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Abstract: In this study, a linear scaling method, precipitation extended linear scaling (PELS), is proposed
to correct precipitation simulated by GCMs. In this method, monthly scaling factors were extended
to daily scaling factors (DSFs) to improve the daily variation in precipitation. In addition, DSFs were
also checked for outliers and smoothed with a smoothing filter to reduce the effect of noisy DSFs before
correcting the GCM’s precipitation. This method was evaluated using the observed precipitation of
21 climate stations and five GCMs in the Jhelum River basin, Pakistan and India, for the period of
1986–2000 and also compared with the original linear scaling (OLS) method. The evaluation results
showed substantial improvement in the corrected GCM precipitation, especially in case of mean and
standard deviation values. Although PELS and OLS showed comparable results, the overall performance
of PELS was better than OLS. After Evaluation, PELS was applied to the future precipitation from five
GCMs for the period of 2041–2070 under RCP8.5 and RCP2.6 in the Jhelum basin, and the future changes
in precipitation were calculated with respect to 1971–2000. According to average all GCMs, annual
precipitation was projected to decrease by 4% and 6% in the basin under RCP8.5 and RCP2.6, respectively.
Although two seasons, spring and fall, showed some increasing precipitation, the monsoon season
showed severe decrease in precipitation, with 22% (RCP8.5) and 29% (RCP2.6), and even more reduction
in July and August, up to 34% (RCP8.5) and 36% (RCP2.6). This means if the climate of the world follows
the RCP8.5 and RCP2.6, then there will be a severe reduction in precipitation in the Jhelum basin during
peak months. It was also observed that decline in precipitation was higher under RCP2.6 than RCP8.5.
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1. Introduction

Recently, Global Climate Models (GCMs) are the most advanced numerical tools to understand
the global climate system encompassing the atmosphere, oceans, and sea-ice [1,2] in order to project
the global climate; and to investigate the potential changes in climate. However, these models simulate
outputs on a large grid size, ranging from 100 to 300 km horizontally, [3] which restrict their direct
applications in the studies related environmental and hydrological assessment on local scale or basin
scales [4]. To use these outputs at local or regional level, downscaling techniques are needed to
make a bridge between GCM’s outputs and local/regional climatic variables (e.g., temperature, wind
speed, and precipitation) [5]. There are two major categories of downscaling: dynamical and statistical.
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In dynamical downscaling, a high-resolution climate model, Regional Climate Model (RCM), simulates
outputs at a fine resolution of about 5 to 50 km, using the coarse outputs of a GCM [6–8]. However,
there are the chances of systematic errors in RCM’s outputs that inhabit to GCMs. The capability of
RCMs mostly depends on GCM’s driving forces. In addition, the computational increases required
to run an experiment as the resolution and domain size increases confines the study areas and the
number of experiments to generate climate scenarios [1,9].

Statistical downscaling (SD) methods create statistical relationships between GCM’s outputs and
observations. These are much faster, simpler, and computationally inexpensive relative to dynamic
downscaling (DD) techniques, and therefore, the wider community of scientists has rapidly been
adopting these methods in climate and hydrology related studies [4,5,8]. Recently, many statistical
models such as Statistical Downscaling Model (SDSM) [10], Automated Statistical Downscaling model
(ASD) [11], and Lars Weather Generator (LARS-WG) [12] have been developed to downscale climate
variables. However, these methods require historical observations over a long period (e.g., 30 years)
to establish suitable linkages with GCM outputs, and this relationship is assumed to be temporally
stationary [9].

Linear scaling techniques are much simpler and faster methods than both SD and DD methods for
using the outputs of GCMs at regional scale. In these methods, biases are removed from GCM outputs
or RCM outputs. The fundamental difference in SD and bias correction method is that in SD statistical,
empirical relationships are created between local-scale variable (e.g., temperature or precipitation) and
large-scale variables (e.g., specific humidity, sea level pressure, and temperature of GCMs), and then
data is simulated for the future period on the basis of these relationships along with the same projected
large scale variables. In contrast, bias correction method simply corrects the biases in simulated GCM
outputs (e.g., temperature and precipitation) [13,14]. Several scaling methods have been developed in
which some methods are quite simple and easy to apply as with linear scaling methods, and some are
sophisticated, such as probability mapping and distribution mapping. Basically, these were used to
correct the outputs of GCMs and now are also applied for RCM outputs [15]. The following six methods
have been stated in the literature: (1) local intensity scaling method for precipitation; (2) linear scaling
methods for precipitation and temperature; (3) power transformation for precipitation; (4) distribution
mapping for temperature and precipitation; (5) delta change for both temperature and precipitation;
and (6) temperature-variance scaling. Detailed discussion about these methods is reported in these
studies [15,16].

