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Abstract: The characteristics of urban heat island (UHI) circulation are analytically expressed as
functions of the surface temperature in both temperature inversion and non-temperature inversion
(NTI) profiles, in which the temperature declines with increasing altitudes. To identify how the
inversion layer affects UHI circulation, two temperature profiles are specified to be nearly similar
except within the temperature inversion layer. Theoretical calculations suggest that the UHI
circulation in the temperature inversion case is weaker and lower than in the NTI case and that
there is no significant difference between the two cases. When the inversion layer thickness is
fixed, the relative size difference between the weakening inversion intensity and the strengthening
temperature influence above the inversion lid controls the decrease or increase in UHI circulation.
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1. Introduction

The well-known urban heat island (UHI) phenomenon is used to describe cities that are generally
hotter than their rural surroundings. The main candidate causes considered to be responsible for this
phenomenon include the presence of dense urban surfaces that absorb more solar radiation, the release
of anthropogenic heat from the combustion of fuels, and the trapping of longwave radiation due
to taller buildings and smaller street widths inside the urban canopy [1–3]. Excessive heat release
exacerbates urban environmental pollution and human discomfort [4,5]. With gradually rising air
temperatures in cities possibly caused by drastic reductions in greenery areas, land use planning has
become critical in determining the environmental quality [6,7].

As a local heat source over urban surfaces, an UHI can drive corresponding thermal circulation
patterns. UHI-induced circulation can be investigated through not only observational and numerical
studies but also theoretical analysis, in which the UHI is considered a thermal response of the low-level
atmosphere to a specified surface or is represented by near-surface heating. There are two common
theoretical practices in dealing with UHI circulation. The first practice is to simplify the problem into
a two-dimensional system to solve the analytic solutions. For example, Olfe and Lee [8] carried out
steady, linearized flow calculations to estimate the vertical temperature profiles over a heated area
representing a city. Kimura [9] investigated the effects of uniform flows on two-dimensional heat
island convection by obtaining the steady solutions of the linearized vorticity and thermodynamic
equations and then discussed the calculations for non-viscous and neutral fluids. Lin and Smith [10]
analytically solved for the time-dependent, linearized response of a stratified, moving fluid to an
elevated, local heat source turned on as a pulse. They found that the solution exhibits a region
of positive displacement moving downstream as the steady state is approached while a negative
displacement develops near the stationary heat source. Baik [11] applied a linear analytic model to
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study the response of a stable, stratified atmosphere to specified low-level heating in a constant shear
flow. The results suggested the existence of typical gravity waves produced in response to a local heat
source in the presence of environmental flow.

The second practice is to analytically solve the three-dimensional equations by applying a Fourier
transform, which reduces the system into a partial differential equation for the vertical velocity in
the wavenumber space. For example, Lin [12] obtained a second-order partial differential equation
to investigate the airflow over an isolated heat source with applications to the dynamics of V-shaped
clouds. By introducing the Rayleigh friction coefficient, Sang et al. [13] obtained a fourth-order
equation and discussed the influences of various atmospheric conditions, such as basic flows and eddy
diffusivity. Han and Baik [14] derived a second-order equation with a solution that reveals a typical
internal gravity wave field that includes low-level upward motion downwind of the heating center.

Three-dimensional theoretical studies are beneficial for better understanding UHI circulation.
However, to solve such problems analytically, the turbulent friction is neglected or is set to a Rayleigh
friction form. Considering that UHI circulation is mainly thermally induced, Li et al. [15] and
Li and Chao [16] specified a declining temperature profile and derived the analytic solution of
the three-dimensional circulation without using a Fourier transform. Their results suggested an
exact physical relationship between the thermal distribution and its induced circulation. However,
the declining temperature profile is too rough in certain cases. For example, a stable temperature
inversion layer, which could exacerbate the air pollution [17], often occurs at low elevation [18] in
heavy haze days. Especially, observation in Santiago of Chile [19] emphasized the importance of
a surface inversion, which could occur 263 days per year. Therefore, it is necessary to investigate how
the UHI circulation distributes in the temperature inversion case and how it differs from the UHI
circulation in the non-temperature inversion (NTI) case. This study aims to extend the finding of
previous studies [15,16] to a more general case to identify the influence of the inversion layer and to
compare the corresponding discrepancies with the NTI case.

