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Abstract: Rapid urbanization in China is leading to substantial adverse air quality issues, particularly
for NO2 and particulate matter (PM). Land-use regression (LUR) models are now being applied to
simulate pollutant concentrations with high spatial resolution in Chinese urban areas. However,
Chinese urban areas differ from those in Europe and North America, for example in respect of
population density, urban morphology and pollutant emissions densities, so it is timely to assess
current LUR studies in China to highlight current challenges and identify future needs. Details of
twenty-four recent LUR models for NO2 and PM2.5/PM10 (particles with aerodynamic diameters
<2.5 µm and <10 µm) are tabulated and reviewed as the basis for discussion in this paper. We highlight
that LUR modelling in China is currently constrained by a scarcity of input data, especially air
pollution monitoring data. There is an urgent need for accessible archives of quality-assured
measurement data and for higher spatial resolution proxy data for urban emissions, particularly in
respect of traffic-related variables. The rapidly evolving nature of the Chinese urban landscape makes
maintaining up-to-date land-use and urban morphology datasets a challenge. We also highlight the
importance for Chinese LUR models to be subject to appropriate validation statistics. Integration
of LUR with portable monitor data, remote sensing, and dispersion modelling has the potential to
enhance derivation of urban pollution maps.
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1. Introduction

Air quality in China has suffered as a consequence of rapid economic growth and urbanization.
In 2016, 81%, 62%, 46%, 38%, 4.1% and 1.4% of 74 main cities in China (including provincial capitals
and prefectural and municipality-level cities) failed the Chinese air quality standards that are listed
in Table 1 for PM2.5, PM10, NO2, O3, CO and SO2, respectively [1]. (PM2.5 and PM10 refer to the
mass concentration of particulate matter with aerodynamic diameters less than 2.5 µm and less than
10 µm, respectively.) Furthermore, while the Chinese air quality standard for NO2 is the same as the
World Health Organization (WHO) air quality guideline, those for PM2.5, PM10, and O3 are currently
less stringent than the WHO equivalents (Table 1). The air quality problem is particularly serious in
regions of rapid population growth such as Beijing, Shanghai, the Pearl River Delta (PRD) (Pearl River
Delta refers to cities that cover nine prefectures of Guangdong province (Guangzhou, Shenzhen,
Zhuhai, Dongguan, Zhongshan, Foshan, Huizhou, Jiangmen, and Zhaoqing), Hong Kong, and Macau),
and their surrounding areas [2]. Ample evidence that air pollution leads to adverse health effects and
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economic losses, including recent studies in China [3–9], underscores the need to quantify human
exposure to air pollution in China in order to determine health impacts and monitor the effectiveness
of mitigation policies.

Table 1. Chinese air quality standards for concentrations of SO2, NO2, CO, O3, PM10, and PM2.5 [10].
Also shown for comparison are the World Health Organization (WHO) air quality guidelines, where
they exist [11].

Pollutant Grade a Annual Mean (µg/m3) 24-h Mean (µg/m3) 1-h Mean (µg/m3)

SO2

I 20 50 150
II 60 150 500

WHO 20 500 b

NO2

I 40 80 200
II 40 80 200

WHO 40 200

CO c I 4 10
II 4 10

O3

I 100 d 160
II 160 d 200

WHO 100 d

PM10

I 40 50
II 70 150

WHO 20 50

PM2.5

I 15 35
II 35 75

WHO 10 25
a Grade I applies to special regions such as national parks; Grade II applies to all other areas, including urban and
industrial areas. b 10-min mean. c The units for CO concentration are mg/m3. d Daily maximum 8-h mean.

Since 2013, the China National Environmental Monitoring Center (CNEMC) has been
implementing a nationwide monitoring network for the routine measurement of ambient air pollutant
concentrations. However, the monitoring network only provides concentrations at a limited number
of discrete points—for example, the 22 monitoring stations covering a 50 km × 50 km area over
Beijing equates to an average of 113 km2 per station [12]—which is inadequate to describe the spatial
variability of urban air pollution. The misclassification of human exposure can lead to a loss of power
in epidemiological studies and the attenuation of health risk estimates [13].

A popular approach in Europe and North America for deriving intra-urban estimates of air
pollutant concentrations is land-use regression (LUR) modelling. LUR is a stochastic technique
that regresses spatially-explicit predictor variables (e.g., land cover, traffic, topography) onto
monitored pollutant concentrations within a geographic information system [14,15]. The relationship
enables prediction of pollutant concentrations at unmonitored locations. Selection of potential
predictor variables uses a priori knowledge that they may contribute to, or influence, emissions
and concentrations of modelled pollutants. Examples of input data commonly needed for a LUR
model are shown in Table 2.

The expansion of the CNMEC (and other) monitoring networks is driving a growing number of
LUR studies in China. As the nature of urban areas in China differ from those in Europe and North
America, as outlined in Section 2, it is timely to assess the present status of LUR modelling in China in
the context of identifying what lessons can be learned to advance this field from the similarities and
differences with LUR studies applied elsewhere. The objectives of this paper are therefore: (i) to briefly
summarize differences between Chinese urban areas and those in Europe and North America in the
context of LUR modelling of air pollution concentrations; (ii) to summarize the state-of-the-art of LUR
air pollution modelling in China; and (iii) to highlight the current gaps in LUR modelling in China in
comparison with LUR models in Europe and North America and make recommendations on future
needs for China. The majority of applications of LUR have been for NO2 and PM2.5/PM10, since these
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pollutants are a priority for regulatory monitoring and interventions due to their public health effects.
This paper therefore focuses on LUR studies for NO2 and PM2.5/PM10 only. Twenty-four such studies
in China were identified from the peer-reviewed English-language literature and their details are used
as the basis for discussion in this paper.