The following are the two main steps in all linear scaling methods that are used to correct GCM
outputs except the delta change method: the first step is to calculate scaling factors (SFs) between
observations and GCM’s outputs, and the second step is to adjust these SFs with the projected outputs
of GCMs. On the other hand, in delta change method, change factors (CFs) are first obtained from
the simulated data of GCMs for the present period, e.g., 1961–1990, and for the future period, e.g.,
2041–2070, and secondly, the CFs are adjusted with the observations to generate perturbed future time
series (e.g., 2041–2070). The central step in all scaling methods is the calculation of SFs. These SFs
have been calculated by different techniques reported in the literature. In some studies such as [17,18]
during the 1990s, these were calculated by subtracting a long-period (e.g., 30 year) observed mean from
a long-period simulated mean in the case of temperature and by dividing in the case of precipitation.
This means that the only one value as a SF was used to adjust the daily or monthly GCM future
temperature or precipitation to obtain out the corrected future data.

Recently, in the case of linear scaling methods, SFs are obtained from long-term (e.g., 30 year)
monthly mean values of the simulated GCM data and observed data as in [15,16,19,20]. In this way,
twelve mean monthly SFs are estimated, and then these are adjusted with the future simulated daily
data of GCMs to reduce the biases. So, all days of a month are adjusted with one scaling factor
calculated for that specific month. For example, to reduce biases from the future daily temperature of
September, only one mean monthly SF of September is used for all the days of this month for the whole
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period. This linear scaling is good to measure mean changes in climate variables such as temperature
for the future period. However, it confines its application in extreme data analyses.

There is a possibility that each month can have different SFs for different days. For example,
each month (e.g., September) may have different SFs for the first day or week than the last day or week
of that month. There are also chances that the performance (efficiency) of simulating data of a GCM
might be different for different days of each month. For example, a GCM may simulate well in the
first week than the last days. In addition, the simulation capability of different GCMs can be different
for different days in each month. To overcome these problems, recently, Mahmood and Jia [21] have
developed a method, extended linear scaling (ELS) method for temperature, by extending a linear
scaling method to correct the temperature of GCMs or RCMs.

In the present study, we proposed a linear scaling technique, precipitation extended linear scaling
(PELS), to correct the simulated future precipitation of GCMs. The procedure of proposed method is
somehow similar to the extended linear scaling method for temperature by Mahmood and Jia [21] in
terms of steps involved. However, for precipitation, we used different equations to calculate the daily
scaling factors (DSFs), which were not the same as temperature. In addition, the DSFs calculated for
precipitation were also checked for outliers before using them to correct precipitation, because during the
calculation of DSFs, it was observed that some SFs were extraordinarily higher than other values, which
might be outliers. This step was also not incorporated in extended linear scaling method for temperature
by Mahmood and Jia [21]. This method can capture better variation (in case of magnitude) of observed
data than the original scaling method because in this method, 30 different SFs are calculated for each
month instead of only one SF as in the original scaling method. For example, if we correct precipitation
with PELS method and used them for streamflow simulation in some snow- and glacier-dominated basins,
this can provide better results as this method gives better daily variation than the original scaling method.

The proposed method was evaluated with the precipitation data of 5 GCMs, simulated for
historical period, in the transboundary Jhelum River basin and then applied to correct the GCM
precipitation simulated under RCP8.5 and RCP2.6. Before evaluation of PELS method, these GCM
precipitations were compared with the historical observations to check the capability of this model to
simulate precipitation, without any correction. In the end, the future changes in precipitation were
estimated relative to the baseline period.

2. Study Area and Data Description

2.1. Study Area

The Jhelum River basin, located in the north of Pakistan and India, extends from 33◦ N to 35◦ N
and 73◦ E to 75.62◦ E, as shown in Figure 1. The Jhelum basin with a drainage area of 33,342 km2

