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Abstract: In this paper, we propose an efficient EnKF implementation for non-Gaussian data
assimilation based on Gaussian Mixture Models and Markov-Chain-Monte-Carlo (MCMC) methods.
The proposed method works as follows: based on an ensemble of model realizations, prior errors
are estimated via a Gaussian Mixture density whose parameters are approximated by means of an
Expectation Maximization method. Then, by using an iterative method, observation operators are
linearized about current solutions and posterior modes are estimated via a MCMC implementation.
The acceptance/rejection criterion is similar to that of the Metropolis-Hastings rule. Experimental
tests are performed on the Lorenz 96 model. The results show that the proposed method can decrease
prior errors by several order of magnitudes in a root-mean-square-error sense for nearly sparse or
dense observational networks.

Keywords: ensemble Kalman filter; Gaussian Mixture Models; non-linear observation operator;
Markov-Chain-Monte-Carlo

1. Introduction

Data Assimilation is the process of optimally combining the imperfect numerical forecast states
and imperfect observations to better estimate the state x∗ ∈ Rn×1 of a system that evolves according to
some model operator [1–3],

x∗next =Mtcurrent→tnext (x
∗
current) , (1)

where,M : Rn×1 → Rn×1 is an imperfect numerical model that evolves the states, n is the number of
model components. One example ofM could be a model that mimics the ocean and/or the atmosphere
dynamics. In traditional DA settings, prior errors are described by Gaussian distributions,

x ∼ N
(

xb, B
)

where xb ∈ Rn×1 and B ∈ Rn×n is the background state and the background error covariance matrix,
respectively. This assumption has plenty of computational benefits, for instance, by assuming Gaussian
errors in the prior and the observations, Kalman-like updates can be performed in order to compute
posterior (error) moments. However, in the context of geophysics, model dynamics can be highly
non-linear and therefore, Gaussian Mixture Models (GMM) [4,5] can be used to capture our prior
knowledge about the error dynamics:

x ∼
K

∑
k=1

αb
k · N

(
xb

k, Bk

)
, with

K

∑
k=1

αb
k = 1 (2)
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where, for the k-th mixture component, xb
k ∈ Rn×1 is the mean, Bk ∈ Rn×n is the background error

covariance, and αb
k is the prior weight, for 1 ≤ k ≤ K. These weights can be estimated, for instance,

using the Expectation Maximization algorithm [6–8]. In sequential methods, it is common to assume
Gaussian errors over observations y ∈ Rm×1,

y ∼ N (H (x) , R) (3)

where m is the number of observed components from the model state, R ∈ Rm×m is the data error
covariance matrix, andH : Rn×1 → Rm×1 is the observation mapping operator. When the operatorH
is linear, the posterior error distribution can be described by a GMM [9] as well:

x|y ∼
K

∑
k=1

αa
k · N (xa

k, Ak) (4)

with updated weights αa
k, centroids xa

k, and covariances Ak, for 1 ≤ k ≤ K, which account for the
observation (3). It can be noted that, for the k-th mixture component, the posterior mode xa

k ∈ Rn×1

can be obtained by means of a 3D-Var optimization problem:

xa
k = arg min

x
Jk(x) (5)

where
Jk(x) =

1
2
·
∥∥∥x− xb

k

∥∥∥2

B−1
k

+
1
2
· ‖y−H (x)‖2

R−1 (6)

Under linear assumptions, xa
k can be estimated by means of, for instance, an EnKF updating

formula. However, for non-linear observation operators, such expression can fail to obtain reasonable
estimates of posterior modes and therefore, other alternatives such as sampling methods are employed.
For instance, Monte-Carlo based methods are commonly utilized in order to relax the Gaussian
assumption in the observational errors. Thus, we propose an efficient sampling method to draw
samples from the posterior distribution (4) using cost functions of the form (6). In general, the method
works as follows: for a fixed number of clusters, a GMM is fitted with the EM method, then, for each
prior component, samples are drawn along steepest descent approximations of the 3D-Var cost function;
these samples are accepted/rejected based on the Metropolis–Hastings rule. Besides, background error
correlations are estimated based on a modified Cholesky decomposition in order to perform implicit
localization and to reduce the impact of sampling errors, a major concern in the context of DA.

This paper is organized as follows: Section 2 discusses EnKF formulations and sampling methods
for relaxing Gaussian assumptions in prior and observation errors. Section 3 presents an EnKF
formulation based on GMM and MCMC (Markov-Chain-Monte-Carlo) for computing posterior modes
together with error statistics; the computational cost of the method is estimated as well. In Section 4,
experimental tests are performed on the Lorenz-96 model and non-linear observation operators;
conclusions are finally stated in Section 5.

