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Abstract: Drought vulnerability characteristics and risk assessment form the basis of drought risk
management. In this study, the standardized precipitation index (SPI) and drought damage rates
(DDR) were combined to analyze drought vulnerability characteristics and drought risk in Southwest
China (SC). The information distribution method was applied to estimate the probability density
of the drought strength (DS) and the two-dimensional normal information diffusion method was
used to construct the vulnerability relationships between DS and drought damage (DD). The risk
was then evaluated by combining the probability function of the DS and the DD vulnerability curve.
The results showed that the relationship between the DS and the DD was nonlinear in SC and its
provinces. With the increase in DS, the degree of DD increased gradually, stabilized, or decreased
toward the end. However, the vulnerability characteristics of the different provinces varied widely
due to multiple risk-bearing bodies and abilities to resist disasters. The risk values obtained across
the range of time scales of the SPI were not significantly different. The yielding probabilities will be
reduced for the crop area by 10%, 30%, and 70% due to drought. Compared to a normal year in SC,
the probability values were 16.04%, 10.29%, and 2.70%, respectively. These results have the potential
to provide a reference for agricultural production and drought risk management.

Keywords: standardized precipitation index (SPI); information distribution; information diffusion;
drought vulnerability; drought risk; Southwest China

1. Introduction

Natural disasters are increasing at an alarming rate worldwide [1,2]. Droughts are one of the most
severe natural disasters and are characterized by a slow development, long duration, vast affected
areas, and high severity [3]. Furthermore, droughts are expected to become more severe and frequent.
This is expected to lead to more water demand, rapid population growth, global climate change,
and a limited water supply [4]. To confirm the impact of drought in the future, the governments of
various countries have implemented large numbers of engineering-based and non-engineering-based
disaster mitigation actions [5–8]. However, uninformed mitigation actions will lead to the misuse of
human, material, and financial resources, which are contrary to the original goal of mitigation [9].
To avoid the misuse of resources, the drought disaster assessment is an important method for scientific
and systematic analysis of disaster risk. It is a key process in the formation of disaster prevention and
mitigation policies.

Droughts have disastrous characteristics and can damage vast areas even though it is very
difficult to predict the exact time that a drought event will begin [10]. Drought management has
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typically focused on analyzing drought risk and assessing drought vulnerability. Drought vulnerability
represents the foreseeable consequences of a drought damage (DD) event based on drought hazard
factors. The drought risk can be defined as the “probability of occurrence of a drought damage event
in a given period of time.”

Agricultural drought damage is the result of a combination of a precipitation shortage and the
vulnerability of the agricultural production system. The degree of vulnerability can magnify or lessen
disaster damage [11]. Due to an increasing severity of agricultural drought risks, research on drought
vulnerability has also been increasing [11–14]. Wilhelmi and Wilhite [12] conducted a geographic
information system-based agricultural drought vulnerability study by considering key factors such as
soil and land use, irrigated cropland, and agro-climatic data. Shahid and Behrawan [11] introduced
a systematic three-step methodology for a meteorological drought risk assessment framework that
incorporates hazards and vulnerability, which was widely used in many regions of the world.
Kim et al. [8] mapped the drought risk for 229 administrative districts across South Korea using
a drought hazard index, which was based on the precipitation probability and its association
with droughts. In addition, a vulnerability index was proposed to reflect seven socioeconomic
consequences of drought. Rajsekhar et al. [13] performed drought vulnerability assessments in Texas by
considering various socioeconomic factors. He et al. [14,15] analyzed the characteristics of agricultural
drought hazards and risks in China using the framework introduced by Shahid and Behrawan [13].
Some studies [16,17] also improved the weighting scheme for vulnerability assessments via methods
such as the analytic hierarchy process. This is due to the vulnerability index used in previous studies
to assign equal weight to all the indices, which may not adequately reflect the impact of droughts.
Most previous studies have considered physical/structural indicators and socioeconomic factors when
assessing regional drought vulnerability while others focused on the selection and weight calculations
of drought vulnerability indices based on historical data. Few studies have been performed on the
vulnerability curve (also called the hazard–damage curve). The vulnerability curve can reflect the crop
yield response to drought in terms of the physical properties of the crop, which is more important for
guiding agricultural production [18–23]. However, case studies using historical data may be limited if
long-term observational data are not available. For this reason, the technology of fuzzy information
optimization processing with “information distribution” and “information diffusion” as its core is an
emerging data processing technology, which is presented and developed by Huang and Moraga [24].
The object of fuzzy information optimization processing is incomplete information especially fuzzy
information with a small sample. Information diffusion can compensate for the deficiency in sample
information and can change a traditional data set into a fuzzy set by optimizing the use of the
sample [24–26]. A small sample of historical data was processed by “information distribution” and
“information diffusion” methods to construct the vulnerability curve between hazard and damage in
this study.