2. Analytic Solution

UHI circulation is a thermally induced phenomenon and is significant under weak synoptic
systems [20]. Both observational and theoretical studies suggest that it decreases with increasing wind
speeds [13,21]. Therefore, it is appropriate to discuss UHI circulation in a stationary atmospheric
background, which can directly remove the impacts of basic flows but explicitly retain the thermal
forcing of a UHI.

The Boussinesq equations under a stationary atmosphere background are as follows:

− f v = −1
ρ

∂p
∂x

+ µ
∂2u
∂z2 (1)

f u = −1
ρ

∂p
∂y

+ µ
∂2v
∂z2 (2)

1
ρ

∂p
∂z

= gαT (3)

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (4)

where T, p, u, v, w are the air temperature, pressure, and velocity vector deviations with respect to the
stationary atmospheric background, ρ is the air density of the stationary atmospheric background,
f is the Coriolis parameter, g is the gravitational constant of acceleration, α is the thermal expansion
coefficient of the air, and µ is the vertical diffusion coefficient.
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Following [15,16], we set U = u + iv and substitute Equation (3) into Equations (1) and (2) to
eliminate the pressure p. Then, Equations (1) and (2) can be written as

∂3U
∂z3 −

f
µ

i
∂U
∂z

=
gα

µ

(
∂T
∂x

+
∂T
∂y

i
)

(5)

The upper boundary, where the atmosphere is stationary and non-viscous, is taken at infinity.
Therefore, when z→ ∞ , we can obtain (

∂2U
∂z2 −

f
µ

iU
)
→ 0 (6)

Then, the integral of Equation (5) can be written as

∂2U
∂z2 −

f
µ

iU = − gα

µ

∫ ∞

z

(
∂T
∂x

+
∂T
∂y

i
)

dz ≡ F(x, y, z) (7)

Rewriting Equation (7) in an operator form

LU = F(x, y, z) (8)

where the operator L = ∂
∂z

[
φ(z) ∂

∂z

]
+ ϕ(z), φ(z) = 1, ϕ(z) = −

(
1+i
hE

)2
≡ −β2, and hE ≡

√
2µ/ f is

the Ekman elevation. The boundary conditions are taken as

z→ 0, ∞, DU = 0 (9)

where D = 1 is the boundary condition operator. Applying the Green’s function method, the analytic
solution of Equation (8) is

U =
∫ ∞

0
G(z, ξ)F(x, y, ξ)dξ (10)

where G(z, ξ) is the Green’s function with the following specific form

G(z, ξ) =


− 1

2β

[
eβ(z−ξ) − e−β(z+ξ)

]
, 0 ≤ z < ξ

− 1
2β

[
eβ(ξ−z) − e−β(z+ξ)

]
, ξ < z ≤ ∞

(11)

To obtain the analytic solution of Equation (10), the specific form of F(x, y, z) should be solved.
Our previous works [15,16] assumed an NTI profile, which portrays a temperature profile that
exponentially declines with increasing altitude. According to this assumption, they obtained an elegant
analytic solution of Equation (10). Although the influence of surface heating eventually disappears
with increasing height, the detailed distribution might be complex. For example, as mentioned in the
first section, a typical inversion layer at a low level could be observed on many hazy days [18] and
even on certain normal days [22]. However, an NTI profile is not enough to depict the temperature
inversion layer. To overcome this shortcoming, we introduce a surface temperature inversion (STI)
profile containing an inversion layer ranging from the urban surface to a certain height, namely

T(x, y, z) = T0H(x, y)Z(z) = T0H(x, y)
(

h2

h1

)n
eh1/h2

(
z + h1

h2

)n
e−(z+h1)/h2 (12)

where T0 is the reference UHI intensity, H(x, y) = exp (−x2/a2
1 − y2/b2

1) is the non-dimensional
horizontal distribution, and Z(z) is the non-dimensional vertical distribution. a1 and b1 are parameters
that control the size of the urban area. For convenience, we set a1 = b1 = 50 km to represent
a circular urban area. h1, h2 and n are three introduced parameters, where n is a non-negative
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integer. d = h2n− h1 and Zm =
(

nh2
h1

)n
e−d/h2 control the height and intensity of the inversion layer,

respectively. This is a more general form of the vertical temperature distribution. By specifying different
parameter values, this approach can reproduce both the NTI case and the STI case. For example,
by setting n = 0, we can easily reduce Equation (12) to the NTI case used by [15,16].