2. Preliminaries

2.1. Ensemble Kalman Filters Based on Modified Cholesky Decomposition

In sequential Data Assimilation (DA), under prior Gaussian assumptions, a well-known filter is
the ensemble Kalman filter (EnKF) [10,11]. In EnKF, using an ensemble of model realizations,

Xb =
[
xb[1], xb[2], ..., xb[N]

]
∈ Rn×N (7a)

the hyper-parameters of the error distribution,
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x ∼ N
(

xb, B
)

(7b)

are estimated as:

xb ≈ xb =
1
N
·

N

∑
e=1

xb[e] ∈ Rn×1 (7c)

and
B ≈ Pb =

1
N − 1

· ∆X · ∆XT ∈ Rn×n (7d)

where xb ∈ Rn×1 is the background state, B ∈ Rn×n is the background error covariance matrix, N is
the ensemble size, xb[e] denotes the e-th ensemble member, for 1 ≤ e ≤ N. xb is known as the ensemble
mean, and Pb is the ensemble covariance matrix. The matrix of member deviations ∆X ∈ Rn×N reads

∆X = Xb − xb · 1T (7e)

and 1 is a vector of consistent dimension whose components are all ones. When an observation y
becomes available, in the stochastic EnKF, the analysis ensemble can be estimated as follows:

Xa = Xb + Pa · ∆Y ∈ Rn×N (7f)

where ∆Y = HT · R−1 ·
[
y · 1T −H · Xb + E

]
∈ Rn×N is the matrix of scaled innovations on the

observations. The columns of E ∈ Rn×N are formed by samples from a m-th dimensional standard
Normal distribution. H ∈ Rm×n is the linearized observation operator (with the linearization
performed about the background state) also known as the Jacobian matrix of H at the background
state, and Pa ∈ Rn×n is the analysis covariance matrix:

Pa =

[[
Pb
]−1

+ HT · R−1 ·H
]−1

(7g)

In operational DA, ensemble sizes are several orders of magnitude smaller than the model
dimensions (N � n) and as a consequence, the covariance matrix Pb is commonly rank-deficient.
This implies that (7g) cannot be directly computed and even though equivalent updating formulas
which avoid the [Pb]−1 calculation can be found in the literature, sampling errors can still impact
the quality of the analysis corrections. In practice, localization methods are often used to artificially
increase the degrees of freedom of Pb and to mitigate the impact of sampling errors [12–15]. An efficient
EnKF implementation which accounts for implicit localization during the assimilation step is the EnKF
method based on a modified Cholesky decomposition (EnKF-MC) [16]. In this filter, the vanilla
covariance (7d) is replaced by the Bickel and Levina estimator [17]:

B−1 ≈ B̂−1 = LT ·D · L ∈ Rn×n (8a)

where L ∈ Rn×n is a lower triangular matrix whose diagonal elements are all ones. Its non-zero
sub-diagonal elements are computed by fitting models of the form:

xT
[i] = ∑

j∈P(i, r)
xT
[j] · {−L}i,j + ςi ∈ RN×1 , for 1 ≤ i ≤ n (8b)

In which P(i, r) denotes the predecessors of the i-th grid component for some labelling of model
components, x[i] ∈ R1×N stands for the i-th row of the matrix (7e), and, as an assumption, ςi ∈ RN×1

follows a zero-mean Normal distribution with uncorrelated errors of unknown variance σ2. Likewise,
D ∈ Rn×n is a diagonal matrix whose diagonal elements are given by the reciprocal variances of the
residuals in (8b):
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{D}i,i = var

xT
[i] − ∑

j∈P(i, r)
xT
[j] · {−L}i,j

−1

≈ 1
σ2 (8c)

Similar to (7f), the analysis ensemble can be built as,

Xa = Xb + Â · ∆Y (8d)

where an estimate of the analysis covariance is:

Â =
[
B̂−1 + HT · R−1 ·H

]−1
∈ Rn×n (8e)

Matrix-free implementations of the EnKF-MC are currently proposed in the literature, for instance,
the Posterior EnKF (P-EnKF) [18,19] exploits the special structure of (8a) in order to estimate Cholesky
factors of the posterior precision covariance (8e). Consider

Â−1 = B̂−1 + HT · R−1 ·H = B̂−1 + Z · ZT = B̂−1 +
m

∑
o=1

z[o] ·
[
z[o]
]T
∈ Rn×n (9)

where z[o] ∈ Rn×1, for 1 ≤ o ≤ m, is the o-th column of matrix Z = HT · R−1/2 ∈ Rn×m, the updating
process can be done via a sequence of rank-one updates over the prior Cholesky factors:

Â(0) =
[
L(0)

]T
·D(0) ·

[
L(0)

]
= LT ·D · L = B̂−1

Â(1) = Â(0) + z[1] ·
[
z[1]
]T

=
[
L(1)

]T
·D(1) ·

[
L(1)

]
Â(2) = Â(1) + z[2] ·

[
z[2]
]T

=
[
L(2)

]T
·D(2) ·

[
L(2)

]
...

Â(m) = Â(m−1) + z[m] ·
[
z[m]

]T

=
[
L(m)

]T
·D(m) ·

[
L(m)

]
= L̂T · D̂ · L̂ = Â−1

where L(0) ∈ Rn×n and D(0) ∈ Rn×n are the Cholesky factors of B̂−1. Having a posterior precision in
the form Â−1 = L̂T · D̂ · L̂, an estimate of the posterior ensemble can be easily built:

Xa = Xb + Q ∈ Rn×N (10a)

where Q ∈ Rn×N is given by the solution of a lower triangular linear system:[
L̂T · D̂1/2

]
·Q = ∆Y (10b)

In spite of EnKF implementations well-recognized by the DA community, the Gaussian
assumption (7b) can be easily broken when the numerical model dynamics (1) are highly non-linear.
For this reason, one prefers to use a different model to describe the prior error distribution.
A Gaussian Mixture Model is frequently used to relax the Gaussian assumption over the forecast
distribution [20–23].