Drought identification is a prerequisite for drought risk analysis. Based on the nature of water
shortages, droughts can be classified into the following four types: meteorological, hydrological,
agricultural, and socioeconomic. Meteorological droughts are related to weather especially abnormal
precipitation deficits. Agricultural droughts are related to soil moisture deficiencies and poor water
resources management while hydrological droughts are associated with abnormal groundwater and
lake deficits. In addition, d socio-economic droughts are associated with an insufficient supply to meet
the demand of some economic good along with the above three types of drought (i.e., meteorological,
hydrological, and agricultural drought) [27–29]. Among these types, meteorological droughts occur
more frequently and regularly than the other three drought types and normally trigger other types of
drought [30–32]. Therefore, meteorological drought monitoring is significant for the early warning
and risk management of water resources as well as in agricultural production [32]. Most researchers
have analyzed meteorological drought risks [33–36] characterized by meteorological drought indices.
Among these indices, the Standardized Precipitation Index (SPI) developed by Mckee et al. [33]
is a representative index for drought analysis and has been widely used because of its simplicity.
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This index is based solely on rainfall and is not affected adversely by topography. Another primary
advantage of SPI is its variable time scales [35,36]. However, drought events are multivariate
phenomena that involve interactive physical linkages including natural and socioeconomic factors.
A few researchers have established the relationship between meteorological droughts and agricultural
drought damage, which is more meaningful for actual agricultural production [11,12,14,17,19,20].
Based on the information distribution and diffusion methods, both meteorological factors including
precipitation and socio-economic factors, which constitute the agricultural drought damage indices,
were considered in this study to analyze drought vulnerability characteristics and improve drought
risk assessment in Southwest China (SC).

Following the introduction, the remaining parts of this paper are organized as follows. Section 2
describes the study area, database, and methodologies. Section 3 presents the main results including
the vulnerability relationship between the meteorological drought strength (DS) and agricultural
drought damage, and the results of the drought risk assessment. Section 4 contains a discussion and
analysis of the results in this study. Finally, the primary conclusions are given in Section 5.

2. Study Area, Data, and Methods

2.1. Study Area

Southwest China (SC), which covers an area of approximately 1.23 million km2 or 12.9% of
China’s total area, lies between latitudes 20◦54’ N and 34◦19’ N and longitudes 91◦21’ E and 112◦04’ E.
SC includes five provinces, which are called Sichuan (I), Chongqing Municipality (II), Guizhou (III),
Yunnan (IV), and the Guangxi Zhuang Autonomous Region (V), which is illustrated in Figure 1.
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Figure 1. Location of Southwest China (top) and its topography (bottom, units: m) and the spatial
distributions of the meteorological stations in the five provinces.

The elevation of SC decreases from the west to the east. The study area is dominated by a humid
and semi-humid subtropical monsoon climate with cold, dry winters and hot, humid summers.
The annual mean temperature and precipitation from 1961–2015 were 16.7 ◦C and 965 mm, respectively.
The spatiotemporal distribution of precipitation is uneven in the study area. The northwest has the
lowest annual precipitation and the southeast has the highest annual precipitation. Most precipitation
falls during the monsoon season. Therefore, water resources are sufficient for agricultural use from
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May to October but inadequate from November to April [37]. The primary soil texture in the study area
is clay and loam. The soil layer is very thin. In some areas, its maximum depth is only 10 centimeters,
which results in an insufficient water storage capacity. Increased air temperature and decreased relative
humidity have affected SC in recent years [38–41], which indicates an increase in evapotranspiration in
the study area and results in decreased soil moisture. Over the past 10 years, drought disasters in SC
have occurred frequently and their severity has intensified [42]. For example, from May to September
2006, a severe drought disaster occurred and affected nearly 30 million people. From 2009 to 2011,
the precipitation in Yunnan and southern Sichuan continuously decreased [43].

2.2. Data

In this study, meteorological stations were selected according to the following criteria: the time
series had to be long enough to obtain statistically significant results in trend analyses and the missing
data from one station had to be equal to or less than 0.1%. The stations are sparsely distributed
in the western part of the Sichuan Province and there are relatively few agricultural production
activities in these regions. Therefore, this factor had little effect on our study [14,15]. We selected
40 representative meteorological stations, as shown in Figure 1 and Table 1. The data used in this study
include monthly precipitation at each station, a drought-induced area (referring to the area where the
crop yields were reduced by at least 10% due to drought relative to normal yields), a drought-affected
area, lost harvest area (referring to the area where the crop yields were reduced by at least 30%
and 70%, respectively, relative to normal yields because of drought), and the planting area in each
province of Southwest China. The monthly precipitation data for the 40 meteorological stations during
the 1960–2015 period were obtained from the China Meteorological Data Sharing Service System
(http://cdc.cma.gov.cn/home.do). The drought-induced area, the drought-affected area, the planting
area data from 1960 to 2015 (with data missing for 1964–1970), and the lost harvest area data from
1983 to 2015 for each province were acquired from the Chinese Planting Information Network-Natural
Disaster Database (http://zzys.agri.gov.cn/zaiqing.aspx). The data for Chongqing are limited because
the municipality was separated from Sichuan in 1997 as a municipal city. To ensure the consistency of
the data, Chongqing was considered part of Sichuan in this study.

Table 1. Geographic characteristics of the stations used in this study.

Province Station Latitude Longitude Elevation (m)

Yunnan

Dq 28◦29’ 98◦55’ 3319
Tc 25◦01’ 98◦30’ 1655
Cx 25◦02’ 101◦33’ 1824
Km 25◦00’ 102◦39’ 1887
Ln 23◦53’ 100◦05’ 1502
Jh 22◦00’ 100◦47’ 582
Zt 27◦21’ 103◦43’ 1950
Lj 26◦52’ 100◦13’ 2392
Lx 24◦32’ 103◦46’ 1704

Guangxi

Hc 24◦42’ 108◦02’ 260
Bs 23◦54’ 106◦36’ 174
Nn 22◦38’ 108◦13’ 122
Lb 23◦45’ 109◦14’ 85
Gl 25◦19’ 110◦18’ 164
Fs 24◦33’ 107◦02’ 485
Yl 22◦39’ 110◦10’ 82
Ls 22◦25’ 109◦18’ 67

http://cdc.cma.gov.cn/home.do
http://zzys.agri.gov.cn/zaiqing.aspx
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Table 1. Cont.