ranges between an elevation of 235 m and 6285 m above sea level. The Jhelum River is of great importance
to Pakistan because the Mangla Reservoir depends entirely on the streamflow of this river. This river
contributes a mean annual discharge of 829 m3/s (989 mm/year) to Mangla Reservoir, the second largest
reservoir in Pakistan. The reservoir’s primary objective is to store water for irrigation, and the secondary
purpose is to produce hydropower. The basin receives an average annual precipitation of 1200 mm.
However, most of the precipitation occurs in the monsoon season (July and August). An average annual
temperature of 13.72 ◦C occurs over the basin, with Jhelum as the hottest climate station (23.53 ◦C) and
Naran as the coldest climate station (6.14 ◦C). January, with an average temperature of 2.9 ◦C, and July,
with an average temperature of 23 ◦C, are the coldest and hottest months, respectively, in the Jhelum
basin [2,22].
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Figure 1. Location map of the study area, the Jhelum River basin, showing precipitation gauges. 
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Department, the Water and Power Development Authority of Pakistan, and India Meteorological 
Department for 21 meteorological stations for the period 1971‒2000. The basic information and 
location of these stations are shown in Figure 1 and described in Table 1. India Meteorological 
Department provided precipitation data of Srinagar, Kupwara, Qazigund, and Gulmarg, and the rest 
of the data was obtained from Pakistan Meteorological Department.  

Daily historical and future precipitation was obtained from CMIP5 project for 5 global climate 
models i.e., GFDL-ESM2G, HadGEM2-ES, NorESM1-ME, CanESM2, and MIROC5 [23]. The GCMs 
were chosen on basis of their good performance in the evaluation studies by [24,25] over South Asia. 
Hereafter, GFDL will be used for GFDL-ESM2G, NorESM1 for NorESM1-ME, and HadGEM2 for 
HadGEM2-ES. The simulated precipitation for the historical experiment and RCPs (i.e., RCP8.5 and 
RCP2.6) was obtained for 1971‒2000 and 2041‒2070, respectively. Some basic information of each 
model is provided in Table 2, and their grids covering the study area are shown in Figure 2. 

Table 1. Basic information about meteorological stations located in the Jhelum River basin. 

Serial Number Station Latitude (°) Longitude (°) 
Elevation  
(m AMSL) Annual Precipitation (mm) 

1 Astore 35.34 74.90 2168 496 
2 Bagh 33.98 73.77 1067 1496 
3 Balakot 34.55 73.35 995 1529 
4 Gari Dopatta 34.22 73.62 814 1483 
5 Gujar Khan 33.25 73.30 457 881 
6 Gulmarg 34.00 74.33 2705 1702 
7 Jhelum 32.94 73.74 287 858 
8 Kallar 33.42 73.37 518 988 
9 Khandar 33.50 74.05 1067 1101 

Figure 1. Location map of the study area, the Jhelum River basin, showing precipitation gauges.

2.2. Data Description

Historical daily precipitation observations were collected from Pakistan Meteorological Department,
the Water and Power Development Authority of Pakistan, and India Meteorological Department for 21
meteorological stations for the period 1971–2000. The basic information and location of these stations
are shown in Figure 1 and described in Table 1. India Meteorological Department provided precipitation
data of Srinagar, Kupwara, Qazigund, and Gulmarg, and the rest of the data was obtained from Pakistan
Meteorological Department.

Daily historical and future precipitation was obtained from CMIP5 project for 5 global climate
models i.e., GFDL-ESM2G, HadGEM2-ES, NorESM1-ME, CanESM2, and MIROC5 [23]. The GCMs
were chosen on basis of their good performance in the evaluation studies by [24,25] over South Asia.
Hereafter, GFDL will be used for GFDL-ESM2G, NorESM1 for NorESM1-ME, and HadGEM2 for
HadGEM2-ES. The simulated precipitation for the historical experiment and RCPs (i.e., RCP8.5 and
RCP2.6) was obtained for 1971–2000 and 2041–2070, respectively. Some basic information of each
model is provided in Table 2, and their grids covering the study area are shown in Figure 2.

Table 1. Basic information about meteorological stations located in the Jhelum River basin.

Serial Number Station Latitude (◦) Longitude (◦) Elevation
(m AMSL) Annual Precipitation (mm)

1 Astore 35.34 74.90 2168 496
2 Bagh 33.98 73.77 1067 1496
3 Balakot 34.55 73.35 995 1529
4 Gari Dopatta 34.22 73.62 814 1483
5 Gujar Khan 33.25 73.30 457 881
6 Gulmarg 34.00 74.33 2705 1702
7 Jhelum 32.94 73.74 287 858
8 Kallar 33.42 73.37 518 988
9 Khandar 33.50 74.05 1067 1101
10 Kotli 33.50 73.90 614 1289
11 Kupwara 34.51 74.25 1609 1283
12 Mangla 33.12 73.63 305 863
13 Murree 33.91 73.38 2213 1805
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Table 1. Cont.