2.2. Gaussian Mixture Models Based Filters

In EnKF formulations based on Gaussian Mixture Models (GMM), the prior error distribution (7b)
is replaced by a mixture of Gaussian distributions (2). Based on this general idea, many methods
have been proposed in the current literature in order to deal with highly non-linear dynamics of,
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for instance, operational DA models. These methods rely on the assumption that GMM models
can approximate arbitrary density functions. GMM components are commonly fitted by using the
Expectation Maximization (EM) algorithm [24]. As the name implies, this iterative method works
in two recursive steps: Expectation (E) and Maximization (M). For a fixed number of clusters K,
at iteration p, during the E-step, the probability of representativeness of each ensemble member is
computed with regard to clusters:

w(p)
e,k ∝ exp

(
−1

2
·
∥∥∥xb[e] − xb(p)

k

∥∥∥2[
B(p)

k

]−1

)
, for 1 ≤ e ≤ N and 1 ≤ k ≤ K (11)

which allows us to approximate the k-th weight for the prior mixture component:

α
b(p)
k =

(
K

∑
r=1

N

∑
e=1

w(p)
e,r

)−1

·
(

N

∑
e=1

w(p)
e,k

)

GMM components are updated during the M-step:

xb(p+1)
k = η

(p)
k ·

N

∑
e=1

w(p)
e,k · x

b[e] ∈ Rn×1, and B(p+1)
k = η

(p)
k ·

[
∆X(p)

k · Γ
(p)
k

]
·
[
∆X(p)

k · Γ
(p)
k

]T
∈ Rn×n

where η
(p)
k =

[
∑N

e=1 w(p)
e,k

]−1
∈ R, the matrix of intra-cluster deviations reads

∆X(p)
k = Xb − xb(p)

k · 1T ∈ Rn×N and

Γ
(p)
k = diag

{√
w(p)

1,k ,

√
w(p)

2,k , ...,

√
w(p)

N,k

}
∈ RN×N

Under linear assumptions, GMM-EnKF formulations exploit the fact that a Gaussian distribution
is conjugate of a GMM. Thus, posterior components can be computed as results of performing
Kalman-like updates over prior weights, centroids, and covariances as follows:

αa
k ∝ αb

k · exp
(
−1

2
·
∥∥∥y−H

(
xb

k

)∥∥∥2

Q−1
k

)
, for 1 ≤ k ≤ K (12a)

xa
k = xb

k + Ak ·HT ·
[
y−H

(
xb

k

)]
∈ Rn×1 (12b)

and
Ak =

[
B−1

k + HT · R−1 ·H
]−1
∈ Rn×n (12c)

where Qk = H · Bk ·HT + R ∈ Rm×m, and ∑K
k=1 αa

k = 1. This computationally friendly property is
exploited by filters such as the Non-linear Bayesian Estimator (N-BE) [25] and the Gaussian Mixture
Ensemble Filter [26,27]. In [28] the N-BE is enhanced by using the Bayesian Information Criteria (BIC)

BIC = −2 ·
(

N

∑
e=1

log

(
K

∑
k=1

αb
k · φ

(
xb[e]; xb

k, Bk

)))
+ 2 · (3 · N − 1)

in order to choose the number of components for the GMM, where φ
(

x; xb
k, Bk

)
denotes a Normal

probability density function with parameters xb
k and Bk, respectively. This is possible, as well, by other
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means, for instance in the GMM-EnKF filter proposed by Smith in [29], the number of mixture
components relies on the Akaie’s Information Criteria (AIC)

AIC = −2 ·
(

N

∑
e=1

log

(
K

∑
k=1

αb
k · φ

(
xb[e]; xb

k, Bk

)))
+ log(N) · (3 · N − 1)

The BIC and the AIC are common methods for choosing the number of parameters in GMM but,
information criteria based methods are poorly suited for selecting a model with a good out-of-sample
fit in model-rich environments [30,31]. Besides, these methods are only valid for sample size N much
larger than the number K of parameters, which can be difficult in the DA context.

Other methods such as Particle Filters (PFs) [32] are available in the literature in order to attack
non-Gaussian DA problems. These methods are a good-choice from a theoretical point of view.
Unfortunately, in practice, PFs do suffer from a degeneracy problem [33] (Section 1.4) and even
more, many challenges have to be overcome before they can be considered under operational DA
scenarios [34,35]. For these reasons, PFs are not considered any further in this paper.

3. Proposed Method

In this section, we develop an efficient Gaussian mixture ensemble Kalman filter implementation
based on Markov-Chain-Monte-Carlo (GM-EnKF-MCMC) for non-Gaussian data assimilation.
We describe in detail how hyper-parameters are computed as well as how observations are digested
for the GM-EnKF-MCMC. Lastly, we briefly discuss how posterior ensembles are built.

3.1. Estimation of Hyper-Parameters—EM Method

Consider an ensemble of model realizations

Xb =
[
xb[1], xb[2], ..., xb[N]

]
∈ Rn×N (13)

where xb[e] ∈ Rn×1 stands for the e-th ensemble member, for 1 ≤ e ≤ N. To estimate the
hyper-parameters of the prior error distribution, we use the EM method to fit a GMM with K
components. Instead of estimating background error covariances Bk, for 1 ≤ k ≤ K, for the mixture
components, we do prefer to estimate precision covariances B−1

k due to their computational benefits.
For instance, in the context of Normal distributions, probabilities are computed based on precision
covariances which would require the inversion of large matrices when background error covariances
are fitted during EM steps. Besides, by using the modified Cholesky decomposition for computing the
precision covariances, we can exploit their special structures in order to obtain huge savings in terms
of memory usage and to reduce the computational cost of matrix-vector products among iterations.