Table 2. Summary of example input data for the application of a land-use regression (LUR) model.

Input Detailed Components

pollutant data regularity monitoring data
purpose-designed campaign

land-use classification residential land
industrial land

urban green space
street morphology (aspect ratio)

traffic data road network by road classification
numbers and types of vehicles

railways
census data population density

household density
meteorology wind field

temperature
topography altitude

slope angle
emission data emission inventory

remote sensing data satellite data

2. Differences between Urban Areas in China and in Europe and North America

2.1. Pace of Urbanization

China’s rapid economic development has led to extremely rapid urban population growth.
At the end of 2011, China’s urban population exceeded that of rural dwellers for the first
time [16,17] and the trend is continuing—the proportion of urban population in China is expected
to reach approximately 70% by 2025 [18]. The extent of built-up area in China has expanded
correspondingly rapidly. The growth rate of built-up land from 2000 to 2010 was 2.14 times higher than
in the previous decade [19]. Between 2010 and 2016 the area of land undergoing urban construction
increased from 39,760 km2 to 52,750 km2 and possession of private vehicles increased from 59.4 to
163.3 million [20].

2.2. Magnitude and Density of Urbanization

Urban areas in China are characterized by populations of several million [21], with considerably
higher population densities than the vast majority of urban areas in Europe and North America.
The average urban population density in China across all built-up areas with a population >500,000 is
5100 per km2, compared with equivalent values of 2900 per km2 for the European Union (3100 per km2

for all of Europe including Russia) and 1600 per km2 for North America (1200 and 2500 per km2 for
the USA and Canada individually) [22].

2.3. Air Pollutant Emissions

Greater population density leads to increased emissions of air pollutants in a given area.
The sectorial contributions to NOx (sum of NO and NO2), PM2.5 and PM10 emissions presented
in Figure 1 for three illustrative urban areas (Beijing, Shanghai, and Guangdong province) show that
power generation, industry and transportation all contribute substantially to NOx emissions. Industrial
sources dominate the contributions to emissions of PM, although residential combustion (heating and
cooking) also contributes substantially to emissions of fine PM (PM2.5).

Greater emissions density in China can also derive from a lag in implementation [23] and/or
in compliance [24] with industrial and vehicle emissions standards compared with that in Europe
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and North America. Poorer fuel quality has also been reported as contributing to greater per vehicle
emissions in China [25].

Figure 1. Emissions of industry, power, residential, and transportation in Beijing, Shanghai,
and Guangdong province in 2012. Data are from the Multi-resolution Inventory for China (MEIC) [26].

2.4. Urban Topography

The higher urban population density in China is a consequence of the greater proportion of
multi-story residential and commercial buildings. In 2016, China completed the most high-rise
buildings (84) with heights exceeding 200 m of any country in the world. It was the ninth year in
a row that China topped this list. Thirty-one cities in China had at least one 200-m-plus building
completion in 2016 [27]. The greater urban ‘roughness’ and extent of street canyons impact the
dispersion of air pollutants both directly and indirectly via differential changes in surface albedo and
surface temperatures.

3. LUR Models for Chinese Urban Areas

Twenty-four LUR studies were identified from Web of Science and Google Scholar, using the
following search phrases and keywords: land use regression; LUR; China; Hong Kong; Taiwan;
air pollution; NO2; PM2.5; PM10. A first search was undertaken on 11 November 2017, with a follow-up
search for any new literature on 3 February 2018. Language was limited to English but there was
no restriction on publication date. Characteristics of these studies are summarized in Table 3. LUR
models for NO2 and/or PM2.5/PM10 have been developed for individual Chinese cities (Hong Kong,
Nanjing, Tianjing, Shanghai, Beijing, Changsha, Wuhan, Jinan, and Kaohsing) and regions (PRD, Taipei
Metropolitan area, and Liaoning Province). The recent dates of the publications demonstrate the recent
impetus for LUR modelling in China.

3.1. Monitoring Data

Table 3 shows that 16 of the 24 Chinese LUR studies used fixed-site, regulatory air pollutant
monitoring data from CNEMC. Based on previous studies in Europe and North America,
Hoek et al. [28] suggested the use of 40–80 monitoring sites for LUR models, while Basagaña et al. [13]
recommended no less than 80 monitoring sites for accurate health impact assessment. Apart from
a study in Hong Kong that utilized potable sensors to collect PM10 and PM2.5 data at 222 ad hoc
monitoring sites and a study in Changsha with 80 ad hoc sites for NO2, Table 3 shows that the
remaining Chinese LUR studies all had fewer than 80 monitoring sites.