Province Station Latitude Longitude Elevation (m)

Guizhou

Xy 25◦26’ 105◦11’ 1379
As 26◦15’ 105◦54’ 1431
Bj 27◦18’ 105◦17’ 1511
Zy 27◦42’ 106◦53’ 844
Gy 26◦35’ 106◦44’ 1224
Kl 26◦36’ 107◦59’ 720
Rj 25◦58’ 108◦32’ 286
Ld 25◦26’ 106◦46’ 440
Sn 27◦57’ 108◦15’ 416

Sichuan

Gy 32◦26’ 105◦51’ 514
Ya 29◦59’ 103◦00’ 628
Cd 30◦40’ 104◦01’ 506
Yb 28◦48’ 104◦36’ 341
Xc 27◦54’ 102◦16’ 1591
Hl 26◦39’ 102◦15’ 1787
Bz 31◦52’ 106◦46’ 418
Sn 30◦30’ 105◦33’ 355
Lt 30◦00’ 100◦16’ 3949
Gz 31◦37’ 100◦00’ 3394

Chongqing

Fj 31◦01’ 109◦32’ 300
Lp 30◦41’ 107◦48’ 455
Spb 29◦35’ 106◦28’ 259
Qy 28◦50’ 108◦46’ 664

2.3. Methods

2.3.1. Drought Damage Indices

Drought damage (DD) is a possibility under certain drought intensities, which is usually
determined by the frequency and intensity of a drought. The first step is to determine an index
system that can reasonably evaluate the severity of a drought. Drought damage rates (DDR) including
the drought-induced rate (I1), the drought-affected rate (I2), and the lost harvest rate (I3) of crops are
used in this study [30,40,44]. The formulas for calculating these indices are below.

I1 = A1/A (1)

I2 = A2/A (2)

I3 = A3/A (3)

where A1, A2, and A3 represents the drought-induced area, the drought-affected area, and the lost
harvest area, respectively, and A is the planting area.

2.3.2. Meteorological Drought Indices

The SPI, which describes the change in precipitation by the gamma probability density function,
can reflect a drought situation at different time scales and in different areas. The SPI has been
widely used to characterize drought. The detailed calculation process for the SPI was described
by Lloyd-Hughes and Saunders [45]. Generally, there are six timescales including SPI1, SPI3, SPI6,
SPI9, SPI12, and SPI24 (1-month, 3-month, 6-month, 9-month, 12-month, and 24-month accumulation
periods). However, the time scales most closely correspond with the DD in SC and its provinces are not
clear. Therefore, the SPI at all six timescales were taken into consideration to choose the appropriate
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time scale and analyze drought vulnerability characteristics and risk. The DDR were taken for each
province as a unit and the SPI for each province was calculated below.

X =
n

∑
i=1

xi/n (4)

where X is the average of SPI for each province, xi is the annual SPI value calculated at different time
scales, and n is the number of stations in each province.

The definition of DS can be obtained using Equation (5) below.

F = −
D

∑
i=1

Xi (5)

where F = {f 1, f 2, . . . . . . , fn} is the DS and D is the drought duration (DU), which is the number
of months SPI values are lower than the drought threshold S. Xi is the SPI value that is lower than
S. The range of the drought threshold S is shown in Table 2. However, S usually considers only
the meteorological factor and ignores DD when defining drought levels. Therefore, the S has been
redefined in this study. The correlation between the DS/DU and I1, I2, and I3 is calculated separately
when S = [−2.0, −1.9, −1.8, . . . . . . , −0.1,0] and S will be the drought disaster threshold when the
correlation coefficient at its maximum [46,47].

Table 2. Drought rank of the SPI.

Rank Light Drought Medium Drought Drought Severe Drought

SPI [−0.99, 0] [−1.00, −1.49] [−1.50, −1.99] [≤−2.00]

2.3.3. Information Distribution and Diffusion Methods

Fuzzy mathematics is a mathematical method used to study unclear phenomena. The information
distribution method using the fuzzy transition information can improve the accuracy of the results
when compared to a traditional histogram-based method. Information diffusion is a set-valued fuzzy
mathematical processing method that can change single-valued samples into set-valued samples.
The purpose of information diffusion is to identify the maximum amount of useful information needed
to improve the accuracy of risk recognition when the sample information is insufficient [24,25,44,48].

Information Distribution Method

Let F = {f 1, f 2, fi, . . . , fn} be a sample where fi is a sample point. The appropriate interval length ∆
is selected according to the maximum and minimum F and is used to generate the monitoring point
space U = {u1, u2, uj, . . . , um},(uj+1 − uj = ∆), which corresponds to F where uj is called a monitoring
point. In ∀ fi ∈ F, ∀uj ∈ U, we distribute the information carried by fi to uj using the information
distribution shown in Equations (6)–(8) in order to obtain qij.

m = 1.87× (n− 1)2/5 (6)

∆ = ( fmax − fmin)/m (7)

qij =

{
1− | fi−uj|

∆

∣∣ fi − uj
∣∣ ≤ ∆, i = 1, 2, . . . , n; j = 1, 2, . . . , m

0 others
(8)

where n is the sample number. We obtain the distribution of U as determined by fi.
Let

Qj =
n

∑
i=1

qij (9)
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All distribution information Qj can be obtained from the monitoring point uj, which is called the
primary information distribution of F on U.

pj =
Qj

n
(10)

Therefore, we can employ Equation (10) to estimate the probability of a drought disaster in
magnitude uj.