The proposed EM method works as follows: for a given number of clusters K, we choose K
random members from the ensemble (13) in order to set the initial mixture centroids while the initial
precision covariances are all equal to the precision covariance of the ensemble (8a). During the E-step,
we compute the representativeness of each ensemble member regarding each cluster

ŵ(p)
e,k ∝ exp

(
−1

2
·
∥∥∥xb[e] − xb(p)

k

∥∥∥2[
B̂(p)

k

]−1

)
, for 1 ≤ e ≤ N and 1 ≤ k ≤ K (14a)

where [
B̂(p)

k

]−1
=
[
L(p)

k

]T
·D(p)

k ·
[
L(p)

k

]
∈ Rn×n (14b)

The M-step updates the precision covariances as well as the background error states for each
cluster. Consider the diagonal matrix of fuzzy weights,

Γ̂
(p)
k = diag

{
ŵ(p)

1,k , ŵ(p)
2,k , ..., ŵ(p)

N,k

}
∈ RN×N (15a)
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the GMM centroids are updated as follows:

xb(p)
k = η̂

(p)
k ·

[
Xb · Γ̂(p)

k

]
∈ Rn×1 (15b)

where η̂
(p)
k =

[
∑N

e=1 ŵ(p)
e,k

]−1
∈ R. Likewise, the non-zero elements of L(p+1)

k ∈ Rn×n (14b) are revised
by fitting models of the form:[

x[i]
(p)
k

]T
= ∑

q∈P(i,r)

[
x(p)
[q] k

]T
·
{

L(p+1)
k

}
i,q

+ γi,k , for 1 ≤ i ≤ n and 1 ≤ k ≤ K (15c)

where x[i]
(p)
k ∈ R1×N is the i-th row of matrix ∆X(p)

k ∈ Rn×N

∆X(p)
k = Xb − x(p)

k · 1
T (15d)

errors γi,k ∈ RN×1 are assumed Normal distribution with zero mean and uncorrelated components

of variance σ2. Moreover, the diagonal entries of D(p)
k ∈ Rn×n are estimated via the residuals of

model (15c):

{
D(p)

k

}
i,i
= var

[x[i](p)
k

]T
− ∑

q∈P(i,r)

[
x[q]

(p)
k

]T
·
{

L(p+1)
k

}
i,q

−1

, for 2 ≤ i ≤ n, and 1 ≤ k ≤ K (15e)

with
{

D(p)
k

}
1,1

= var
(

x(p)
[1]

)−1
. Note that whenever covariance inflation is desired before assimilation

steps, the inflation factors can be applied to the matrix of member deviations with regard to
centroids (15d). In this manner, the estimated precision covariances come already inflated. Once the
EM steps are concluded (i.e., when a maximum number of iterations is reached), the prior error
distribution is described by the GMM:

x ∼
K

∑
k=1

αb
k ·
(

xb
k,
[
LT

k ·Dk · Lk

]−1
)

(16)

The special structure of the resulting precision covariances B̂−1
k = LT

k ·Dk · Lk can be exploited in
order to reduce the computational effort of drawing samples from the posterior error distribution as is
discussed in the next section.

3.2. Sampling Method—Approaching the Posterior

In order to approximate samples from the posterior distribution (4), for each mixture component
1 ≤ k ≤ K in (16), we use a Markov-Chain-Monte-Carlo (MCMC) approximation. Traditionally,
Normal distributions are good candidates for proposing states, for instance, in our context, starting
with u = 0 and x(u) = xb

k ∈ Rn×1, at iteration 0 ≤ u ≤ v, where v is a user-defined number of iterations,
a state can be proposed as follows:

z(u) ∼ N
(

x(u) ,
[
B̂−1

k

]−1
)

Or simply,
z(u) = x(u) + ν ∈ Rn×1 (17)

where ν ∈ Rn×1 is given by the solution of an upper triangular linear system:[
LT ·D1/2

]
· ν = ε ∈ Rn×1
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and ε ∈ Rn×1 follows a standard Normal distribution. Nevertheless, in high-dimensional spaces such
as those found in the context of operational DA, high-probability zones of posterior error distributions
can be reached after a huge number of iterations. Thus, to overcome this situation, we proceed as
follows: we linearize the observation operator about the current state x(u),

H (x) ≈ Gu(x) = H
(

x(u)
)
+ Hx(u) ·

[
x− x(u)

]
where Hx(u) ∈ Rm×n is the Jacobian matrix of H(x) at x(u), the cost function (6) can then be
approximated by the quadratic cost function:

Ĵk(x) =
1
2
·
∥∥∥x− xb

k

∥∥∥2

B−1
k

+
1
2
· ‖y− Gu (x)‖2

R−1 (18a)

whose gradient reads,

∇Ĵk(x) = B̂−1
k ·

[
x− xb

k

]
−HT

x(u) · R
−1 · [y− Gu(x)] ∈ Rn×1 (18b)

By using this gradient, the proposal distribution (17) can be modified in such a manner that,
samples along the (approximated) steepest descent direction −∇Ĵk(x(u)) of (6) have high probability
of occurrence, that is,

z(u) = x(u) + ψ ·

− ∇Ĵk

(
x(u)

)
∥∥∥∇Ĵk

(
x(u)

)∥∥∥
 , with ψ ∼ U (0, β) (19)

where U (0, β) stands for an Uniform distribution on the interval (0, β). The value of β can be tuned
according to the degree of the observation operator. For instance, for a linear observation operator,
β can be set as