The fixed-site monitoring data used in these studies were derived from hourly and daily
concentrations published on websites of local environmental agencies. Although real-time
concentration data are published on the National Air Quality Publication Platform (http://106.37.208.
233:20035/), archived historical data are available only on a few official websites [29–31]. Historical

http://106.37.208.233:20035/
http://106.37.208.233:20035/
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data are also collected and archived elsewhere by private companies without validation, for example
https://data.epmap.org/. There is therefore an urgent need for formal archiving of historical data.
This explains why some studies seeking to construct LUR models have collected their own campaign
data [32–37]. While this approach provides freedom in the allocation of sites (both locations and
heights), it costs both time and money and provides only short-term measurements of concentration at
a given location and non-contemporaneous measurements across the full set of locations.

3.2. Predictor Variables

The predictor variables in the final LUR models for the studies in Table 3 are presented in Table 4
for NO2 LUR models and in Table 5 for PM2.5/PM10 LUR models. The most-used variables in the final
LUR models for NO2 were traffic-related variables or proxies of traffic variables such as road lengths
or distance to the nearest roads (Table 4). This is consistent with LUR models for NO2 developed
elsewhere and of course reflects traffic being a major emission source for NOx. However, it is important
to note that only 4 of the 24 studies summarized in Table 3 were able to obtain traffic data, and three of
these were based in Hong Kong, not mainland China [34,37,38]. A study in Jinan was able to obtain
traffic data for major roads only [39]. For the rest of the studies, lack of traffic data meant that road
lengths were used as a proxy for traffic counts. Some studies used bus stop density and gridded traffic
emission estimates as predictor variables to represent the influence of road emissions [40,41]. Ideally,
variables based on traffic intensity (motor vehicles per day) multiplied by road length and divided
by distance to the road would be used, as recommended by the European Study of Cohorts for Air
Pollution Effects (ESCAPE), since these incorporate both emission and dispersion effects [42].

The second most common category of variables for the LUR models in Table 4 were land-use
variables, which indirectly represent the NOx emissions from power plants, industrial sites,
or residential areas. Land-use variables for greenspace are also used, since these are negatively related
to NO2 concentrations. Most studies incorporating such variables were derived from 2010 Landsat
TM5 data (www.globallandcover.com/home/Enbackground.aspx), which classifies into agricultural
land, industrial land, commercial and residential land, green space and water area, at 30 m resolution.
The data need to be converted into shapefile (.shp) formats in ENVI5.0 (ESRI). The monthly global
Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index
(NDVI), a satellite-based greenness index that measures and monitors plant growth and vegetation
density has also been used as a predictor.

In general, the same set of variables used in NO2 LUR models were used to develop the PM
models (Table 5). However, while traffic or traffic proxy variables were selected in all LUR models
for NO2, except for the study in Nanjing [43], this was not the case for PM models. Variables related
to industrial emissions, artificial lands (such as residential, industrial, and public facilities lands),
greenspace (such as forests, natural vegetation, and parks), and water lands were selected in the
models as well. This is due to the complexity of the sources for PM emissions compared to NO2. LUR
models in the Taipei metropolitan area and Kaohsiung City included location height-related variables
to simulate vertical variation of PM2.5 [32,44]. Sampling height had a larger predictive influence in
Kaohsiung City than in the Taipei metropolitan area, which may be due to differences in the terrain
between the two study areas. Other different predictor variables incorporated into PM2.5 LUR models
were related to Chinese restaurants and the burning of joss paper and incense in temples [45].

3.3. Model Performance

Tables 4 and 5 also summarize the model performance statistics for the Chinese NO2 and PM
LUR models. An important observation is that not all studies reported formal validation, which is
highlighted here as a shortcoming for those studies that did not do so.

Hold-out validation and leave-one-out cross-validation (LOOCV) are the most commonly used
validation tests for LUR models. In hold-out validation, the dataset is separated into a training set
and a testing set. The training set is used to develop the model and the testing set is used to evaluate

https://data.epmap.org/
www.globallandcover.com/home/Enbackground.aspx
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the model by using the model to predict the output values for the data in the testing set. In k-fold
cross validation, the data set is divided into k subsets and the holdout method is repeated k times.
LOOCV uses the variables in the final model to develop a regression model using n − 1 sites, where n
is the total number of observations in a monitoring network. The predicted concentrations are then
compared with the actual measured concentrations at the left-out site. The procedure is repeated n
times. LOOCV can be used in studies with a small number of monitoring data that prevents division
into training and testing datasets. However, LOOCV does not sufficiently address the overestimation
of the predictive ability of regression models, especially for smaller numbers of sites [13,46–48].

The agreement between predicted and observed concentrations is usually assessed using
the adjusted R2, which quantifies how well a linear regression explains the variance in the
measurement data, and the root-mean-square error (RMSE), which quantifies the differences between
the model-predicted and observed concentrations. The adjusted R2 values for the 15 studies in Table 4
that provided quantitative validation results ranged from 0.42 to 0.87. For comparison, Hoek et al.
(2008) suggested R2 values for usable models are typically in the range 0.6–0.7. The variability in R2

values in the Chinese studies is likely related to variable quality in the measured concentrations and
predictor variables, and the complexity of the city, for example, in terms of differences in topography
and emission sources. The highest R2 value was for a study in Hong Kong [38]. The high R2 in
this model may be due to the inclusion also of topographical and building-morphological variables.
These predictors act as surrogates for the complex wind conditions in a mountainous high-density
city like Hong Kong. An approximately 20% increase in prediction performance was observed in
the LUR model, which included these parameters compared to those without [38]. However, this
study only included 15 monitoring sites, so the high R2 could also be a result of overfitting. Of the
studies that utilized more than 40 monitoring sites, the model developed in Taipei had the highest
explained variance for NO2 [33] (Table 4). The authors of this study conducted 2-week campaigns of
NO2 measurement by Ogawa passive samplers during 3 seasons (Table 3).