Serial Number Station Latitude (◦) Longitude (◦) Elevation
(m AMSL) Annual Precipitation (mm)

14 Muzaffarabad 34.37 73.48 702 1508
15 Naran 34.90 73.65 2362 1640
16 Palandri 33.72 73.71 1402 1411
17 Qazi Gund 33.58 75.08 1690 1379
18 Rawalakot 33.87 73.68 1676 1407
19 Sehr Kakota 33.73 73.95 914 1471
20 Shinkiari 34.47 73.27 991 1312
21 Srinagar 34.08 74.83 1587 771

Table 2. Description of five global climate models (GCMs) used in the present study.

Centre Country Model Resolution Grid
(Latitude × Longitude)

Geophysical Fluid Dynamics Laboratory (GFDL) USA GFDL-ESM2G 90 × 144
Norwegian Climate Centre (NCC) Norway NorESM1-ME 96 × 144
Met Office Hadley Centre (MOHC) UK HadGEM2-ES 145 × 192

Atmosphere and Ocean Research Institute (AORI) Japan MIROC5 128 × 256
Canadian Centre for Climate Modelling and Analysis (CCCMA) Canada CanESM2 64 × 128
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3. Methodology

3.1. Precipitation Extended Linear Scaling (PELS) Method

Several bias-correction methods as mentioned above have been developed for correcting biases in
GCM outputs. Each method has some advantages and drawbacks. The linear scaling or bias-correction
methods are the simplest means to correct the outputs from GCMs. Due to their simplicity and fast
application, these methods have widely been used in different parts of the world to correct GCM
outputs, such as in [2,19,20,26–28]. Lately, these methods are not only applied to removing the biases
of GCM outputs but also the biases of RCM outputs.

In the present study, an extended scaling method is proposed for correcting precipitation simulated
from GCMs. This method is somehow similar to the method proposed by Mahmood and Jia [21] for
temperature in the case of steps involved. However, this method differs in two ways from the method
used for temperature: (1) calculating daily scaling factors for precipitation and (2) checking for outliers in
daily scaling factors and adjusting the outliers before using them for precipitation correction. In the case of
temperature, daily scaling factors are calculated by subtracting the mean daily observed temperature from
GCM mean daily temperature. On the other hand, in the case of precipitation in this study, the DSFs were
calculated by dividing the long period mean daily observed precipitation by GCM precipitation, as below:

Pc_GCM_scen_d = PGCM_scen_d ×
(

Pobs_cont_d

PGCM_cont_d

)
(1)

where Pc_GCM_scen_d is the corrected daily precipitation of GCMs for scenario period, for example
2021–2050 or 2041–2070; PGCM_scen_d is the daily scenario precipitation for the future periods;
PGCM_cont_d is the daily mean values of GCMs for the control period, for example 1971–2000. Pobs_cont_d
describes mean daily precipitation observations for the control period.

In this study, 365 DSFs were calculated by GCM’s precipitation and observed precipitation, using this
“
(
Pobs_cont_d/PGCM_cont_d

)
”, instead of monthly means. It was observed during the calculation of SFs

that some values were extraordinarily higher (as shown in Figure 3) because of the large difference
between observed and GCM precipitation. The large fluctuations in daily SFs (shown in Figure 3)
might be due to the small data period (1971–1985) because this kind of study requires long-term data.
These outliers were detected using Tukey’s method [29] and adjusted with the mean monthly SF of that
month. The mean SF for each month was calculated from the DSFs of that month after removing the
outliers. After adjusting the detected outliers, the DSFs were also smoothed with a low pass filter (detail
given in the next section). Finally, the DSFs were multiplied with daily GCM’s precipitation to get corrected
precipitation. As with statistical downscaling methods, the main assumption of this method is that the
scaling factors are temporally stationary. The number of SFs depends upon an annual cycle used for a GCM.
For example, an annual cycle of 360 days is used in HadGEM2 but 365 days in GFDL. Therefore, different
GCMs can have different DSFs depending on the number of days per year of a model. Since GCMs not
only simulate different intensities of precipitation but also difference in frequency (number of precipitation
days in specific period), this method, as with the original linear scaling (OLS) method, tends to correct the
intensity not the frequency. Furthermore, the results can be improved by considering elevation difference
between stations and GCM precipitation.
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Figure 3. Scaling factors calculated for June to September at Astor climate station with (small plot) and
without (large plot) outlier check and smoothed with low pass filter, for the period of 1971–1986.

