept of the local meteoric water line (LMWL) in the two regions were different
from the slope and intercept of the global meteoric water line (GMWL), reflecting the unique regional
atmospheric circulation modes, water vapor sources, and evaporation modes for each region [37].
The slope and intercept of the LMWL in both regions were less than the slope and intercept of the
GMWL (δD = 8, δ18O + 10) [37] and the China meteoric water line (δD = 7.9, δ18O + 8.2) [38]. The low
LMWL slope was associated with non-equilibrium conditions affecting falling raindrops during
dry conditions, leading to the potential for significant subcloud evaporation [39,40]. The drier the
atmosphere, the lower the slope and intercept of the water line will be. This phenomenon reveals
the arid climate in the northern monsoon marginal region of China. In the dry season, the slope and
intercept of the LMWL in both regions were greater than in the wet season. This may have been related
to differences between water vapor sources and dynamic fractionation.

Comparing the LMWL (δD = 7.05δ18O + 3.24, r = 0.944) in Fengxiang with values from Weinan
(2012–2014) (δD = 7.586δ18O + 10.514 (R2 = 0.97)), Xi’an (1985–1993) (δD = 7.49δ18O + 6.13 (r = 0.958)),
and Changwu (2005, 2010, 2013) (δD = 7.36δ18O + 3.59 (r = 0.94)) [41–43], it was found that along the
Weinan–Xi’an–Changwu–Fengxiang line from east to west, LMWL slope and intercept continuously
decreased. This indicated that these places lie along the same water vapor transport path. In the
water vapor transport process, the fraction of precipitation isotopes in the greater rainout portion
was increased.

With reference to the GMWL (Figure 3, yellow line), the dry season rainfall points were found
mostly above the upper GMWL line (low δ18O values, d > 10%), indicating that these points represented
mainly winter precipitation at low temperature and low absolute air moisture content. Most of the
rainfall in the wet season was located below the GMWL line (high δ18O values), indicating that the
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water vapor comes mainly from the ocean with its high relative humidity and may be subject to
subcloud evaporation [44–46].

3.3. Correlations between δ18O and Climate Parameters

3.3.1. At the Synoptic Scale

At the synoptic scale, significantly positive relationships between precipitation δ18O and dry
season temperature were found to exist in both regions (Figure 4), showing a temperature effect [47].
Ningwu showed a temperature effect over the whole year (Figure 4B). However, in the wet season, no
temperature effect existed in either place.
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The relationship between precipitation δ18O and precipitation amount was not significant over
the whole year or in the dry season in Fengxiang (Figure 5A). This showed the rainfall amount effect
did not exist at a synoptic scale in the northern monsoon marginal region.
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3.3.2. Monthly Average Scale

Although the temperature effect of precipitation δ18O existed at a synoptic scale in Fengxiang
and Ningwu, as did the amount effect of precipitation δ18O on monthly weighted average, the
relationship between δ18O weighted average monthly precipitation change trend and monthly average
temperature change was not significant in Fengxiang and Ningwu (Figure 6). For example, in
Fengxiang, the temperature decreased in January 2017, but δ18O in precipitation increased. In Ningwu,
the temperature decreased in November 2016, but δ18O in precipitation also increased.
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From the monthly precipitation amounts, the negative correlation between weighted average
monthly precipitation δ18O and monthly precipitation amounts was significant. For example,
in Fengxiang, the precipitation amount increased in July 2017, but precipitation δ18O decreased.
In Ningwu, the precipitation amount increased in August 2016, but precipitation δ18O also decreased.
Even during the dry season in Fengxiang, monthly precipitation weighted average δ18O was negatively
correlated with monthly precipitation amount, showing a remarkable precipitation amount effect.
For example, precipitation amount increased in October 2016 and in February 2017, but precipitation
δ18O decreased.

Annual rainfall in the northern monsoon marginal area of China is mainly made up of monsoon
rainfall, which accounts for more than 80% of annual rainfall. Oxygen isotopes in stalagmites are
usually recorded in monthly, annual, and even multiple years of weighted mean precipitation oxygen
isotopes. From this point of view, the oxygen isotope records of stalagmites from the northern monsoon
fringe area can reflect changes in local monsoon rainfall amounts. A good negative correlation was
recently obtained between 165-year-old stalagmite oxygen isotope records in Shihua Cave and rainfall
amounts obtained in Beijing [48], in agreement with our interpretation. This result was also consistent
with the simulation results obtained by Liu et al. (2014) [49].

3.4. Rainout Effect

The effect of continuous rainfall on isotope composition was also examined. HYSPLIT backward
trajectory analyses showed that on 20 and 21 October 2016, rainfall water vapor from Central Asia
was carried by the westerly wind to Ningwu (Figure 7). During two days of continuous rainfall, the
precipitation δ18O values decreased from−6.10‰ to−9.65‰, and δD values decreased from−38.80‰