The adjusted R2 values for the 12 models for PM2.5 and 11 models for PM10 that reported
model performance statistics ranged from 0.19 to 0.89 (Table 5). Compared with NO2 studies,
fewer PM2.5 and PM10 monitoring data were available from CNEMC for developing LUR models
and there was no regulatory monitoring data of PM2.5 in China before 2012. The development of
portable sensors makes collecting campaign data relatively easy for PM, albeit subject to the greater
measurement uncertainties typically associated with portable monitors compared with fixed-site
network analyzers [49]. In Hong Kong, transient measurements of PM2.5 and PM10 at 222 locations
were collected non-contemporaneously by portable monitor. This made it possible to estimate
concentrations of PM in deep street canyons formed by compact urban development [38]. As for NO2,
the LUR models for PM with urban-morphology-related variables were important for modelling the
variability of pollutants in complex urban areas like Hong Kong. Another study in Hong Kong, which
did not use the mountainous topographical and building morphological parameters, only had an R2

value of 0.46, based on 97 campaign measurements [34].
The nature of the monitoring locations also affected LUR model performance. The study in PRD

resulted in a high R2 value (0.884) and low RMSE (2.754 µg/m3) for PM2.5 but the monitoring network
only included 5 sites located within 500 m of a major freeway and 1 site within 200 m of a freeway [41].
The predictor variables included in the final models were latitude, longitude, and artificial land and
water areas (Table 5). These variables could only explain the strong northwest-southeast trend of
the variability of PM2.5 due to the change of wind directions, emissions from human activities and
emissions from international and domestic ports, but failed to estimate more detailed street-level
variation. The final model was therefore not able to satisfactorily explain the intra-urban variability
of PM2.5.
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Table 3. Characteristics of recent air pollution land-use regression studies in China that include NO2 or PM2.5/PM10 as a modelled pollutant.

Reference Study Area Area
(km2)

Population
(million)

Type of Sites
Used

No. of
Monitoring

Sites
Pollutants Sampling

Period 1 Predictor Variables Collected

Yang et al.,
2017 [41] PRD 56,000 57.6 regulatory

monitoring sites 69 NO2, PM2.5
01/12/2013 to

30/11/2014

geographic character, land use type,
traffic indicator, urbanization indicator,

wind field, satellite remote sensing,
air quality model

Wu et al.,
2017 [45]

Taipei
Metropolitan

area
2327 6.6 regulatory

monitoring sites 17 PM2.5 2006 to 2012

annual average of SO2 and NOx,
land use type, land mark, road network,
Normalized Difference Vegetation Index

(NDVI)

Shi et al.,
2017 [38] Hong Kong 1100 >7 regulatory

monitoring sites 15
CO, NO2, NOx,
O3, SO2, PM2.5,

PM10

2011 to 2015

traffic network/volume, urban land use,
population density, geo-location and

physical geography of monitoring
points, wind availability

Lee et al.,
2017 [34] Hong Kong 1104 7.24 sampling

campaign 43, 97, 63, 84 NO, NO2,
PM2.5, BC

24/04/2014 to
30/05/2014,

18/11/2014 to
06/10/2015

annual average traffic density, road
length, traffic loading, urban build-up,
land use, point feature, value extracted

at point, distance

Huang et al.,
2017 [43] Nanjing 6596 8.27 regulatory

monitoring sites 9 PM2.5, SO2,
NO2, O3

01/01/2013 to
31/12/2013

industrial emission, population density,
topography, meteorological variables,

road network, land use

Chen et al.,
2017 [50] Tianjin 11,760 >12 regulatory

monitoring sites 28 PM2.5 2014 population, land use, road network,
distance to coast

Anand
and

Monks,
2017 [51]

Hong Kong 1104 7.35 regulatory
monitoring sites 11 NO2 2005 to 2015

vehicle emissions, industrial emissions,
residential emissions, dry deposition,
ocean deposition, surface elevation,

surface temperature, wind advection,
location

Xu et al.,
2016 [52] Wuhan 8494 >10 regulatory

monitoring sites 9 SO2, NO2, PM10 2007 to 2014
land use, socio-economic development,

energy use, road density, industry
emission, meteorological condition
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Table 3. Cont.

Reference Study Area Area
(km2)

Population
(million)

Type of Sites
Used

No. of
Monitoring

Sites
Pollutants Sampling

Period 1 Predictor Variables Collected

Shi et al.,
2016 [37] Hong Kong 1104 7.35 mobile 222 PM2.5, PM10

14 days May to
September 2015

traffic and transport, land use, physical
geography, population, urban/building

morphology

Meng et al.,
2016 [53] Shanghai 6300 23 regulatory

monitoring sites 28 PM10 2008 land use, road network, emission,
population

Liu et al.,
2016 [54] Shanghai 6341 23.8 regulatory

monitoring sites 53 PM2.5, NO2 2014

land use, road networks, distance to the
ocean, longitude and latitude, distance

to major air pollution sources,
suburban and urban area

Hu et al.,
2016 [55] Beijing 16,411 21.69 regulatory

monitoring sites 35 PM2.5 2014

land use, terrain, transportation,
population, polluting enterprises, points

of interest, distance to the city center,
buildings, natural landscape

Gong et al.,
2016 [56]