The specific form of F can then be obtained by integrating Equation (12) vertically

F(x, y, z) = − gα

µ
T0

(
h2

h1

)n
h2eh1/h2

(
∂H
∂x

+
∂H
∂y

i
)

Γ
(

n + 1,
z + h1

h2

)
(13)

where Γ(n + 1, z) =
∫ ∞

z tne−tdt is the incomplete Γ function, where t is an integral variable. Since n is
a non-negative integer, the specific integration value can be determined as

Γ(n + 1, z) = Hn(z)e−z (14)

where Hn(z) is the following power series

Hn(z) ≡ zn + nzn−1 + n(n− 1)zn−2 + · · ·+ n!z + n! =
n

∑
j=0

n!
j!

zj (15)

Substituting Equation (13) and the Green’s function in Equation (11) into the solution of Equation (10)
reveals the following

U =
1

2β

gα

µ
T0

(
∂H
∂x

+
∂H
∂y

i
)
·
(

γe−βz + δe−z/h2
)

(16)

The notations γ and δ are introduced in this study to shorten the expression in Equation (16) and
are written as

γ = γr + iγi = h2

(
h2
h1

)nn+1
∑

k=1
H(k−1)

n

(
h1
h2

)[
(−1)k

(β−1/h2)
k − 1

(β+1/h2)
k

]
δ = δr + iδi = h2

(
h2
h1

)nn+1
∑

k=1
H(k−1)

n

(
z+h1

h2

)[
(−1)k−1

(β−1/h2)
k +

1
(β+1/h2)

k

] (17)

where H(k)
n denotes the kth-order derivative of Hn, and H(0)

n denotes Hn itself. Separating Equation
(16) into its real and imaginary parts, we obtain

u = 1
4

ghEα
µ T0

(
A ∂H

∂x + B ∂H
∂y

)
v = 1

4
ghEα

µ T0

(
A ∂H

∂y − B ∂H
∂x

) (18)

where
A(z) =

[
(γr + γi) cos z

hE
− (γr − γi) sin z

hE

]
e−z/hE + (δr + δi)e−z/h2

B(z) =
[
(γr − γi) cos z

hE
+ (γr + γi) sin z

hE

]
e−z/hE + (δr − δi)e−z/h2

(19)

The vertical velocity can be solved by setting z = 0, w = 0

w = −1
4

ghEα

µ
T0∇2

h H
∫ z

0
A(z)dz ≡ −1

4
ghEα

µ
T0∇2

hH · C(z) (20)

where∇2
h represents the horizontal Laplace operator. At this point, we can finally explicitly express the

UHI circulation as a function of the temperature distribution. The expressions are similar in form to the
derivation presented by [15,16]. The solutions suggest that the induced circulation can be determined
once the surface heating distribution is given.
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Particularly, when n = 0, the specific forms of A and B reduce to

A(z) = 4h2
hE

1
1/h4

2+4/h4
E

[(
2

h2
E

sin z
hE

+ 1
h2

2
cos z

hE

)
e−z/hE − 1

h2
2
e−z/h2

]
B(z) = 4h2

hE
1

1/h4
2+4/h4

E

[(
1
h2

2
sin z

hE
− 2

h2
E

cos z
hE

)
e−z/hE + 2

h2
E

e−z/h2

] (21)

In addition, when n = 1, the specific forms of A and B are

A(z) = 4h2
hE

h2
h1

1
1/h4

2+4/h4
E

[(
2b
h2

E
sin z

hE
+ a

h2
2

cos z
hE

)
e−z/hE − 1

h2
2
(a + cz)e−z/h2

]
B(z) = 4h2

hE

h2
h1

1
1/h4

2+4/h4
E

[(
a

h2
2

sin z
hE
− 2b

h2
E

cos z
hE

)
e−z/hE + 2

h2
E
(b + cz)e−z/h2

] , (22)

where
a = 1 + h1

h2
+ 2 h4

E−4h4
2

h4
E+4h4

2

b = 1 + h1
h2

+
4h4

E
h4

E+4h4
2

c = 1
h2

(23)

It is easily seen that both A and B have similar forms. In contrast, with increasing values of n,
more terms will appear. Therefore, we do not list the specific forms for n ≥ 2. Interested readers can
easily write them out.