∥∥∥∇Ĵ (x(u)
)∥∥∥ since the gradient of (6) and (18a) are the same. When observation

operators are highly non-linear, since Taylor based approximations suffer from myopia, a small step
of such gradient must be taken and therefore, a good choice under this consideration is 1. Thus,
an intuitive range for β can be

β ∈
[
1,
∥∥∥∇Ĵ (x(u)

)∥∥∥]
In the absence of prior information about β, one can choose 1. The main motivation for using

gradient approximations is that, the subset of samples along the descent direction (19) can provide
states which potentially maximize the posterior probability. Computationally speaking, no matrix
inversion is needed in this context in order to propose states. The acceptance/rejection rule for the
states (19) rely on the Metropolis-Hastings criterion which can be adapted as follows:

x(u+1) =

x(u) , y > Jk(x(u))
Jk(z(u))

, for y ∼ U (0, 1)

z(u) , otherwise
(20)

The observation operator is then linearized about x(u+1) and the overall process is repeated until
some number of iterations is satisfied (or any other numerical condition). Putting it all together,
the sampling procedure to compute the posterior modes is in the following:

Step 1 Let k = 1, set u = 0, go to step 2.
Step 2 Set x(u) = xb

k.
Step 3 LinearizeH about x(u) and compute the direction (18b).
Step 4 Compute z(u) via Equation (19).
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Step 5 Set x(u+1) according to Equation (20).
Step 6 If u ≤ v set u = u + 1 and go to step 3, set xa

k = x(v) and go to step 7 otherwise.
Step 7 If k ≤ K go to step 1, go to step 8 otherwise.

Step 8 The posterior mode approximations read
{

xa
k
}K

k=1.

Note that, unlike MCMC methods based on Random-Walk, for each prior mode, this procedure
does not return a chain but only the last state in x(v). This sampling step can be replaced by an
optimization method such as Trust Region [36–38] or Line Search [39,40]. However, in order for it to
work, some regularities must be satisfied by the gradient approximation (18b) [41–45], for instance,
smoothness, which in practice is not necessarily the case.

3.3. Building the Posterior Ensemble

Once the posterior modes are computed, posterior covariances within clusters can be estimated
as follows:

Âk =

[
B̂−1

k + Hxa
k
· R−1 ·

[
Hxa

k

]T
]−1
∈ Rn×n (21a)

Therefore, the analysis members can be computed as:

xa[e] ∼ N
(

xa
k, Âk

)
, with probability αa

k, for 1 ≤ e ≤ N (21b)

where αa
k is estimated via the likelihood ratio:

αa
k =

[
K

∑
j=1

φ
(

y;H
(

xa
j

)
, R
)]−1

· φ (y;H (xa
k) , R)

3.4. Computational Complexity

In this section, we estimate the number of long computations of the proposed method in order
to assess its computational effort. We detail the number of computations of the GMM-EnKF-MCMC
below, we avoid the use of iteration indexes for ease of reading:

1. During the E-Step, the computations of weights (14a) depend on the calculation:

−1
2
·
∥∥∥xb[e] − xb(p)

k

∥∥∥2[
B̂(p)

k

]−1 = −1
2
·
[
xb[e] − xb(p)

k

]T
· B̂−1

k

[
xb[e] − xb(p)

k

]
= −1

2
·
[
xb[e] − xb(p)

k

]T
· LT

k ·Dk · Lk ·
[
xb[e] − xb(p)

k

]
= −1

2
·

T[
xb[e] − xb(p)

k

]
︸ ︷︷ ︸

sk

·LT
k ·D

T/2
k ·D1/2

k · Lk ·
[
xb[e] − xb(p)

k

]
︸ ︷︷ ︸

sk

= −1
2
· sT

k · L
T
k ·D

T/2
k ·D1/2

k · Lk · sk

=

D1/2
k · Lk · sk︸ ︷︷ ︸

ŝk


T

·D1/2
k · Lk · sk︸ ︷︷ ︸

ŝk

=

D1/2
k · ŝk︸ ︷︷ ︸

s̃k


T

·D1/2
k · ŝk︸ ︷︷ ︸

s̃k

= s̃T
k · s̃k = ‖s̃k‖2

2
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From this step, given the special structure of Lk, s̃k ∈ Rn×1 can be computed with no more than
O
(
θ2 · n

)
long computations where θ denotes the maximum number of non-zero elements across

all rows in Lk with θ � n. Likewise, the number of long computations in order to obtain s̃ ∈ Rn×1

is bounded by O (n) since Dk is diagonal. Thus, since there are K clusters, each E-step has the
following operation counting:

O
(

K ·
[
n + θ2 · n

])
(22a)

2. During the M-step, updating the centroids (15b) can be performed with no more than O
(

N2 · n
)

since Dk has only n components different from zero (the diagonal ones), the least square solution
of (15c) is bounded by O

(
θ2 · n

)
calculations since there are n model components, and the cost

of (15e) is bounded by O
(
n · θ2) since the multiplication of coefficients and model components

is constrained to the neighbourhood of each model component. The computational effort of this
method is then estimated as follows:

O
(

K ·
[
θ2 · n + N2 · n

])
(22b)