Liaoning
Province 145,900 42.21 regulatory

monitoring sites 34 SO2, NO2, PM10 2013

canyon indicator, elevation, normalized
difference vegetative index, distance to

air pollutant point source emissions,
road density, population density,

Gross Domestic Product

Wu et al.,
2015 [40] Beijing 16,411 21.69 regulatory

monitoring sites 35 PM2.5
04/03/2013 to

05/03/2014

road length, land cover, population
density, catering services, bus stop
density, intersection density, others

Meng et al.,
2015 [57] Shanghai 6300 23 regulatory

monitoring sites 38 NO2 2008–2011 population, road network, land use,
industrial emissions, coastline

Liu et al.,
2015 [36] Changsha 1917 7

sampling
campaign

(regulatory
monitoring

sites)

74 (9), 36 (9) NO2, PM10
14 days in each
season of 2010 road network, land use, meteorology

Li et al.,
2015 [35] Changsha 1917 7 sampling

campaign 80, 40 NO2, PM10
14 days in each

season
road length, land use, green space,

water area
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Table 3. Cont.

Reference Study Area Area
(km2)

Population
(million)

Type of Sites
Used

No. of
Monitoring

Sites
Pollutants Sampling

Period 1 Predictor Variables Collected

Ho et al.,
2015 [32]

Taipei
Metropolitan

area
2327 6.5 sampling

campaign 25
PM2.5, Si, S, Ti,
Mn, Fe, Ni, Cu,

Zn

01/2010 to
10/2010

land use, road network, floor level,
population

Wu et al.,
2014 [44] Kaohsiung City 2952 2.27 sampling

campaign 29
PM2.5, Si, S, Ti,
Mn, Fe, Ni, Cu,

Zn

03/2011 to
12/2011

land use, road network, sampling
height, population

Lee et al.,
2014 [33]

Taipei
Metropolitan

area
786 6.5 sampling

campaign 40 NOx, NO2
10/2009 to 09

2010
road length, land use, population and

household density, altitude

Chen et al.,
2012 [58] Tianjin 11,920 >10 regulatory

monitoring sites 30 SO2, NO2, PM10 2006
road network, traffic volume, land use,

population density, meteorology,
physical variables, pollution sources

Yu et al.,
2011 [59] Taipei 271.8 2.7 regulatory

monitoring sites 18 PM2.5 2005 to 2007 land use, road network

Chen et al.,
2010b [39] Jinan 8177 60.485 14 SO2, NO2, PM10

01/08/2008 to
31/07/2009

traffic, land use, population density,
physical condition, meteorological

condition, others

Chen et al.,
2010a [60] Tianjin 11,920 >10 regulatory

monitoring sites 30 NO2, PM10

heating season:
15/11/2006 to
15/03/2006;
non heating:

16/03/2006 to
14/11/2006

major roads, land use, population,
meteorological variables

and distance to sea

1 The form of the dates are DD/MM/YYYY and MM/YYYY.
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Table 4. Predictor variables and performance statistics of land-use regression models for annual-average NO2 concentrations in China.

Reference Study Area Predictor Variables in Final Model (Buffer in Unit m) Adjusted R2 of
Model RMSE (µg/m3) R2 Validation

RMSE Validation
(µg/m3)

Yang et al., 2017 [41] PRD NO2 emission from traffic (2000), urban road (2000),
latitude 0.56 7.208

Shi et al., 2017 [38] Hong Kong skyview factor (100), private and government vehicles
(750) 0.871 8.655

Lee et al., 2017 [34] Hong Kong express way length (1000), main roads (50), elevated roads
(5000), open area (300) 0.43 27.7 0.39 29.5

Huang et al., 2017 [43] Nanjing residential (5000), population (3000) 0.87 2.69 0.7 2.13

Anand and Monks,
2017 [51] Hong Kong tertiary road length (300, 500, 3500, 7000), longitude 0.419 0.419 19.1

Xu et al., 2016 [52] Wuhan built-up land (4000), vegetation (1000), road density (2000),
precipitation 0.575 5.51 1

Liu et al., 2016 [54] Shanghai residential (1000), distance to coast, industrial (3000), urban
or not urban, highway intensity (1000) 0.621

Gong et al., 2016 [56] Liaoning
Gross Domestic Product, population in a buffer, density of
major roads in a buffer (200–2000), distance to the nearest

industrial emission
0.42 6.9 0.37 8.42

Meng et al., 2015 [57] 2 Shanghai
major road length (2000), count of other industrial sources

(10,000), agricultural land area (5000),
population (in cell of 1000 × 850)

0.82 0.75 4.46

Liu et al., 2015 [36] Changsha major road (1200), residential land (600), residential land
(1200), public facilities land (1200), green space (300) 0.51 7.10 0.61

Li et al., 2015 [35] Changsha
total length of urban expressways and freeways (300),
residential (1200), total area of commercial, recreation,

governmental and education lands (1200)
0.55 0.51

Lee et al., 2014 [33] Taipei natural area (500), major road length (25), low density
residential area (500), urban green area (100) 0.74 6.36 0.63

Chen et al., 2012 [58] Tianjin point source index (10,000–5000), line source index,
distance to expressway, greenness 0.89 0.18

Chen et al., 2010 [39] Jinan length of major roads (2000), distance to express way, area
of residential land (2000) 0.64

Chen et al., 2010 [60] 3 Tianjin major roads (2000), residence (500), population density,
wind index 0.74 0.012 4

1 This is standard error of estimate. 2 This LUR model used data of 4 year average. 3 This LUR model was for the non-heating season. 4 This is standard error.
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Table 5. Predictor variables and performance statistics of land-use regression models for annual-average PM2.5/PM10 concentrations in China.