P = {p(u1), p(u2), p(u3), . . . , p(um)}= {p1, p2, p3, . . . , pm} (11)

In the two-dimensional normal information diffusion method, assuming that W is the data set
of the meteorological drought index f and socio-economic drought index y, the causal relationship is
shown in Equation (12).

W = {( f1, y1), ( f2, y2), . . . , ( fn, yn)} (12)

The appropriate interval lengths ∆f and ∆y are selected according to the requirement for generating
the input and output monitoring space, respectively.

T = {t1, t2, . . . , tm} (13)

V = {v1, v2, . . . , vt} (14)

With ∀( fi, yi) ∈W, ∀tj ∈ T, ∀vk ∈ V, we diffuse the information carried by W to (tj, vk) to obtain
µijk by using the two-dimensional normal information diffusion, which is shown in Equation (15) below.

µijk =
1

2πh f hy
exp(−

( fi − tj)
2

2h f
2 − (yi − vk)

2

2hy2 ) (15)

where h is called the normal diffusion coefficient, which is calculated by Equation (16).

h =



0.8416(b− a) m = 5
0.5690(b− a) m = 6
0.4560(b− a) m = 7
0.3860(b− a) m = 8
0.3662(b− a) m = 9
0.2986(b− a) m = 10
2.6851(b− a)/(n− 1) m ≥ 11

(16)

where b = max{ fi}
1≤i≤n

, a = min
1≤i≤n

{ fi} when calculating the coefficient hf; while b = max{yi}
i≤i≤n

,

and a = min{yi}
i≤i≤n

when hy is calculated.

Let

Qjk =
n

∑
i=1

µijk (17)

The original information matrix Q can be calculated using Equations (15)–(17).

Q =


Q11 · · · Q1t

...
. . .

...
Qm1 · · · Qmt

 (18)
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The columns in Q are normalized to generate a fuzzy relation R whose physical significance
represents the fuzzy relation between the meteorological drought index f and the socioeconomic
drought index y. The fuzzy information matrix R is the risk model constructed in this paper.

sk = max
1≤j≤m

Qjk

rjk = Qjk/sk

R =
{

rjk

}
m×t

(19)

A dependent variable can be obtained according to the independent variable input. Therefore, the fuzzy
set µf0(tj) can be obtained by inputting f 0 into Equation (20) below.

µ f0

(
tj
)
=

{
1−

∣∣ f0 − tj
∣∣/∆ f

∣∣ f0 − tj
∣∣ ≤ ∆ f

0 others
(20)

The output fuzzy set µy0(vk) can be obtained by multiplying the fuzzy set µf0(tj) and the fuzzy matrix R.

µy0(vk) = ∑
1≤j≤m

µ f0

(
tj
)
× rjk k = 1, 2, . . . , t (21)

A specific value y0 can be obtained by substituting fuzzy set µy0(vk) into Equation (22) below.

y0 =

∑
1≤k≤t

µy0(vk)× vk

∑
1≤k≤t

µy0(vk)
(22)

A fuzzy matrix can be constructed to reflect the causal relationship between f and y using the
two-dimensional diffusion method. The corresponding dependent variable can be obtained if we
substitute different independent variables so that the causal relationship between the small samples
becomes somewhat more accurate during the analyses of insufficient samples. The detailed calculation
procedures were given in Appendix A.

2.3.4. Vulnerability and Risk Evaluation

When conducting a risk assessment, a common basic pattern is as follows: R = H•D [11,13,14],
where R is the risk, H is the function that describes the risk source, D is the vulnerability function that
describes the risk-bearing bodies (referring to crop in this study), and ‘•’ is a synthesis rule. When the
analyzed risk is expressed as the expected value of the damage, the index system is described by
the ‘damage’ D, and the “probability” H. The ‘•’ indicates multiplication. The simplest solution is to
calculate the area surrounded by the probability density curve, the disaster damage curve, and abscissa
axis, which is shown in Figure 2.

The area can be calculated using Equation (23) below.

R =
∫

p(x) · f (x)dx (23)

where P(x) is the probability density function of the hazard factor and f (x) is the disaster damage
function. When its probability distribution is discrete, R can be expressed by the equation below.

R =
n

∑
i=1

p(ui) · f (ui) (24)
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Figure 2. Risk analysis diagram.

3. Results

3.1. Correlation Analysis between Drought Strength and Drought Damage Rates

The correlations between DS/DU and I1, I2, and I3 in the Guangxi Province are shown as an
example in Figure 3. The correlation coefficients between DU and I1, I2, and I3 show high fluctuation
while the correlation coefficients between DS and I1, I2, and I3 have a lower fluctuation. The correlation
coefficients between DS and I1, I2, and I3 are higher than those between DU and I1, I2, and I3.
This difference is due to DS being the cumulative value of the SPI, which is lower than the threshold
value S. This is shown in Equation (2), which can also reflect DU to a certain extent. Therefore, DS is
more suitable than DU as an index of meteorological drought.