3. During the sampling procedure, the gradient (18b) can be efficiently computed as follows:

∇Ĵk(x) = B̂−1
k ·

x− xb
k︸ ︷︷ ︸

gk

−HT
x(u) · R

−1 ·

y− Gu(x)︸ ︷︷ ︸
fk

 = LT
k ·Dk · Lk · gk︸ ︷︷ ︸

ĝk

−HT
x(u) · R

−1 · fk︸ ︷︷ ︸
f̂k

= LT
k ·Dk · ĝk︸ ︷︷ ︸

g̃k

−HT
x(u) · f̂k︸ ︷︷ ︸

f̃k

= LT
k · g̃k︸ ︷︷ ︸

gk

−f̃k = gk − fk

Given the special structure of Lk, gk ∈ Rn×1 and gk ∈ Rn×1 can be computed with no more than
O
(
θ2 · n

)
, the computations in g̃k ∈ Rn×1 are bounded by O (n) since Dk is diagonal. Thus,

since this sampling method is performed v times, the computational effort of the sampling
procedure reads,

O
(

v ·
[
n + θ2 · n

])
(22c)

4. The posterior ensemble can be built (Section 3.3 [19]) with no more than

O
(

n · θ2 + m · N
)

, (22d)

long computations.

Assuming that the number of clusters and the number of iterations in the sampling process
are much lower than the model dimension, based on Equation (22) the computational effort of the
GMM-EnKF-MCMC reads,

O
(

n · θ2 + m · N
)

which is linear with regard to the model resolution n.

3.5. Comparison of GM-EnKF-MCMC with Other Sampling Methods

In this section, we briefly compare the GM-EnKG-MCMC method with well-known filters from the
literature: the Cluster Sampling Filter (CSF) [21], the Cluster Monte Carlo Implementation (CMCI) [46],
and the Cluster Ensemble Kalman Filter (CEnKF) [29].

The CSF exploits the evolution of a system under Hamiltonian dynamics, for instance, based on
Newton’s law it is possible to describe the dynamics of particles. Each particle is fully described by
two components: the position and the velocity coordinates which are associated with model states
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x ∈ Rn×1 and momentums p ∈ Rn×1 (auxiliary variables), respectively. The performance of CSF relies
on the proper choice of a mass matrix M ∈ Rn×n in order to describe the probability distribution of
p during the sampling process. Besides, numerical integrators which preserve Liouville’s Theorem
are a must in order to obtain a proposal state (p∗, x∗). Some of those are the Verlet integrator [47]
and the Leap-frog scheme [48]. A main difference between the GMM-EnKF-MCMC and the CSF is
that, no auxiliary n-th dimensional vectors are required in our method during the sampling process.
This can be convenient, for instance, under current operational DA systems. Besides, during the
sampling process, the only parameter to be tuned in the GMM-EnKF-MCMC is β in (17) while in
the CSF method, as we mentioned before, proper choices of M are required in order to speed-up the
convergence of MCMC towards high-probability zones of the posterior. Besides, extra parameters may
need to be tuned depending on the numerical integrator chosen in order to propose states during the
sampling process.

In the CMCI, the background error distribution is approximated by a summation of Gaussian
Kernels. These are selected using the method of Fukunaga [49] to form a continuous approximation to
the random ensemble. By assuming linear observation operators, the posterior ensemble is Gaussian
as well. Posterior members are drawn by sampling each of the components/kernels based on a set of
calculated weights which account for the observation. As is pointed out by the authors, the CMCI is a
very promising filter but, additional work is needed in order to extend its capabilities to more realistic
scenarios. Moreover, this filter has been developed under Gaussian assumptions on the observations;
such assumption is not required in the GMM-EnKF-MCMC.

The CEnKF is developed by assuming linear observation operators. Prior error distributions are
described by GMM and its components are fitted by using the EM-method. This filter can fail to obtain
reasonable estimates of posterior ensembles when non-linear observation operators are present during
the assimilation of observations, as is typical in practice.

4. Experimental Settings

In this section, numerical tests are performed to assess the accuracy of the proposed filter. We use
the Lorenz-96 model [50] as our surrogate model. The Lorenz-96 model is described by the following
set of ordinary differential equations [51]:

dxj

dt
=


(x2 − xn−1) · xn − x1 + F for j = 1(

xj+1 − xj−2
)
· xj−1 − xj + F for 2 ≤ j ≤ n− 1

(x1 − xn−2) · xn−1 − xn + F for j = n

(23)

where F is external force and n = 40 is the number of model components. Periodic boundary conditions
are assumed. When F = 8 the model exhibits chaotic behavior, which makes it a relevant surrogate
problem for atmospheric dynamics [52,53]. One time unit in the Lorenz-96 represents 7 days in real
case. The experimental settings are described below:

• Starting with an initial random solution, a 4th order Runge Kutta method is employed in order to
integrate it over a long time period from which initial condition x∗−2 ∈ Rn×1 is obtained.

• A perturbed background solution x̃b
−2 is formed at time t−2 by drawing a sample from the Normal

distribution,

x̃b
−2 ∼ N

(
x∗−2, 0.052 · I

)
This solution is then integrated for 10 time units (equivalent to 70 days) in order to obtain a
background solution xb

−1 consistent with the dynamics of the numerical model.
• An initial perturbed ensemble is built about the background state by taking samples from

the distribution,
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x̃b[ê]
−1 ∼ N

(
xb
−1, 0.052 · I

)
, for 1 ≤ ê ≤ N̂

In order to make them consistent with the model dynamics, the ensemble members are propagated
for 10 time units, from which the initial ensemble members are obtained. We create the initial pool
X̂b0 of N̂ = 104 members. The actual solution is integrated over 20 more time units in order to
place it at the beginning of the assimilation window.