Comparing with the previous studies [15,16], the only but most important difference lies in
the vertical temperature distribution governed by Equation (12) which extends the simple declining
temperature profile to a more general form. Such a difference does not invalidate the physical
settings and mathematic derivations. Therefore, it naturally inherits the validation from the previous
studies [15,16]. The theoretical model also had been testified against a numerical model [16], the results
of which could be analogical to testify the current research for both the sea breeze and the urban heat
island circulation are local thermal forced motion.

3. Results and Discussion

The above mathematical derivation extends UHI circulation from an NTI case to an STI case.
Then, how is UHI circulation distributed in an STI case, and how does it differ from the circulation in
an NTI case? In this section, we establish a known STI profile with a 100-m-thick inversion layer above
the urban surface (Figure 1a, dashed line) to calculate the corresponding UHI circulation. To identify
the influences of the inversion layer, we further appoint a known NTI profile (Figure 1a, solid line).
The main discrepancy between the two profiles occurs in the inversion layer and their difference is
negligible above the inversion lid. According to the two temperature profiles, the UHI intensity is
weaker in STI case than in NTI case.
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Figure 1. Vertical distributions of the non-dimensional temperature Z(z) (a), A(z) (b), B(z) (c), and C(z)
(d). The solid curves (noted by n = 0) denote the non-temperature inversion (NTI) case, while the
dashed lines (noted by n = 2) represent the surface temperature inversion (STI) case. The inversion
lid is set to a height of 100 m from the urban surface. The specified parameter values are appointed
n = 0, h2 = 227.5 m for the NTI case (solid lines) and n = 2, h1 = 100 m, h2 = 100 m for the STI
case (dashed lines) to ensure that the most significant difference between the two profiles occurs in
the temperature inversion layer. The dotted and dash-dotted lines in (a) are another two STI profiles
with parameters of n = 2, h1 = 40 m, h2 = 70 m and n = 2, h1 = 200 m, h2 = 150 m. The inversion
thicknesses of the two profiles are 100 m, which is the same as that of the STI profile denoted by
dashed lines.

Once the temperature distributions are given, the vertical distribution of the UHI circulation
can be determined. Figure 1b–d portrays the vertical distributions of A(z), B(z), and C(z). A(z) and
B(z) control the heights where the u-wind and v-wind approach their maximum values, while C(z)
determines the height of the maximum vertical velocity value. For example, A(z) reaches its maximum
value at a height of approximately 250 m (Figure 1b). Similarly, the maximum values of B(z) (Figure 1c)
and C(z) (Figure 1d) occur at heights of approximately 300 m and 600 m, respectively. As is observed
from the figure, there are no obvious differences between the STI case (Figure 1b–d, dashed lines) and
the NTI case (Figure 1b–d, solid lines). Meanwhile, there does exist one particular difference between
the two cases. The maximum values of A, B, and C and their heights in the NTI case are larger and
higher, respectively, than those in the STI case. This demonstrates that an STI could weaken the speed
values or the UHI circulation intensity, even though such weakening is not very significant.

Three parameters are introduced to construct the STI. These parameters regulate the intensity and
the height of the inversion layer and influence the maximum horizontal and vertical velocity values
and their heights as discussed above. When h1, h2 are fixed, both the intensity and the height of the
inversion layer increase with increasing n; when n, h2 is fixed, both the intensity and the height of the
inversion layer decrease with increasing h1; and when n, h1 are fixed, both the intensity and the height of
the inversion layer increase with increasing h2. It would be complex to individually discuss the influence
of each parameter. Therefore, we analyze the sensitivities of the parameters by fixing the height of the
inversion layer. For example, we set d = 2h2− h1 = 100 m. This means that the thickness of the inversion

layer is 100 m and that h1, h2 are linearly correlated. According to Zm =
(

nh2
h1

)n
e−d/h2 , both h1 and h2

have inversely proportional roles in controlling the inversion intensity. In Figure 1a, when n is fixed at 2,
the dotted, dashed, and dash-dotted lines represent values of h2 varying from 70 m, to 100 m, and to 150 m,
respectively. Meanwhile, the inversion intensity weakens from 2.9, to 1.5, and to 1.2. Therefore, a larger h1