The drought rank threshold defined by SPI in Table 2 considers only precipitation. However, DD
was affected by other factors in addition to meteorological factors. In considering meteorological factors
and socio-economic factors, the drought-caused threshold is redefined according to the correlation
between DS and DDR, which is different from the traditional definition method. To ensure the stability
and reliability of the drought vulnerability characteristics with respect to risk, three timescales of SPI
and the thresholds corresponding to the maximum correlation between DS and DDR were selected in
this study.

The thresholds and SPI for SC and its provinces are shown in Table 3. Taking Guangxi as
an example, SPI1, SPI3, and SPI6 were selected when analyzing drought characteristics and risk
when crops were under drought-induced, drought-affected, and lost harvest conditions, respectively.
The threshold for when crops are under drought-induced conditions, defined with a value of SPI1,
is –0.4 in Guangxi. The threshold for when crops are under drought-affected conditions, which is
defined with a value of SPI3, is –1.4. In addition, the threshold when crops are in the lost-harvest
condition, which is defined with a value of SPI6, is –1.4. Generally, the smaller the SPI value is,
the greater the probability of a severe drought, but the results shown in Table 3 are not completely
consistent with previous conclusions. The major reason for this inconsistency is that DS is the
cumulative value of SPI, which is less than the threshold S. DS is related not only to the value of SPI
but also with the number of SPI values below S. However, the most suitable time scale and threshold
do show differences due to regional differences, drought types, crop species, and management needs.
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Figure 3. The correlations between drought strength (DS)/drought duration (DU) and drought damage
rates (DDR) in Guangxi province. (a) The correlation between DS and the drought-induced rate (I1).
(b) The correlation between DU and the drought-induced rate (I1). (c) The correlation between DS
and the drought-affected rate (I2). (d) The correlation between DU and the drought-affected rate (I2).
(e) The correlation between DS and the lost harvest rate (I3). (f) The correlation between DU and the
lost harvest rate (I3). The broken line indicates a confidence level of P = 0.05 and the solid line indicates
a confidence level of P = 0.01.
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Table 3. The thresholds corresponding to the maximum correlation between DS calculated by different
time scales of SPI values and DDR in Southwest China (SC) and its provinces.

Areas SPI1 SPI3 SPI6 SPI9 SPI12 SPI24

S1 −0.1 −0.3 −0.1
Sichuan S2 −1.0 −0.9 −0.9

S3 −0.7 −0.9 −1.0
S1 −0.3 −0.1 −0.1

Guangxi S2 −0.6 −1.4 −1.4
S3 −1.5 −1.4 −1.5
S1 −0.4 −0.4 −0.3

Guizhou S2 −1.4 −1.3 −1.6
S3 −1.6 −1.9 −1.8
S1 −0.1 −0.1 −0.1

Yunnan S2 −0.1 −0.6 −0.6
S3 −2.0 −1.9 −1.0
S1 −0.9 −0.9 −0.7

SC S2 −1.0 −0.7 −1.0
S3 −1.1 −0.7 −1.0

Note: S1, S2, and S3 represents the thresholds when the crops were under drought-induced, drought-affected,
and lost harvest conditions, respectively.

3.2. The Vulnerability Relationship between Drought Strength and Drought Damage in Southwest China and
Its Provinces

In this study, we employed the information distribution and diffusion method to analyze the
vulnerability relationship between DS and DD. Taking Sichuan Province as an example (Figure 4),
SPI3 was chosen to construct the vulnerability relationship between DS and DDR and the S1 was 0.1
(see Table 3). The annual DS was calculated using Equation (2) as follows: F = (f 1, f 2, . . . , f 48) = (4.57,
5.23, . . . , 4.10). The number of the asymptotic optimization interval m was 9, which is calculated
according to Equation (6). The interval length ∆ obtained using Equations (6) and (7) was 1.506.
The I1 values in the Sichuan Province were ranked from low to high and the two control points were
added at their respective ends to blur the histogram boundary. The starting point of the soft construct
histogram was 0, the interval was 1.506, and the end point was 15.06. Therefore, we obtained 11 DS
control points {u1, u2, u3, . . . , u11}. The frequency of the DS control points can be obtained according
to Equations (9)–(11). The frequency is approximately considered as a probability in certain cases
where P = {p(u1), p(u2), p(u3), . . . , p(u11)} = {0.031, 0.119, 0.241, . . . , 0.006}. Theoretically, the greater
the number of monitoring points in information diffusion, the better the effect. However, the results
exhibit little differences between 50, 60, 80, and 100. The more monitoring intervals, the greater the
computational complexity. Therefore, we selected 50 monitoring intervals, i.e., 51 monitoring points.
The information matrix Q, which reflects the causal relationship between DS and DDR, was obtained
according to Equations (15)–(18). The normalized information matrix R was obtained by normalizing
Q according to Equation (19). The corresponding output values {y1, y2, . . . , y11} were obtained by
substituting the input values {u1, u2, u3, . . . , u11} and the 11 points were connected to a poly line,
which can reflect the vulnerability relationship between DS and DDR. The result is shown in Figure 4a.
The vulnerability relationships between DS and DDR in Sichuan, Guangxi, Guizhou, Yunnan, and SC
are shown in Figures 4–8.
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Figure 4. The vulnerability relationships between drought strength (DS) and drought damage rates
(DDR) in the Sichuan Province. (a1,a2,a3) represent the vulnerability relationship between DS calculated
by SPI3, SPI6, and SPI9 and the drought-induced rate (I1), (b1,b2,b3) represent the vulnerability
relationship between DS and the drought-affected (I2), and (c1,c2,c3) represent the vulnerability
relationship between DS and the lost harvest rate (I3).