• Two assimilation windows are proposed for the tests, both of them consist of M = 15 observations.
In the first assimilation window, observations are taken every 16 h (time step of 0.1 time units)
while in the last one, observations are available every 50 h (time step of 0.3 time units). We denote
by δt ∈ {16, 50} the elapsed time between two observations.

• The observational errors are described by the probability distribution,

y` ∼ N
(
Hk (x

∗
` ) , [εo]2 · I

)
, for 1 ≤ ` ≤ M

where the standard deviations of observational errors εo = 10−2, and ` should be interpreted
as time index. Random observation networks are formed at the different assimilation cycles.
The space between observations will depend on the step size, for instance, in the first step size
observations are available every 0.1 time units (16 h) while in the last one, observations are taken
every 0.3 time units (50 h).

• We consider the non-linear observation operator [32]:

{H (x)}j =
{x}j

2
·



∣∣∣{x}j

∣∣∣
2

γ−1

+ 1

 (24)

where j denotes the j-th observed component from the model state. γ ∈ {1, 3, 5}.
• We consider two percentages of observed components s from the model state s ∈ {70%, 100%}.
• The radius of influence is set to r = 1 while the inflation factor is set to 1.02 (a typical value).
• We propose two ensemble sizes for the benchmark N ∈ {20, 80}. These members are randomly

chosen from the pool X̂b0 for different experiments in order to form the initial ensemble Xb
0 for the

assimilation window. Evidently, Xb
0 ⊂ X̂b0.

• The L− 2 norm of errors are utilized as a measure of accuracy at the assimilation step `,

λ` =

√[
x∗` − xa

`

]T ·
[
x∗` − xa

`

]
(25)

where x∗k and xa
k are the reference and the analysis solutions, respectively. The analysis state is

obtained by a weighted combination of posterior centroids via the likelihood ratio (21b) in lieu of
the posterior mean.

• The Root-Mean-Square-Error (RMSE) is used as a measure of performance. On average, on a
given assimilation window,

λ =

√√√√ 1
M
·

M

∑
`=1

λ2
` (26)

Results for δt = 16 h, different ensemble sizes, and different values of γ are shown in Figure 1
in terms of L-2 error norms λ` per assimilation step (25). Notoriously, the performance of the filter is
improved as long as prior errors are described by a GMM (K > 1). This can be expected owing to the
non-linear dynamics of the Lorenz-96 model. In addition, the performance of the GMM-EnKF-MCMC
is not impacted by the degree γ of the observation operator. Both features make the proposed
formulation attractive for DA systems where non-linear observation operators are the bridge for
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digesting observations and besides, non-linear dynamics are encapsulated in the numerical model.
Moreover, for K > 1, there are less posterior errors than in prior and observations; this of course
must be expected for full observational networks. In some cases, filter divergence is possible for
K = 1 (a single mode prior distribution). Assuming that spurious correlations are not impacting the
analysis corrections, in this set of experiments, filter divergence can be seen as a consequence of one of
two things: prior errors are not well fitted by a Gaussian distribution (the actual error distribution is
multimodal) or inflation factors are not properly tuned. Regardless of the main cause, filter convergence
is evident when a GMM describes the background error distribution. In Figure 2, results for δt = 50,
different ensemble sizes, and different values of γ are shown as well. Under this configuration, the
accuracy of the GMM-EnKF-MCMC is slightly impacted by increments in γ. Filter convergence is
rapidly achieved when the number of prior modes is larger than one. Despite the fact that filter
divergence can be still for K = 1, interestingly, the proposed method does a reasonable estimation
of the actual state of the system. In the linear case, this is not surprising, EnKF formulations are
widely utilized in practice wherein Gaussian assumptions are commonly broken during assimilation
steps. For non-linear observation operators γ > 1, and Gaussian assumptions on the prior K = 1,
the accuracy of the filter relies on the sampling procedure. As can be seen, under such assumptions,
the proposed method is capable of obtaining good estimates of posterior error modes.

Table 1. Experimental results with the Lorenz-96 model. Mean of RMSE values are reported across
the 10 different experimental configurations for different configuration of parameters δt, s, K, and γ.
The number of ensemble members equals N = 20.

s δt γ = 1 γ = 3 γ = 5

70%

16 h

0 2 4 6 8
-0.8

-0.6

-0.4

-0.2

0

0.2

0 2 4 6 8
-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

0 2 4 6 8
-0.7

-0.6

-0.5

-0.4

-0.3

50 h

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8
-0.2

0

0.2

0.4

0.6

0 2 4 6 8
0.25

0.3

0.35

0.4

0.45

0.5

100%

16 h

0 2 4 6 8
-3

-2.5

-2

-1.5

-1

-0.5

0 2 4 6 8
-4

-3.5

-3

-2.5

-2

-1.5

0 2 4 6 8
-4

-3.5

-3

-2.5

50 h

0 2 4 6 8
-3

-2

-1

0

1

2

0 2 4 6 8
-4

-3.5

-3

-2.5

-2

0 2 4 6 8
-4

-3.5

-3

-2.5
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RMSE values (λ) (26) in the log-scale are shown in the Tables 1 and 2 for N = 20 and N = 80,
respectively. We group RMSE values by elapsed time between observations δt and number of observed
components s. Notice that the performance of the filter can be improved when the number of prior
modes is larger than one. This aligns with the highly non-linear (and chaotic) dynamics exhibited
by the Lorenz 96 model which makes a single mode distribution insufficient to encapsulate all prior
information. However, the GMM-EnKF-MCMC can be impacted when a large number of mixture
components is utilized and in some cases, overfitting is possible, for instance, in Table 1, for γ = 5 and
N = 20.