Atmosphere 2018, 9, 97 9 of 13

to−66.11‰; δ18O and δD decreased by 3.55‰ and 27.31‰, respectively. When water vapor came from
the South China Sea on 23 and 24 July 2017 (Figure 7), the precipitation δ18O values decreased from
−8.30‰ to−13.47‰, and δD values decreased from−58.65‰ to−94.17‰; δ18O and δD decreased by
5.17‰ and 35.52‰, respectively. On 5 and 6 October 2016, during two days of continuous rainfall in
Fengxiang, the precipitation δ18O values decreased from−4.72‰ to−8.86‰, and δD values decreased
from 27.33‰ to −50.50‰; δ18O and δD decreased by 4.14‰ and 21.73‰, respectively. On 4 and 5
June 2017, the precipitation δ18O values decreased from −2.69‰ to −5.54‰, and δD values decreased
from −4.28‰ to −28.81‰; δ18O and δD also decreased by 2.85‰ and 24.53‰, respectively. From this
point of view, when the source of water vapor is constant, continuous heavy monsoon rainfall will
lead to a gradual negative bias of oxygen isotopes in the north China monsoon marginal area, which
also explains the negative correlation between oxygen isotope concentration and rainfall amount in
stalagmites in this area [15–17,48]. In addition, if rainfall occurs mainly in winter in a region and the
water vapor source is relatively stable, the rainout effect can be expected. Indeed, the oxygen isotope
concentration of stalagmites from Fukugaguchi Cave in North Central Japan had a significant negative
correlation with rainfall amount in winter. The rainfall in this area mainly occurs in wintertime and is
caused by winter wind [50].

Atmosphere 2018, 9, x FOR PEER REVIEW  9 of 13 

 

to −66.11‰; δ18O and δD decreased by 3.55‰ and 27.31‰, respectively. When water vapor came 
from the South China Sea on 23 and 24 July 2017 (Figure 7), the precipitation δ18O values decreased 
from −8.30‰ to −13.47‰, and δD values decreased from −58.65‰ to −94.17‰; δ18O and δD decreased 
by 5.17‰ and 35.52‰, respectively. On 5 and 6 October 2016, during two days of continuous rainfall 
in Fengxiang, the precipitation δ18O values decreased from −4.72‰ to −8.86‰, and δD values 
decreased from 27.33‰ to −50.50‰; δ18O and δD decreased by 4.14‰ and 21.73‰, respectively. On 
4 and 5 June 2017, the precipitation δ18O values decreased from −2.69‰to −5.54‰, and δD values 
decreased from −4.28‰to −28.81‰; δ18O and δD also decreased by 2.85‰ and 24.53‰, respectively. 
From this point of view, when the source of water vapor is constant, continuous heavy monsoon 
rainfall will lead to a gradual negative bias of oxygen isotopes in the north China monsoon marginal 
area, which also explains the negative correlation between oxygen isotope concentration and rainfall 
amount in stalagmites in this area [15–17,48]. In addition, if rainfall occurs mainly in winter in a 
region and the water vapor source is relatively stable, the rainout effect can be expected. Indeed, the 
oxygen isotope concentration of stalagmites from Fukugaguchi Cave in North Central Japan had a 
significant negative correlation with rainfall amount in winter. The rainfall in this area mainly occurs 
in wintertime and is caused by winter wind [50]. 

 

Figure 7. Tracking results for water vapor transport in Ningwu. 

4. Conclusions 

From the research described above, the following conclusions can be drawn: 
(1) The δ18O and δD values for individual precipitation events in the wet season (June to 

September) were higher than in the dry season (October to May of the following year) over one year 
in Fengxiang and Ningwu. The most negative values generally occurred in October and may be 
related to the greater rainout fraction of precipitation falling on the ground during the monsoon 
period. Some of the most strongly positive δ18O values occur in precipitation events in May before 
the monsoon. These may be related to high temperature, low precipitation amount, and high 

Figure 7. Tracking results for water vapor transport in Ningwu.

4. Conclusions

From the research described above, the following conclusions can be drawn:
(1) The δ18O and δD values for individual precipitation events in the wet season (June to

September) were higher than in the dry season (October to May of the following year) over one
year in Fengxiang and Ningwu. The most negative values generally occurred in October and may
be related to the greater rainout fraction of precipitation falling on the ground during the monsoon
period. Some of the most strongly positive δ18O values occur in precipitation events in May before the
monsoon. These may be related to high temperature, low precipitation amount, and high evaporation.
The isotopic fraction of precipitation was mainly controlled by the effect of subcloud evaporation.
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(2) Using all the event-based samples in this study, local meteoric water lines (LMWLs) in
Fengxiang [δD = 7.05δ18O + 3.24 (r = 0.944, n = 49)] and Ningwu [δD = 6.88δ18O − 1.31 (r = 0.972,
n = 52)] were established. The intercept and slope of the local meteoric water line in both regions were
small, which revealed that the water vapor in the rainfall came mainly from the moist ocean area.
In the dry season, the slope and intercept of the LMWL in both regions are greater than in the wet
season. This may be related to the difference between water vapor sources and dynamic fractionation.
It was also found that along the Weinan–Xi’an–Changwu–Fengxiang line, from east to west, LMWL
slope and intercept continuously decreased, indicating that these places lie along the same water vapor
transport path. In the water vapor transport process, the fraction of precipitation isotopes in the greater
rainout portion was increased.

(3) At the synoptic scale, significantly positive relationships among precipitation δ18O and dry
season temperature were observed. However, in the wet season, the temperature effect was not
significant. At a monthly average scale, the relationship between monthly weighted average δ18O
precipitation change trends and average temperature change trends was not observed, whereas in the
wet season, significantly negative relationships between monthly weighted average precipitation δ18O
and rainfall amount were found, indicating an amount effect.

Monsoon rainfall makes up more than 80% of the annual rainfall in the north monsoon marginal
area of China. Oxygen isotopes of geological records, such as stalagmites, are usually recorded in
monthly, annual, and even multiple years of weighted mean precipitation oxygen isotopes. Hence,
oxygen isotope records in stalagmites from the northern monsoon fringe area can reflect changes in
local monsoon rainfall amounts. Long-term observations will help to explain the oxygen isotopes in
geological records [51,52] on a decadal or even longer timescale.
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