In Figure 4, the abscissa indicates DS and the ordinate indicates DDR. The relationship between
DS and DDR should be analyzed using a nonlinear method rather than a simple linear regression
method because of the diversity of the disaster-caused factors and risk-bearing bodies. DDR increases
with an increase in the DS in the Sichuan Province and there is a local fluctuation. As the DS continues
to increase, DDR no longer increases significantly and even decreases. These results were consistent
with those of a previous study. Yang et al. [43] found that the drought damage no longer increased
significantly. Yet, the greatest increase in severe drought was observed in Southwestern China.
He et al. [44] note that, although wheat productivity has increased, droughts are expected to become
more severe under climate change in SC. This increase may be due to people storing water through
an agricultural water conservancy project that uses precipitation forecasts to prevent the occurrence
of agricultural drought or adopting drought-resistance measures. However, apparent differences in
drought vulnerability characteristics between provinces may be due to water shortages, difficulty in
accessing available irrigation, and other factors. I1 increased significantly in Guangxi DS (Figure 5)
and Guizhou (Figure 6) while no significant increase was observed in Sichuan (Figure 4). I1 was
approximately 0.2 even when the DS was small in Sichuan. However, DDR was low when DS was
high in other provinces, which indicates that the ability in Sichuan to resist severe droughts is strong
while the ability to resist a minor drought is weak. I2 in Sichuan and Guangxi was stable when DS
was small. It increased rapidly with increasing DS and stabilized when the DS reached a certain value.
I2 increased gradually when DS increased in Guizhou and Yunnan and decreased rapidly after the
DS reached a certain value in Yunnan (Figure 7). I3 values in Guizhou and Yunnan were the highest
among the provinces, which indicates that the agricultural production system is frail under severe
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drought in these two provinces. Improved water and crop management, the augmentation of the water
supply with additional sources, intensified watershed and local planning, and water conservation are
necessary for drought impact mitigation in the two provinces. However, DDR in Yunnan decreased
rapidly when compared to Guizhou, which may indicate a clear effect (the decreased DDR) that
measures are taken to resist the spread of the drought. The results show that the relationship between
the DS and the DDR is nonlinear in SC and its provinces. DS can be calculated based on the predicted
meteorological data, the specific DDR can be obtained by substituting the DS into the information
matrix R, and the output can then be predicted.

Figures 4–8 show that the vulnerability characteristics of the same DDR at different time scales
have only slight differences, which indicates that the vulnerability results calculated in this study
are stable.
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Figure 5. The vulnerability relationships between drought strength (DS) and drought damage rates
(DDR) in the Guangxi Province. (a1,a2,a3) represent the vulnerability relationship between DS
calculated by SPI1, SPI3, and SPI6 and the drought-induced rate (I1), respectively. (b1,b2,b3) represent
the vulnerability relationship between DS calculated by SPI1, SPI3, and SPI6 and the drought-affected
rate (I2), respectively. (c1,c2,c3) represent the vulnerability relationship between DS calculated by SPI3,
SPI6, and SPI9 and the lost harvest rate (I3), respectively.
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Figure 6. The vulnerability relationships between drought strength (DS) and drought damage rates
(DDR) in the Guizhou Province. (a1,a2,a3) represent the vulnerability relationship between DS
calculated by SPI1, SPI3, and SPI6 and the drought-induced rate (I1), respectively. (b1,b2,b3) represent
the vulnerability relationship between DS calculated by SPI3, SPI6, and SPI9 and the drought-affected
rate (I2), respectively. (c1,c2,c3) represent the vulnerability relationship between DS calculated by SPI3,
SPI6, and SPI9 and the lost harvest rate (I3), respectively.
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Figure 7. The vulnerability relationships between drought strength (DS) calculated by SPI6, SPI9,
and SPI12 and drought damage rates (DDR) in the Yunnan Province. (a1,a2,a3) represent the
vulnerability relationship between DS and the drought-induced rate (I1). (b1,b2,b3) represent
the vulnerability relationship between DS and the drought-affected rate (I2), respectively.
(c1,c2,c3) represent the vulnerability relationship between DS and the lost harvest rate (I3), respectively.
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Figure 8. The vulnerability relationships between drought strength (DS) and drought damage rates
(DDR) in the Yunnan Province. (a1,a2,a3) represent the vulnerability relationship between DS calculated
by SPI3, SPI6, and SPI9 and the drought-induced rate (I1), respectively. (b1,b2,b3) represent the
vulnerability relationship between DS calculated by SPI6, SPI9, and SPI12 and the drought-affected
rate (I2), respectively. (c1,c2,c3) represent the vulnerability relationship between DS calculated by SPI6,
SPI9, and SPI12 and the lost harvest rate (I3), respectively.

3.3. Drought Damage Risk Evaluation

R =
11

∑
i=1

P(ui) · F(ui) (25)

where P(ui) is the probability of DS, which has been obtained with Equation (11) and F(ui) is the
vulnerability relationship between DS and the DDR. The results of the DD risk evaluation based on
different time scales in SC and its provinces are shown in Table 4.

Table 4. Drought damage risk evaluation based on different time scales for SPI in Southwest China
(SC) and its provinces (%).