3.2. Evaluation of GCMs

Before any correction, the GCMs were evaluated by comparing them with the daily observed
precipitation of 21 climate stations for the period of 1986–2000. Correlation coefficient (R), error between
observed and GCM means (E_µ), root mean square error (RMSE), error between observed and GCM
standard deviations (E_σ) were used for the evaluation of GCMs, as in [2,6,7]. Mean monthly precipitation
of GCMs was also plotted against observations for evaluation purpose.

3.3. Evaluation of PELS Method

Before correcting the scenario time series of GCMs, PELS was evaluated using the historical
observations of 21 stations and the GCM precipitation. PELS was also evaluated with OLS. The GCMs
and observed precipitation datasets were divided into the following time periods: 1971–1985 and
1986–2000. The former period was considered as a control period, which was used to calculate DSFs
and the later as a scenario period, which had to be corrected. The mean DSFs were obtained by using
this part,

(
Pobs_cont_d/PGCM_cont_d

)
, of Equation (1) for the control period. These DSFs were checked for

outliers and replaced with mean values of the corresponding month, as explained above. These DSFs
were attained separately for each precipitation gauge corresponding to the grid of GCMs, covering
the site.

Before applying these DSFs directly into Equation (1), the triangle low pass filter, as described in
Mahmood and Jia [21], was used to smooth the DSFs to reduce the noises. In this filter, more weight
is assigned to the central value to reduce the effects of neighbor values, and thus this does not much
affect the variance of data and extreme values in data.

For explanation, we calculated the DSFs and monthly scaling factor (MSFs) with both PELS and
OLS, respectively, for the control period on the Jhelum precipitation gauge, and presented the figures
graphically in Figure 4. This displays different DSFs (in case of magnitude) for each month in the case
of PELS. However, only one scaling factor is shown in Figure 4 for all days of each month, which will
reduce the daily variation in the corrected data. For example, in April (Figure 4), the DSFs ranged from
0.87 to 2.7 for different days, but the MSF for this month was 7.0 for all days of this month. This higher
value was the result of only some big events that occurred during the whole period (1971–1985).
Since the DSFs were checked for outliers and smoothed with a low pass filter, these big events did not
have as much of an effect as in the case of PELS. Finally, the daily smooth scaling factors (DSSFs) were
multiplied with the daily scenario precipitation of the GCMs to get the corrected precipitation time
series for the scenario period (1986–2000), for all gauges.
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The corrected precipitation by PELS was compared with observation for 1986–2000 using the
above-mentioned statistical indicators (i.e., E_µ, RMSE, and E_σ) excluding the R because in this
method we corrected the magnitude of the GCM precipitation and not the occurrence of precipitation.
Therefore, it is obvious that R will not improve much. PELS was also evaluated with OLS to observe
the improvement of this method over OLS. The corrected data was also compared with observed data
graphically for evaluation purposes, as done in [2,6,7].
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3.4. Projected Precipitation Changes

In this study, PELS was applied on the simulated data of 5 GCMs for 2041–2070 (2050s) under
RCP8.5 and RCP2.6. The DSFs were obtained from the mean daily observed and GCM precipitation
for the control period (1971–2000). Then these DSFs were checked for outliers and smoothed with
the low pass filter. At the end, the daily precipitation simulated from 5 GCMs was corrected with the
DSSFs for the period of the 2050s. The projected changes in precipitation with respect to the observed
precipitation of control period were calculated for all the GCMs, as in [2,6,7].

4. Results and Discussion

4.1. Evaluation of GCMs before Correction

The evaluation indicators calculated from daily raw precipitation of different GCMs with the
observed precipitation are given in Table 3. All the GCMs presented poor results, e.g., R values ranged
from 0.001 to 0.02 and RMSE from 11 to 12 mm/day. Similarly, the errors in predicting mean (E_µ)
values ranged from −45% to −86%, and the errors in standard deviation (E_σ) ranged from −50% to
−76%, which were so high and not acceptable. All the GCMs showed substantial underestimation in
the values of predicting mean and standard deviation. HadGEM2 was the only model that showed
good results in the case of predicting mean value, but it also failed to give good results in the case
of other indicators, as with other GCMs. This limits the direct application of GCM precipitation in
small basins.

To explore more detail about pattern comparison, the mean monthly GCM’s precipitation was
plotted against the observed precipitation, and the graphs are shown in Figure 5. All the models
completely failed to capture the variations of the observed precipitation and showed substantial
underestimation in all months, except HadGEM2, which displayed substantial overestimation from
March to May. Although HadGEM2 showed good results in the case of predicting mean values (Table 3),
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the model was still not acceptable because it overestimated from March to May and underestimated in
other months (Figure 5). Thus, the correction of precipitation simulated by all the GCMs was required
before using them in the basin.