Reference Study Area Pollutants Predictor Variables in Final Model (Buffer in Unit m) Adjusted R2

of Model
RMSE

(µg/m3)
R2

Validation
RMSE Validation

(µg/m3)

Yang et al.,
2017 [41] PRD PM2.5 latitude, longitude, artificial land (2000), water land (200) 0.884 0.872 2.754

Wu et al.,
2017 [45]

Taipei
Metropolitan area PM2.5

concentration of NOx, concentrations of SO2, length of local
roads (750), number of Chinese restaurants (1750),

number of temples (750), average NDVI (1750)
0.89 1.66 0.83 1.58

Shi et al.,
2017 [38] Hong Kong PM2.5 commercial (300), public transport vehicles (50) 0.671 2.62

Shi et al.,
2017 [38] 1 Hong Kong PM2.5 summer commercial (300), public transport vehicles (100) 0.771 2.714

Shi et al.,
2017 [38] 2 Hong Kong PM2.5 winter primary road (400), tertiary road (1000), open space (100) 0.422 3.758

Shi et al.,
2017 [38] Hong Kong PM10

sky view factor, public transport vehicles (50),
frontal area annual (200) 0.854 3.544

Shi et al.,
2017 [38] 3 Hong Kong PM10 summer elevation above Hong Kong Principal Datum,

public transport vehicles (50) 0.895 3.522

Shi et al.,
2017 [38] 4 Hong Kong PM10 winter count of bus stops (50), open space (100) 0.634 5.138

Lee et al.,
2017 [34] Hong Kong PM2.5

expressway (25), distance to Shenzhen, car park density
(1000), car park density (25), government land use (100),

industrial land use (25)
0.54 4 0.43 4.7

Huang et al.,
2017 [43] Nanjing PM2.5 road length (300), residential (100), wind index, 0.72 2.1 0.38 2.58

Chen et al.,
2017 [50] Tianjin PM2.5

population density, road length (1000), industrial area (2000),
distance to the coast 0.73 6.38

Xu et al.,
2016 [52] Wuhan PM10

water bodies (1000), Gross Domestic Product, energy
consumption, industrial waste gas emission, precipitation 0.594 7.35 5

Shi et al.,
2016 [37] Hong Kong PM2.5

primary road line density (300), ordinary road line density
(400), traffic volume of public transport vehicles (500),

frontal area index (400)
0.633 6.516 0.613

Shi et al.,
2016 [37] Hong Kong PM10

primary road line density (300), traffic volume of private and
government vehicles (200), government land use area (1000),

frontal area index (400)
0.707 6.948 0.692
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Table 5. Cont.

Reference Study Area Pollutants Predictor Variables in Final Model (Buffer in Unit m) Adjusted R2

of Model
RMSE

(µg/m3)
R2

Validation
RMSE Validation

(µg/m3)

Meng et al.,
2016 [53] Shanghai PM10

distance to the coast, emission (7000), green space (1000),
road lengths (5000) 0.8 4.2 0.73 5

Liu et al.,
2016 [54] Shanghai PM2.5

longitude, distance to the coast, highway intensity (300),
water (500), industrial (300) 0.877

Hu et al.,
2016 [55] Beijing PM2.5

crop land (1000), forest (5000), water (3000), elevation (5000),
railway and subway (2000), distance to city center 0.679

Gong et al.,
2015 [56] Liaoning Province PM10

Gross Domestic Product, elevation, distance to the nearest
industrial emissions 0.34 23.1 0.33 23.63

Wu et al.,
2015 [40] Beijing PM2.5 natural vegetation (3000), major roads (1000), water body (50) 0.58 9.3

Liu et al.,
2015 [36] Changsha PM10

expressway (1200), residential land (900), residential land
(1200), industrial land (1200), public facilities land (1200),

water area (1200)
0.62 9.00 0.58

Li et al., 2015
[35] Changsha PM10

total length of urban expressways and freeways downwind
semicircular buffer (600), residential upwind semicircular

buffer (300), total area of commercial, recreation,
governmental and education lands downwind semicircular

buffer (600)

0.51 5.6 0.60

Ho et al.,
2015 [32]

Taipei
Metropolitan area PM2.5

floor level, total length of major roads (50), total length of all
road segments (50), the surface area of industry (300) 0.75 0.62

Wu et al.,
2014 [44] Kaohsiung City PM2.5

mid-level site, high-level site, total length of all major roads
(500), total length of all roads (25), gravel plant (5000),

agriculture (500)
0.55 0.28 11.48

Chen et al.,
2012 [58] Tianjin PM10

population density, point source index (10,000–5000),
line source index, distance to sea 0.84 0.21