Areas SPI1 SPI3 SPI6 SPI9 SPI12 SPI24

R1 18.61 22.44 17.96
Sichuan R2 12.74 13.17 12.48

R3 2.09 1.99 2.03
R1 14.22 16.26 15.82

Guangxi R2 8.31 13.76 8.06
R3 1.53 1.67 1.59
R1 18.87 19.44 19.01

Guizhou R2 12.64 12.39 10.19
R3 3.87 4.79 4.43
R1 15.64 16.71 17.93

Yunnan R2 9.18 9.39 8.94
R3 3.33 3.29 3.32
R1 15.32 16.67 16.44

SC R2 10.11 11.61 10.14
R3 2.78 2.67 2.66
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The average drought damage risk values R̃1, R̃2, and R̃3 can be obtained by averaging the
drought damage risk evaluations based on different time scales in Southwest China and its provinces.
The results are shown in Table 5.

Table 5. Average drought damage risk evaluation in Southwest China (SC) and its provinces (%).

Areas Sichuan Guangxi Yunnan Guizhou SC

R̃1 19.67 15.43 16.76 19.11 16.14
R̃2 12.80 10.04 9.17 11.74 10.62
R̃3 2.04 1.60 3.31 4.36 2.70

R1, R2, and R3 represent the risk values when the crop yields are reduced by more than 10%,
30%, and 70%, respectively, i.e., the possibility that the crop is under drought-induced conditions,
drought-affected conditions, or lost harvest conditions, respectively. The risk value obtained based on
the different time scales of SPI are nearly identical, which indicates that the results are stable. The R̃1 in
Sichuan and Guizhou are 19.67% and 19.11%, respectively, which is higher than those in Yunnan and
Guangxi where the values are 16.76% and 15.43%, respectively. The R̃2 in Sichuan has the maximum
value of 12.80% while the values in Guizhou, Guangxi, and Yunnan are 11.74%, 10.04%, and 9.17%,
respectively. The maximum probability of crops under lost harvest conditions is 4.36% in Guizhou,
followed by Yunnan at 3.31%, Sichuan at 2.04%, and Guangxi at 1.60%. The R̃1, R̃2, and R̃3 in SC were
16.14%, 10.69%, and 2.70%, respectively.

Table 5 shows that the R̃1 and R̃2 in Sichuan and Guizhou are similar while the R̃3 in Guizhou
is distinctly higher than that in Sichuan. The reason for this finding can be seen in Figures 4 and 7,
which shows that the drought-resistance ability of Sichuan is stronger than that of Guizhou. DD does
not increase continually with an increase in DS and does stop when I3 is approximately 0.05 while DD
increases with an increase in DS until I3 is approximately 0.10 in the Guizhou Province.

4. Discussion

When forecasting droughts and its effects, the time scales should be fully considered [49,50].
The most suitable time scale for monitoring drought may vary due to regional differences, drought
types, differences in the regional cropping system, and major food crop phenology [49,51]. The SPI
at short time scales (3-month, 6-month, and 9-month) are closely related to agricultural production
because they indicate the water content of the vegetation and the soil moisture conditions. The SPI
at longer time scales (24-month and 36-month) can better reflect the reservoir storage capacity and
groundwater level, which is considered a hydrological drought index [52]. However, the SPI computed
over long time scales may not be an adequate indicator of agricultural drought conditions [53,54].
Higher correlations between DD and DS calculated at shorter time scales for SPI were obtained in this
study. Therefore, shorter time scales of SPI were used for defining droughts.

A major outcome of this study is the construction of vulnerability relationships between
the DS and DD. The relationship between DS and DD was found to be nonlinear. If regional
precipitation can be predicted accurately, then regional food production can be estimated by combining
the vulnerability curve, which will be more accurately compared to the assumptions of linearity.
Furthermore, the regional agricultural production efficiency can be maximized by adjusting the
distribution of irrigation water resources according to regional vulnerability characteristics, which will
be beneficial to a number of stakeholders such as disaster management, agricultural organizations,
and development/planning authorities. This will improve their understanding on the impact
of droughts.

Drought risk assessment is of great significance for the prevention of disasters and the
reconstruction of disasters. The drought risk assessed in this study is lower than that of previous
studies [55–57]. Human factors (including irrigation, artificial rainfall, and other agricultural activities)
that may prevent the spread of drought were considered when analyzing the DD risk. This result



Atmosphere 2018, 9, 239 17 of 22

differed from previous research, which primarily considered meteorological data for risk assessments
in SC. In this study, the R̃1 and R̃2 in Sichuan and Guizhou were slightly higher than those in Yunnan
and Guangxi. This is due to Sichuan and Guizhou being located in Northern SC where the annual
average rainfall is less than that in Southern SC, according to the Compilation Committee of the
Climatological Atlas of the People’s Republic of China [3]. R̃3 in Guizhou and Yunnan was distinctly
higher than that in the other provinces. There may be other factors in addition to rainfall that influence
these DD results. The terrain of the Guangxi and western part of Sichuan is dominated by alluvial
plains covered by deep soils. The terrain of the Yunnan and Guizhou provinces is dominated by
mountains and plateaus that have a thin soil layer weathered by rocks. This leads to lower soil
moisture storage and an aggravated water shortage. However, it is difficult to construct a large water
conservancy project because of the poor geology and limited available technology. Inadequate water
conservation facilities may be the primary reason for the occurrence of severe droughts in Yunnan
and Guizhou.