Table 3. Evaluation of different GCMs with and without correction by PELS and OLS for 1986–2000
period, in the Jhelum River basin.

Indicators CanESM2 GFDL HadGEM2 MIROC5 NorESM1 Ensemble

Without correction
E_µ (%) −86 −53 1 −57 −45 −48
E_σ (%) −76 −50 −40 −69 −53 −57

RMSE (mm) 11 12 12 12 12 12
R 0.02 0.0001 0.002 0.01 0.02 0.01

Corrected with PELS

E_µ (%) 11 −2 −2 −4 −2 0.2
E_σ (%) 50 36 −33 36 20 21.8

RMSE (mm) 15 18 12 18 16 15.8

Corrected with OLS

E_µ (%) −14 28 −2 23 9 8.8
E_σ (%) 44 115 −37 74 15 42.2

RMSE (mm) 19 25 12 21 17 18.8

E_µ error between GCM and observed means, E_σ error between GCM and observed standard deviations,
R correlation coefficient, and RMSE root mean square error.
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4.2. Evaluation of PELS Method

Table 3 displays the evaluation indicators calculated from the daily corrected precipitation by
OLS and PELS and observed precipitation. Substantial improvement was observed in the case of
predicting mean values. Absolute errors in prediction mean (E_µ) by PELS and OLS were reduced
from 45–86% to 2–11% and 45–86% to 2–28%, respectively, for all the GCMs. Similarly, absolute errors
in predicting standard deviation (E_σ) by PELS were also reduced from 40–76% to 20–50% for all the
models. However, these values were increased after the correction with OLS for some GCMs: MIROC
(74%) and GFDL (115%).
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By comparison with PELS with OLS, PELS indicated better results in the case of predicting
mean precipitation for all the GCMs. In case of predicting standard deviation, PELS performed
better in 3 GCMs out of 5 GCMs. However, the values of RMSE by both methods were quite similar.
For a detailed comparison between PELS and OLS, the mean daily precipitation of 5 GCMs (ensemble
mean) corrected by both methods was graphically plotted against the observed daily precipitation
and is shown in Figure 6, which shows that both methods can reproduce the daily patterns of the
precipitation well better than the GCM ensemble, while they cannot regenerate daily variations exactly
the same as the observed. This figure does not give a clearer picture of which method captured daily
variations better.
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Therefore, mean monthly precipitation of 5 GCMs (ensemble mean) corrected by both methods
was graphically plotted against the mean monthly observed precipitation, as shown in Figure 7.
The ensemble means by both methods captured the monthly variations of the observed precipitation
as compared to the raw ensemble mean. However, OLS overestimated from April to September as
compared to the PELS. On the whole, Figure 7 shows better presentation of PELS than OLS and much
better than the raw ensemble mean. Table 3 also shows clear improvement of PELS over OLS, especially
in the case of mean and standard deviations. PELS overestimated only 0.2% in the case of ensemble
mean, while OLS overestimated 8.8%, and in the case of standard deviation, PELS overestimated 21.8%
but OLS 42% (Table 3, last column).

For the evaluation of 5 GCMs after correction with PELS, the mean monthly precipitation of each
model was plotted against the observed precipitation for the period of 1986–2000, and the plot is
shown in Figure 8. After correction, all the GCMs followed the variations of observed precipitation
although the models showed under- and overestimations in some months. NorESM1 overestimated
from February to May, and after that it underestimated. Both peaks (the first small peak in March and
the second big peak in July) were not completely captured by this model. It overestimated the small
peak and underestimated the big peak. Conversely, the GFDL model underestimated the small peak
and overestimated the big peak. In the case of months, it underestimated from January to June and
overestimated during the rest of the months. Nonetheless, some months such as September to January
were followed by this model. CanESM2 results were worse than all other GCMs; it did not follow the
pattern of observed precipitation, as the other GCMs did. It was observed closely that MIROC5 and
HadGEM2 followed the variations of observed precipitation. In addition, HadGEM2 also captured
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both peaks well. Although MIROC5 captured the small peak, the big peak was a little overestimated
by the model. Thus, HadGEM2 performed relatively better than the other GCMs after the correction
with PELS.

Atmosphere 2018, 9, x FOR PEER REVIEW  11 of 14 

 

 
Figure 7. Observed precipitation against ensemble mean of five GCMs taken from raw GCM data, 
corrected with PELS, and corrected with OLS. 