Yu et al., 2011
[59] Taipe PM2.5

road (500–1000), forest (500–1000), industry (300–500), park
(500–1000), railroad (0–50), government institutions (100–300),

park (300–500), public equipment (100–300), bus (0–50),
public equipment (100–300), port (500–1000)

2.5685 6

Chen et al.,
2010 [39] Jinan PM10

area of residential land (1500), area of industrial land (1500),
distance to sea 0.19

Chen et al.,
2010 [60] 7 Tianjin PM10

major roads (2000), residential area (500), population density,
wind speed 0.72 0.010 8

Chen et al.,
2010 [60] 9 Tianjin PM10 major roads (1000), residential area (500), wind speed 0.49 0.008 10

1,3 The LUR models were for summer. 2,4 The LUR models were for winter. 5 This is standard error of estimate. 6 This is standard deviation. 7 This LUR model was for the heating season.
8,10 These are standard errors. 9 This LUR model was for non-heating season.
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4. Discussion

4.1. Modelled Pollutant

In some of the PM LUR studies, the intercept values of the resultant models are close to the mean
observed/predicted values of the PM concentrations [41,43,53,54]. The reason for these large intercepts
is that longer-range transport and secondary formation within the atmosphere are more influential
for PM10 and PM2.5, compared with pollutants emitted locally and with shorter atmospheric lifetimes
such as NOx. LUR models for PM are therefore more likely to fit with noise rather than capturing
the spatial variation. In contrast, LUR is more effective for modelling NO2, which is derived mainly
from traffic and domestic and other local combustion sources through the rapid reaction of NO and
therefore has more pronounced spatial variability that the LUR model can capture.

4.2. Data Availability/Accessibility Challenges

Although an increasing number of LUR models have been developed at the intra-urban scale in
China, they remain constrained by the availability of key input data needed for LUR models (Table 2),
especially air quality monitoring data. Measurement networks are sparser to date compared with
those in Europe, and the cities in China are larger, denser and more complex and often also expanding
rapidly. The number of monitoring sites from CNEMC often do not reach that recommended for
developing LUR models for health studies [13,28], so the expansion of monitoring (regulatory and/or
‘low cost’ and/or passive) is needed. Quality-assured historical data are not often available. Therefore,
as well as the archiving of network data, there is also an urgent need for nationally-applied quality
assurance/quality control (QA/QC) protocols to improve and document the quality of the data to
ensure that Chinese networks comply with international standards [61,62].

Aside from carrying out additional targeted ground-based measurement campaigns to support
LUR model development, satellite data have recently been used in LUR modelling applications to
compensate for the lack of measurement data. Example datasets are NO2 vertical column density
(VCD) from the Ozone Monitoring Instrument, and aerosol optical depth (AOD) for PM [63]. As with
studies in Europe [64–68], studies in China have reported that incorporating satellite-based estimates
improved model performance of regional LUR models for NO2, PM10, and PM2.5 [41,56]. More
temporally-resolved models have also been reported; for example, using satellite AOD and VCDs,
linear mixed-effects LUR models have been used to estimate daily average concentration of PM10 [53]
and NO2 [51].

Nevertheless, current satellite data are not currently suitable for modelling the intra-urban
variability of ground-level pollutants within a LUR modelling framework for the following reasons:
First, ground-level concentrations cannot be detected directly from satellite instruments but must
be derived by removing satellite responses to the rest of the column using complex algorithms and
modelling [63]. For example, high AOD values do not necessarily translate to high surface PM2.5 levels
due to the relationship between AOD, relative humidity, and PM2.5 [69]; secondly, the satellite-derived
estimates are area-averaged concentrations, which are normally much too coarse to capture spatial
contrast within cities. The pixel sizes of current instruments are around several hundred km2 [70]; and
thirdly, the availability of some satellite data are subject to meteorological conditions; for example,
cloud cover can influence the quality of the retrievals of many variables (e.g., AOD) that are sensitive to
atmospheric optics. In addition, satellite data can have systematic seasonal errors [41,56]. For example,
Yang et al. [41] reported that satellite remote sensing tended to overestimate concentrations of PM2.5 in
summer and underestimate in winter.

Another approach to overcoming a lack of monitoring data is to integrate dispersion models
with LUR models. Typically, dispersion models compute concentrations of air pollutants with high
spatiotemporal resolution at specific background, roadside, and curbside receptors. The concentrations
at these receptors can then be used as pseudo-observations in the LUR model and eventually simulate
the concentration variation over the city without applying a computationally-intensive dispersion
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model over the whole area. The integrated modelling approach also has the flexibility of developing
more temporally-resolved models. The approach has been exemplified in the USA [46] and in the
UK [71]. However, it must be remembered that the pseudo-observations are not real monitored data.
Importantly also, a fundamental drawback to the application of dispersion models in China is that they
require very detailed input data for emissions (particularly traffic emissions such as fleet composition,
emission factors, road width, canyon height, and time factors), meteorological variables (such as wind
field, cloud cover, and precipitation) and boundary conditions—datasets, which as discussed above,
are largely currently lacking in China.

As well as the challenges noted above in respect of pollutant data, another important challenge
for Chinese LUR studies is capturing the rapidly changing urban landscape. The study by Xu et al. [52]
interpreted Landsat series images from 2007 to 2014 to account for urban land-use change during
that period.