Although drought variations can be influenced by a number of factors, changes in precipitation
and evapotranspiration are believed to be the most important factors. The precipitation in SC has
decreased significantly in the summer, the autumn, and the winter due to the influence of West
Pacific subtropical temperatures and South Asia’s high temperatures [55], which led to reduced soil
moisture storage. Corresponding to decadal precipitation anomalies, an increase in the air temperature
and a decrease in relative humidity were found in SC in recent years [37–39], which led to higher
evapotranspiration in the study area. Increasing evapotranspiration during the 21st century would
result in higher plant water consumption and reduced soil moisture [58,59]. Concerted effort at
a political and institutional level would most certainly help build capacity and reduce agricultural
vulnerability to potentially more severe drought impacts. Therefore, the administrative departments
of SC are expected to focus on severe and extreme droughts during their decision-making in relation to
drought prevention and management under climate change. Although drought severity has increased
and may increase further, DD may not increase if we develop irrigation, construct water conservation
facilities, and improve breeding along with other effective agricultural management techniques over
time [49].

The information diffusion method used in this study was based on the two-dimensional normal
diffusion function, which reflects a uniform diffusion process but there may be asymmetric diffusion
under practical applications. In addition, the causal relationship between DD and DS will vary
because the ability of human beings to regulate natural resources will improve and effective drought
use management should change the damage characteristics as farmers adjust over time. Moreover,
the drought hazard risk will also alter as climate change in Southwest China proceeds. Factors affecting
the causal relationship between DS and DD risk will need to be updated based on the latest data.

5. Conclusions

Agricultural drought damage is the result of a precipitation shortage and the vulnerability of the
agricultural production system to that shortage. The degree of drought vulnerability can magnify
or lessen disaster damage. This study considers the vulnerability aspect while assessing drought
risk and analyzes the vulnerability in SC based on DS and DDR. To improve the accuracy of the
results, the drought disaster threshold S was redefined by the correlation between DS, which was
calculated by SPI at different time scales and DDR. This is more applicable to the study area. Afterward,
the probability of different DS values was obtained with the information distribution method and
the vulnerability relationship between DS and DDR was constructed with the information diffusion
method. The results showed that DDR gradually increased in line with an increase in DS during
the early stages of drought. Subsequently, local fluctuation occurred and, finally, DDR stabilized or
even decreased. However, vulnerability characteristics differed among the provinces due to different
risk-bearing bodies and the ability to resist disasters.
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Drought risk values in SC and its provinces at different DDR were calculated. The frequency of
drought does not differ significantly among the southwestern provinces. The probability that crops
are under drought-induced conditions in the Sichuan and Guizhou regions is approximately 20%,
which is greater than that in Yunnan and Guangxi, which have a probability of approximately 15%.
The maximum probability that crops are under lost-harvest conditions is 4.36% in Guizhou, followed
by 3.31% in Yunnan, 2.04% in Sichuan, and 1.60% in Guangxi. The probabilities that crop yields will be
reduced by more than 10%, 30%, and 70% in SC are 16.14%, 10.69%, and 2.70%, respectively.

The vulnerability of the relationship between DS and DDR constructed in this study has an
explicit physical meaning. Therefore, the results seem to be realistic. Both disaster-causing factors
and the actual DD are considered, which avoids the one-dimensional sequence error and improves
the drought risk assessment results compared to those calculated using only a meteorological factor.
The results can affect agricultural production and production forecasts, water resource management,
and other activities.
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Appendix A. Information Distribution and Diffusion Methods

clear all

clc

%%

U1 = load(‘U1.txt’);

X = load(‘X.txt’);

delta = 2.14 (variable);

n = size(X,2);

l = size(U1,2);

for i = 1:n

for j = 1:l

if abs(X(1,i) − U1(1,j))< = delta

q(i,j) = 1 − abs(X(1,i) − U1(1,j))/delta;

else q(i,j) = 0;

end

end

end

for j = 1:l

Q(1,j) = sum(q(:,j));

P(1,j) = Q(1,j)/n;

end

%%

Y = load(‘Y.txt’);

U = load(‘U.txt’);

V = load(‘V.txt’);
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n = size(Y,2);

m = size(U,2);

t = size(V,2);

for i = 1:n

for j = 1:m

for k = 1:t

hx1 = max(X(1,:));

hx2 = min(X(1,:));

hx = 2.6851*(hx1 − hx2)/(n − 1);

hy1 = max(Y(1,:));

hy2 = min(Y(1,:));

hy = 2.6851*(hy1 − hy2)/(n − 1);

u(j,k,i) = 1/(2*pi*hx*hy)*exp((−(U(1,j) − X(1,i))ˆ2/(2*hxˆ2)) −
(V(1,k) − Y(1,i))ˆ2/(2*hyˆ2));

end

end

end

for j = 1:m

for k = 1:t

Q(j,k) = sum(u(j,k,:));

end

end

%%

s = max(Q’);

for j = 1:m

for k = 1:t

R(j,k) = Q(j,k)/s(1,k);

end

end

%%

delta2 = 0.36;

for i = 1:l

for j = 1:m

if abs(U1(1,i) − U(1,j))< = delta2

ux(i,j) = 1 − abs(U1(1,i) − U(1,j))/delta2;

else ux(i,j) = 0;

end

end

end

%%

uy = ux*R;

%for i = 1:l

% for j = 1:m

% for k = 1:t

% R1(j,k) = ux(i,j)*R(j,k);

% uy(i,j) = sum(R1(j,:));

% end

% end

%end

%%
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for i = 1:l

for k = 1:t

y1(i,k) = uy(i,k)*V(1,k);

end

end

for i = 1:l

y0(1,i) = sum(y1(i,:))/sum(uy(i,:));

end
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