 
Figure 8. Comparison between observed and GCM precipitation corrected by the PELS method for 
1986–2000 in the Jhelum River basin. 

4.3. Projected Changes under RCPs 

Table 4 shows seasonal, annual, and the peak month projected changes in the 2050s with respect 
to 1971–2000 under RCP8.5 in the Jhelum River basin. Most of the models projected decreasing 
precipitation (negative changes) in most of the seasons, and all models showed negative changes in 
the peak months except GFDL, MIROC5, and HadGEM2 in March. In the case of annual precipitation 
changes, GFDL and CanESM2 projected positive changes, with 10% and 50% increase, respectively. 
However, the other three models, i.e., MIROC5, HadGEM2, and NorESM1, projected an annual 
decrease of 28%, 31%, and 20%, respectively. The results of HadGEM2 and MIROC5 are more reliable 
because they showed best results during the evaluation. In the case of seasonal changes, four models 
showed negative changes in winter, two models in spring and fall, and all of the models in summer. 
In the case of ensemble mean (the last column), precipitation was projected to decrease by 22% in 
summer and projected to increase by 4%, 9%, and 16% in spring, winter, and fall, respectively. 
However, all models projected decrease in all the peak precipitation months, with an average 

Figure 7. Observed precipitation against ensemble mean of five GCMs taken from raw GCM data,
corrected with PELS, and corrected with OLS.

Atmosphere 2018, 9, x FOR PEER REVIEW  11 of 14 

 

 
Figure 7. Observed precipitation against ensemble mean of five GCMs taken from raw GCM data, 
corrected with PELS, and corrected with OLS. 

 
Figure 8. Comparison between observed and GCM precipitation corrected by the PELS method for 
1986–2000 in the Jhelum River basin. 

4.3. Projected Changes under RCPs 

Table 4 shows seasonal, annual, and the peak month projected changes in the 2050s with respect 
to 1971–2000 under RCP8.5 in the Jhelum River basin. Most of the models projected decreasing 
precipitation (negative changes) in most of the seasons, and all models showed negative changes in 
the peak months except GFDL, MIROC5, and HadGEM2 in March. In the case of annual precipitation 
changes, GFDL and CanESM2 projected positive changes, with 10% and 50% increase, respectively. 
However, the other three models, i.e., MIROC5, HadGEM2, and NorESM1, projected an annual 
decrease of 28%, 31%, and 20%, respectively. The results of HadGEM2 and MIROC5 are more reliable 
because they showed best results during the evaluation. In the case of seasonal changes, four models 
showed negative changes in winter, two models in spring and fall, and all of the models in summer. 
In the case of ensemble mean (the last column), precipitation was projected to decrease by 22% in 
summer and projected to increase by 4%, 9%, and 16% in spring, winter, and fall, respectively. 
However, all models projected decrease in all the peak precipitation months, with an average 

Figure 8. Comparison between observed and GCM precipitation corrected by the PELS method for
1986–2000 in the Jhelum River basin.

4.3. Projected Changes under RCPs

Table 4 shows seasonal, annual, and the peak month projected changes in the 2050s with respect
to 1971–2000 under RCP8.5 in the Jhelum River basin. Most of the models projected decreasing
precipitation (negative changes) in most of the seasons, and all models showed negative changes in
the peak months except GFDL, MIROC5, and HadGEM2 in March. In the case of annual precipitation
changes, GFDL and CanESM2 projected positive changes, with 10% and 50% increase, respectively.
However, the other three models, i.e., MIROC5, HadGEM2, and NorESM1, projected an annual
decrease of 28%, 31%, and 20%, respectively. The results of HadGEM2 and MIROC5 are more reliable
because they showed best results during the evaluation. In the case of seasonal changes, four models
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showed negative changes in winter, two models in spring and fall, and all of the models in summer.
In the case of ensemble mean (the last column), precipitation was projected to decrease by 22% in
summer and projected to increase by 4%, 9%, and 16% in spring, winter, and fall, respectively. However,
all models projected decrease in all the peak precipitation months, with an average decrease of 2%, 27%,
and 34% in March, July, and August, respectively. It can be concluded that in the 2050s, the basin will
receive about 4% less precipitation annually than the present, and in the peak months, this reduction
can reach up to 34%.

Table 4. Projected changes (%) in precipitation under RCP8.5 of different GCMs in the 2050s with
respect to 1971–2000, in the Jhelum River basin.