(or h2) value corresponds to a weaker inversion intensity and a smaller lapse rate above the inversion lid
or a larger vertical influence of the temperature above the inversion lid. Specifically, the inversion intensity
is approximately 6 when h2 is equal to 60 m, and the intensity decreases to 1 when h2 increases to 200 m
(Figure 2a). The maximum value of A (shortened as Am) occurs at increasingly higher levels (Figure 2b,
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dashed line) with increasing values of h2. In contrast, Am decreases to a minimum value when h2 increases
to 90 m and then increases with a continuously increasing h2 (Figure 2b, solid line), thereby showing
a typical V-shaped variation pattern. This V-shaped variation pattern of Am could be interpreted as the
combined effect of a weakening inversion intensity and a strengthening temperature influence above
the inversion lid. When the inversion intensity is decreasing from a larger value to a smaller value,
the decreasing temperatures outweigh the increased contribution from the decreasing lapse rate above the
inversion lid. This combined effect makes Am decrease. However, as the inversion intensity continues to
weaken, a limited weakening of the inversion intensity is not enough to offset the increased contribution
from an increasingly smaller lapse rate above the inversion lid. Therefore, Am stops decreasing and begins
to increase. The maximum value of B (shortened as Bm) (Figure 2c) and the maximum vertical velocity
value of C (Cm) (Figure 2d) show similar V-shaped variation patterns. To summarize, the shape and
intensity of the STI profile could influence not only the maximum values of each velocity component but
also the height at which the velocity components approach their maximum values.

According to Equation (18), the maximum value of the u-wind is determined both by A and
by B. If the position of a point in an urban area is fixed, the maximum u-wind is then determined
by a combination of A and B. In certain special cases, the maximum u-wind value relies only upon
either A or B. For example, if a point is located along the x-axis, the differential of H(x, y) against y is
equal to zero. Therefore, the maximum u-wind value is determined only by A. Similarly, if a point is
located along the y-axis, the maximum u-wind value is then determined by B. Because both Am and Bm

decrease and then increase with a weakening inversion intensity, we could imply that the maximum
value of the u-wind would decrease and then increase with a weakening inversion intensity.
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Figure 2. The variations in the maximum of Z (a), A (b), B (c), and C (d) (solid lines, labeled as Zm, Am,
Bm, and Cm) and the height of Zm (a), Am (b), Bm (c), and Cm (d) (dashed lines) with h2. The solid lines
are read by the bottom x-axis (h2) and the left y-axis. The dashed lines are read by the bottom x-axis
(h2) and the right y-axis (z). The top x-axis is h1 which is linearly correlated with h2.

The horizontal distribution of the UHI circulation depends on the horizontal derivatives of the
temperature (H(x, y)). Therefore, there is no distribution difference between the two cases when
specifying the same horizontal temperature distribution. Figure 3a–c portrays the corresponding
horizontal distributions of the UHI circulation for both cases and their differences at a height of
100m. As shown in the figure, the horizontal winds and vertical velocity are essentially distributed
equivalently, and both exhibit a typical cyclonic circulation with updrafts (shaded) related to the
heating center and winds that are blowing anticlockwise (vectors). For both cases, the maximum
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wind speed and vertical velocity are approximately 2 m s−1 and 8 mm s−1, respectively. Although the
horizontal distribution is the same, the UHI circulation in the NTI case (Figure 3a) is stronger than
that in the STI case (Figure 3b). This originates from the discrepancy between the vertical distributions
of the horizontal winds and vertical velocity that is analyzed in Figure 1. The difference in the
wind, which blows anticlockwise, is approximately 0.5 m s−1, while the vertical velocity difference
is approximately 1 mm s−1 (Figure 3c). The UHI circulation distributions for the other two STI
cases presented by the dotted and dash-dotted lines in Figure 1a are also calculated (figure omitted).
The results suggest that a stronger inversion intensity benefits to a stronger circulation cell, which could
be confirmed by observational and numerical experiments (e.g., see [23,24]).