Yet another interesting analysis is the behaviour of the sampling process. In Figure 3, we show a
two dimensional projection of our sampling steps for some particular choices of parameters γ, N, s,
and K. We use the two leading components of the space generated by the accepted samples among
iterations. Note that, in all cases, the sampling method obtains good estimates of the actual state of
the system x∗, even more, assuming N = K (which is equivalent to assume Gaussian errors for each
ensemble member), the sampling steps converges to x∗.

0 5 10 15
-6

-4

-2

0

2

4

(a) N = 20, s = 70% and γ = 1

0 5 10 15
-6

-4

-2

0

2

4

(b) N = 80, s = 70% and γ = 1

0 5 10 15
-6

-4

-2

0

2

4

(c) N = 20, s = 100% and γ = 1

0 5 10 15
-6

-4

-2

0

2

4

(d) N = 80, s = 100% and γ = 1

0 5 10 15
-6

-4

-2

0

2

4

(e) N = 20, s = 100% and γ = 3

0 5 10 15
-6

-4

-2

0

2

4

(f) N = 80, s = 100% and γ = 3

Figure 1. Cont.
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0 5 10 15
-6

-4

-2

0

2

4

(g) N = 20, s = 100%, and γ = 5

0 5 10 15
-6

-4

-2

0

2

4

(h) N = 80, s = 100%, and γ = 5

Figure 1. Experimental results with the Lorenz-96 model (29). The time evolution of mean analysis
errors and their standard deviation across the 10 different experimental configurations are reported for
γ ∈ {1, 3, 5}, and δt = 16.

0 5 10 15
-6

-4

-2

0

2

4

(a) N = 20, s = 70% and γ = 1

0 5 10 15
-6

-4

-2

0

2

4

(b) N = 80, s = 70% and γ = 1

0 5 10 15
-6

-4

-2

0

2

4

(c) N = 20, s = 100% and γ = 1

0 5 10 15
-6

-4

-2

0

2

4

(d) N = 80, s = 100% and γ = 1

0 5 10 15
-6

-4

-2

0

2

4

(e) N = 20, s = 100% and γ = 3

0 5 10 15
-6

-4

-2

0

2

4

(f) N = 80, s = 100% and γ = 3

Figure 2. Cont.
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0 5 10 15
-6

-4

-2

0

2

4

(g) N = 20, s = 100%, and γ = 5

0 5 10 15
-6

-4

-2

0

2

4

(h) N = 80, s = 100%, and γ = 5

Figure 2. Experimental results with the Lorenz-96 model (29). The time evolution of mean analysis
errors and their standard deviation across the 10 different experimental configurations are reported for
γ ∈ {1, 3, 5}, and δt = 50.

Table 2. Experimental results with the Lorenz-96 model. Mean of RMSE values are reported across
the 10 different experimental configurations for different configuration of parameters δt, s, K, and γ.
The number of ensemble members equals N = 80.

s δt γ = 1 γ = 3 γ = 5

70%

16 h

0 2 4 6 8
-1.5

-1

-0.5

0

0.5

0 2 4 6 8
-1.5

-1

-0.5

0

0 2 4 6 8
-1

-0.9

-0.8

-0.7

-0.6

-0.5

50 h

0 2 4 6 8
-0.5

0

0.5

0 2 4 6 8
-0.1

0

0.1

0.2

0.3

0.4

0 2 4 6 8
-0.2

0

0.2

0.4

0.6

100%

16 h

0 2 4 6 8
-3

-2

-1

0

0 2 4 6 8
-4

-3

-2

-1

0 2 4 6 8
-4.5

-4

-3.5

-3

-2.5

-2

50 h

0 2 4 6 8
-3

-2

-1

0

1

2

0 2 4 6 8
-4

-3

-2

-1

0

0 2 4 6 8
-4.5

-4

-3.5

-3

-2.5
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-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(a) N = 80, s = 70%, γ = 3 and K = 1

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b) N = 80, s = 70%, γ = 3 and K = 3

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

(c) N = 80, s = 70%, γ = 3 and K = 5

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

(d) N = 80, s = 70%, γ = 3 and K = 7

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

(e) N = 80, s = 70%, γ = 3 and K = N

Figure 3. Two dimensional projections of the steps performed by the sampling method. Blue dots
denote prior ensemble members xb[e], large blue dots stand for centroids xb

k , dashed black lines together
with black dots denote accepted states x(u), and the red dot stands for the actual state of the system
x∗. Even for K = N, the method is able to obtain reasonable estimates of the actual state of the system.
The variance explained in such plots is larger than 90%.

5. Conclusions

In this paper we propose an EnKF implementation based on a modified Cholesky decomposition
and a Markov-Chain-Monte-Carlo (MCMC) Method, the GMM-EnKF-MCMC. During the assimilation
of observations, the method proceeds as follows: prior error distributions are fitted by using Gaussian
Mixture Models. Prior components are estimated making use of the Expectation Maximization
algorithm. Based on MCMC, posterior components are individually estimated. This is done
by sampling states along an approximated steepest descent direction of the well-known Three
Dimensional Variational cost function. Experimental tests are performed on the Lorenz-96 model.
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The results reveal that the proposed method is able to handle non-linearities produced by the model
dynamics as well as those generated by the non-linear observation operator and even more, in a
root-mean-square-error sense, the accuracy of the filter is not highly impacted as the degree of the
observation operator is increased.
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