4.3. Temporal Variability

LUR models are often used in epidemiological studies to estimate the long-term effects of air
pollutants. LUR models for previous years were developed [45,52]. Xu et al. [52] used Landsat series
images over different years and modified traffic emissions and industrial emissions by the number of
registered motor vehicles and the numbers of enterprises to account for the temporal variation over
the years.

Greater temporal-resolution modelling data are needed for shorter-term-exposure epidemiology.
Some studies in China have developed LUR models for different seasons [35,38,40,41,60]. Both NO2

and PM concentrations during the winter tended to be higher than in the summer, particularly over
urban areas, which may be caused by a change of boundary layer and increased emissions from
heating and other activities, such as setting off fireworks in the winter [42]. Under the influence of
the East Asian monsoon, wind and precipitation patterns substantially change seasonally in much of
China. Localized wind direction and speed data are needed as predictors to help characterize these
temporal changes [36,38,60].

Since PM2.5 and NO2 have shown high day-to-day and diurnal temporal variations [72–74],
more detailed temporal resolution would benefit short-term epidemiological studies. The temporal
resolution of LUR models can be improved by calibrating concentrations with observed measurements
at a fixed continuous monitoring station or building several unique models in different time periods.
The first approach generalizes the temporal pattern, which leads to misclassification of exposure
assessment. The latter requires manpower and material resources. Two studies in China achieved this
by using a mixed linear regression (MLR) approach including satellite data [51,53]. LUR models are
typically fixed-effect models, in which the predictor variables are temporally invariant. MLR combines
both fixed and random effects. In MLR, additional time-dependent variables are used to model
daily concentrations of pollutants. Liu et al. [36] used meteorological factors to build neural network
models to explain the nonlinear relationship between meteorological factors and concentrations of
NO2 and PM10.

5. Future Research Needs

5.1. Improvement of Data Quality/Accessibility

LUR models require monitored pollutant concentrations, road networks and traffic data, land-use
classification, population density and meteorological data (Table 2). Foremost amongst these are the
air pollutant monitoring data. Attempts have been made to improve the quality and the number of
regulatory monitoring sites by the Ministry of Environmental Protection [75] but formal archived
historical data available to the public, together with nationally-applied QA/QC approaches to improve
data quality, are still urgently needed.
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In terms of predictor variable data, as summarized in Section 2, urban land-use in China is
rapidly changing so regularly updated land-use classification data are needed now and going forward.
In order to model the effects of high-rise buildings, detailed building height and street width datasets
are required as a model proxy for potential street canyon effects.

As discussed in Section 3.2, most LUR studies in China have used road lengths as a proxy for
traffic counts due to unavailable traffic data. Thus, traffic counts and fleet data are also indispensable.

At present, all the data mentioned in Table 2 are produced by different organizations and archived
(if at all) on various platforms. It would save time and effort if these data were systematically collected
and stored.

5.2. Integration of Modelling Approaches and Fusion of Sensor Data

As shown by studies in both the UK and the USA [46,71], the integration of dispersion and LUR
modelling can provide an alternative to simulating high spatial resolution pollutant concentration
fields with insufficient monitoring data. As discussed in Section 4.2, the integrated approach makes it
possible to design optimal monitoring sites network within the dispersion modelling domain. Future
research should use this approach to explore the number of sites required to develop spatial models
in Chinese urban areas and how the design of monitoring networks affects the modelling results,
as demonstrated elsewhere [48]. However, progress on this front is contingent on the availability of
detailed, temporally-resolved emissions and meteorological data, which is lacking at present.

The integration of satellite and ground-based lower-cost sensing also has potential for overcoming
the limitation of monitoring data scarcity in China. Data collected by sensors at different spatiotemporal
scales may be used to develop models and also to calibrate and validate them. Example studies
discussed in Sections 3.3 and 4.2 illustrate the benefits of incorporating sensor data, despite remaining
challenges in relation to data QA/QC, metadata, access, spatiotemporal resolutions and data
management [76].

5.3. LUR Model Standards

Rigorous standards and requirements specific to cities in China need to be set for LUR model
development and validation to prevent substantial bias in estimated concentrations and to improve
applicability in health burden research. Relevant standards could relate to a minimum number of
monitoring sites, the ratio of roadside sites to residential sites, key predictor variables and published
model-validation statistics.

6. Conclusions

Urban areas in China are developing rapidly and exhibit important differences from urban areas
in Europe and North America with respect to, for example, population density and urban morphology.
The quality of land-use regression modelling studies of intra-urban air pollution concentrations
in China is currently constrained mainly by the scarcity of input data, especially monitoring
pollution data. There is an urgent need for the continued expansion of monitoring (including
via passive and miniaturized sensors), the application of minimum standards of measurement
assurance, and accessible, long-term archiving of the data. There is a similarly urgent need for higher
spatial resolution proxy data for urban emissions, particularly in respect of traffic-related variables.
The rapidly evolving nature of the Chinese urban landscape makes generating and maintaining
up-to-date land-use and urban morphology datasets a challenge but one that must be met to support
researchers, planners and policy decision-makers. It is important that Chinese LUR models are subject
to appropriate validation statistics. As is the case elsewhere, the integration of LUR modelling with
portable air-pollution monitor data, satellite data, and dispersion modelling has the potential to
enhance the derivation of spatially-resolved urban pollution maps.
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