Month CanESM2 GFDL MIROC5 NorESM1 HadGEM2 Average

Winter 1 118 −19 −37 −17 9
Spring 3 75 −18 −42 −1 4

Summer 4 −6 −50 −33 −25 −22
Fall 92 61 −15 −2 −57 16

Annual 10 50 −28 −31 −20 −4
March −15 24 2 −34 15 −2

July −9 −10 −61 −28 −27 −27
August −21 −19 −69 −23 −38 −34

March, July, and August are the peak precipitation months.

Table 5 describes seasonal, annual, and the peak month changes in precipitation in the 2050s
relative to 1971–2000 under RCP2.6. Three models MIROC5, NorESM1, and HadGEM2 showed
negative changes in all seasons, annual, and peak months except HadGEM2 in spring and March.
However, CanESM2 and GFDL showed mostly positive changes but negative changes in July and
August. As the average of all models, an annual decrease of 6% was estimated in the basin, higher than
RCP8.5. In winter and summer, precipitation was projected to decrease by 2% and 29%, respectively,
and spring and fall showed increase in precipitation by 11% and 5%, respectively. similar to RCP8.5,
in the peak months (July and August), all models showed decreasing precipitation by 36%, higher than
RCP8.5. On the whole, on average, decreasing percentages under RCP2.6 were higher than RCP8.5.

Table 5. Projected changes (%) in precipitation under RCP2.6 of different GCMs in the 2050s with
respect to 1971–2000, in the Jhelum River basin.

Month CanESM2 GFDL MIROC5 NorESM1 HadGEM2 Average

Winter −2 72 −34 −28 −16 −2
Spring 25 68 −17 −30 9 11

Summer 13 −31 −58 −36 −35 −29
Fall 84 57 −57 −10 −48 5

Annual 21 32 −39 −27 −18 −6
March 28 38 −4 −24 18 11

July −3 −48 −58 −31 −40 −36
August −7 −21 −77 −31 −41 −36

March, July, and August are the peak precipitation months.

5. Conclusions

Linear scaling (bias correction) methods are fast and simple techniques to reduce the biases from
GCM outputs on local scales. In the present study, a linear scaling method known as precipitation
extended linear scaling (PELS) was proposed to correct GCM precipitation. This method is basically
the extension of the original linear scaling (OLS) method which is based on mean monthly scaling
factors (MSFs). In this method, OLS is extended from monthly calculation of scaling factors to daily
scaling factors. This means that in OLS, MSFs are used to correct the scenario data, but in the PELS
method, mean daily scaling factors (DSFs) were used for correction. In addition, these DSFs were
checked for outliers, replaced with mean values, and smoothed with a low pass filter before using
them for the correction of the future precipitation.
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For the evaluation of this method, the observed precipitation from 21 gauges and precipitation of five
GCMs (i.e., GFDL, NorESM1, HadGEM2, MIROC5, and CanESM2) were collected for the transboundary
Jhelum River basin in Pakistan and India. The observed data was collected from Pakistan and India and
GCM data from CMIP5. Error in mean and in standard deviation relative to observed, root mean
square error, and correlation coefficient were used for evaluation purposes. These GCMs were also
evaluated with the observed precipitation for 1986–2000, without any correction. This showed that all
the models underestimated the precipitation except HadGEM2, which overestimated in some months
and underestimated in others. These models also showed lack of capability to capture the variations of
observed precipitation, thereby limiting their direct application in the basin.

Before the application of this method for the correction of the future precipitation, the method
was evaluated by correcting the precipitation data of 5 GCMs for the period of 1986–2000 and also
compared with OLS. After correction with this method, a substantial improvement, of about 40–74%,
was calculated in predicting mean values, and about 10–30% improvement was observed in predicting
standard deviation. The comparison of OLS and PELS showed that PELS performed better than OLS
both in the case of indicators and graphs.

After the evaluation of PELS, the future precipitation of 5 GCMs under RCP8.5 and RCP2.6
was corrected for 2041–2070, and the future changes in precipitation were calculated relative to the
baseline period (1971–2000). According to the projected results, the Jhelum River basin will face an
overall reduction in precipitation in the 2050s, with 4% and 6% annual decrease under RCP8.5 and
RCP2.6, respectively. However, the summer season (monsoon) will be the most affected season in the
future, which will face an average (all GCMs) reduction of 22% and 29% under RCP8.5 and RCP2.6,
respectively, and even more severe reduction in precipitation in July and August under both scenarios,
up to a 36% decrease. Therefore, if the climate of the world follows these RCPs, then there will be
a severe reduction in precipitation in the Jhelum basin during peak months, which can create many
problems for the economy of Pakistan because Pakistan’s economy is largely based on agriculture.
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