The vertical structure of the UHI circulation also shows typical heat-driven circulation (Figure 3d,e,
vectors). The air is heated in the lower level, which is accompanied by a blowing u-wind converging
towards the heating center to compensate the air mass loss there. The driven updraft and u-wind
strengthen and then weaken with gradually increasing heights. Upon reaching a certain height,
the u-wind reverses its direction and begins to diverge from the heating center to its surroundings,
where the outgoing air sinks to the ground. Finally, a converging u-wind forms at the lower level
to closethe circulation cell, which is a typical vertical UHI circulation cell centered at a height of
approximately 700 m. A southerly wind blows in the region where x > 0, while a northerly wind
prevails in the region where x < 0 (Figure 3d,e, shaded). This further demonstrates that the wind
forms a cyclone at the lower level while blowing anticlockwise and forms an anticyclone at the upper
level while blowing clockwise. The UHI circulation in the NTI case (Figure 3d) is stronger and higher
than that in the STI case (Figure 3e). Their difference (Figure 3f) looks like the cases themselves,
and therefore, no detailed analysis is provided.
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4. Summary

This study aims to solve an analytic solution for UHI circulation in the temperature inversion
profile and determine the difference in UHI circulation between the temperature inversion and NTI
profiles. To fulfil these goals, we introduce an STI profile constructed from the product of exponential
and power functions. The STI profile is a more general form that includes three introduced parameters
controlling the intensity, height, and shape of the inversion layer. The STI profile can be reduced to the
NTI profile when the parameter n is set to zero. It is easy to analytically express the vertical integral of
the temperature distribution as an incomplete Γ function whose specific form could be expressed as the
sum of a power series by applying integration by parts. Then, we substitute the incomplete Γ function
into motion equations to eliminate temperature-related terms, thereby simplifying the problem into
a second-order differential equation containing only one variable. We elegantly express the velocity
field as a function of the temperature distribution by applying the Green’s function to analytically
solve the problem. The solutions are formally the same as those in our previous works.

We specify a definite STI profile with a 100-m-thick inversion layer above the urban surface to
investigate how UHI circulation performs in an STI. To identify the influences of the temperature
inversion layer, we also appoint a definite NTI profile, which has one tiny difference with the STI
profile at a height of 100 m. The calculation results suggest that there is no significant discrepancy in the
vertical distributions of the two temperature profiles. Both of the corresponding velocity components
behave with similar shapes and approach similar maximum values at a similar height. However,
the maximum velocity component values and their corresponding heights in the NTI case are larger
and higher, respectively, than those in the STI case. This implies that given analogous STI and NTI
profiles, the STI profile would help to drive a stronger and higher UHI circulation cell.

A sensitivity test demonstrates that the maximum value of each velocity component will decrease
to a minimum value and then increase with increasing values of h2 (or h1), which is the parameter
denoting the lapse rate above the inversion lid, when specifying the inversion layer height. As h2 (or h1)
grows from a smaller value to a relative larger value, the inversion intensity weakens dramatically,
which could lead to a downward trend in the velocity values or UHI circulation intensity. As h2 (or h1)
continues to grow, the weakening effect it introduces to the inversion intensity is compensated by
the enhanced influence of the vertical temperature distribution above the inversion lid. Therefore,
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UHI circulation stops weakening and begins strengthening again. The height at which each velocity
component approaches its maximum value is uplifted with increased values of h2 (or h1), suggesting
that UHI circulation could approach a higher level.

The horizontal and vertical distributions of the UHI circulation cell both show a typical heat-driven
cyclonic circulation pattern. Wind at the lower level blows anticlockwise towards the heating center,
where updrafts prevail; meanwhile, wind at the upper level blows clockwise towards the surroundings,
where downdrafts exist. The closed circulation cell is centered at a height of approximately 700 m with
a wind speed and vertical velocity on the order of 2 m s−1 and 8 mm s−1, respectively. There is no
significant difference in the values and patterns between the two temperature distributions.
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