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Abstract: Extreme cold events (ECEs) have occurred more frequently over the last few winters in
China, associated with large losses of human life and increasing costs. Here, copulas are used to
establish a bivariate copula distribution model for ECE variables of duration and intensity, based on
observed daily surface air temperatures in winter from 1978 to 2015 at 20 meteorological stations in
Beijing. We demonstrate that durations of ECEs follow Weibull distributions, while their intensities
fit a generalized extreme value distribution at most stations. The Gumbel–Hougaard copula best
described the relationship between duration and intensity of ECEs at most stations. The joint and
conditional return periods based on the bivariate copula described both ECE frequency and the
corresponding hazard risk. A high risk was calculated for northern and western areas of Beijing, while
a lower risk was calculated for urban and southeastern areas. Although the risk of a low temperature
event of greater than 3 days with intensity in the range from −12 ◦C to −15 ◦C decreased, the risk of
extreme low temperature events with durations greater than 2 days and intensity lower than −15 ◦C
increased over the last 18 years. These probabilistic properties provide useful information for both
climate change and hazard risk assessments.
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1. Introduction

Arctic amplification (the greater warming of the Arctic compared with lower latitudes) is
increasing the likelihood of the type of weather patterns that lead to mid-latitude cold extremes [1–4].
Cold extremes, which are becoming more likely under global warming, are associated with large losses
of human life and exponentially increasing costs [5–8]. Thus, occurrences, characteristics, and risk
evaluation of cold extremes have received increasing attention in recent decades [1,5,9,10].

Many previous studies have investigated the typical features and formation mechanisms of
extreme cold events (ECEs) [7,11,12]. For example, Choi, et al. [11] examined the spatial and temporal
patterns of changes in extreme events of temperature over the Asia-Pacific Network countries.
Cholaw, et al. [12] discussed large-scale circulation features of ECEs. Zuo, et al. [5] and Sun, et al. [10]
investigated the characteristics of ECEs in China. Honda, et al. [13] and Screen, et al. [1] discussed the
determinants of the future risk of cold extremes. Although previous studies have paid much attention
to cold extremes, there are few studies dealing with their probabilistic behavior or risk assessments.

Identifying the probabilistic behavior and risk of an ECE is crucial to an in-depth understanding
of climatic mechanisms responding to climate changes, as well as providing evidence for forecasting of
future climate-induced risks. Risk assessment of extreme events is typically carried out using the peaks
over threshold (POT) extreme value analysis [14], a generalized extreme value (GEV) [15] distribution,
or a percentile threshold method [16]. All these methods are probabilistic and based on univariate
information, but can only be used for univariate statistical analysis of extreme temperature events.
They cannot be used to analyze the multivariate characteristics of such events. An ECE is a multivariate
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phenomenon characterized by a temperature threshold, duration, and interval. It is difficult to make
a comprehensive evaluation of the risk and probability of such cold extremes using only univariate
information. The copula technique makes it possible to model dependence among multivariate data,
independent of their marginal probability distributions. Thus, it allows multivariate random events
to be described using different types of marginal distributions [17]. The copula function was initially
introduced to explore abnormally high risks associated with insurance and finance, but has been
widely used in studies of extreme events, such as drought [18], rainfall [19], and floods [20]. Previous
studies have shown that the copula function can provide better multivariate joint distributions and
an analysis of the frequency of related incidents. The corresponding return periods is a common
criterion employed in the risk assessment of extreme events. The return period provides a very simple,
yet efficient means for conducting risk analysis because it is able to concentrate a large amount of
information into a single number [17]. Few studies have applied copula functions and the return
periods to study ECEs.

Beijing, the capital of China, is an international metropolis; it will host the 2022 winter Olympics.
Concurrent with the rapid expansion of the city and the rapid increase in population, the intensity and
frequency of ECEs have increased. Anomalous cold winters are important ECEs that have adverse
effects on industrial and agricultural production, people’s livelihoods, and social security. For instance,
in 2004, a low temperature event occurred in Beijing in winter, which caused a severe heating energy
shortage. The persistent extreme low temperature events in Beijing in November 2009 led to severe
impacts on human life and the economy [21]. Clearly, there is a strong need to identify characteristics
of cold extremes and a risk assessment through comprehensive analysis. Here, we attempt to study
ECEs in Beijing using copulas. The principal aim of this study was to evaluate the risk of ECEs
in Beijing using copula functions and provide useful information for both climate change and risk
assessments. The remainder of this paper is organized as follows. Section 2 describes the study
area and the data used. The method used to establish a bivariate copula distribution model for ECE
variables is presented in Section 2. The results of the copula and risk analysis for ECEs are given in
Section 3. Finally, our conclusions are stated in Section 4.

2. Materials and Methods

2.1. Descriptions of Study Area and Meteorological Data

Beijing was selected as the study area. The city borders the North China Plain and the Inner
Mongolia Plateau; it is surrounded by the Taihang Mountains on the west and the Yanshan Mountains
to the north (Figure 1). Beijing is influenced by the Siberian anticyclone, which brings colder,
windier, and drier winters. The minimum absolute temperature can be lower than −20 ◦C in bitterly
cold winters.

The observational daily mean 2-m temperature (T2m) data from 20 meteorological stations in
Beijing were used in this study (Table 1, Figure 1). The meteorological data are provided by the
Chinese Meteorological Administration, which carries out data quality checks. The data for December,
January, and February for the period 1978–2015 were used. There were a few missing values in the
daily temperature data sets, although missing values comprised less than 0.01% of the total values.
These missing values were filled using the average values of neighboring days. This gap filling method
has no influence on long-term temporal trends. Locations and elevations of meteorological stations
are given in Table 1. These stations are sparsely distributed in mountainous areas, but are densely
distributed on the plain, especially within urban areas.
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54433 Chaoyang 116.30 39.57 35.3 
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54505 Mentougou 116.07 39.55 92.7 
54511 Beijing 116.28 39.48 31.3 
54513 Shijingshan 116.12 39.57 65.6 
54514 Fengtai 116.15 39.52 55.2 
54594 Daxing 116.21 39.43 37.6 
54596 Fangshan 116.08 39.41 39.2 

Figure 1. The Beijing study area showing the location of the 20 meteorological stations used herein.

Table 1. Information on stations and their locations used in the study.

Station Identity (ID) Name Longitude (◦) Latitude (◦) Elevation (m)

54398 Shunyi 116.37 40.8 28.6
54399 Haidian 116.17 39.59 45.8
54406 Yanqing 115.58 40.27 487.9
54410 Foyeding 116.08 40.36 1224.7
54412 Tanghekou 116.38 40.44 331.6
54416 Miyun 116.52 40.23 71.8
54419 Huairou 116.38 40.22 75.7
54421 Shangdianzi 117.07 40.39 293.3
54424 Pinggu 117.07 40.10 32.1
54431 Tongzhou 116.38 39.55 43.3
54433 Chaoyang 116.30 39.57 35.3
54499 Changping 116.13 40.13 76.2
54501 Zhaitang 115.41 39.58 440.3
54505 Mentougou 116.07 39.55 92.7
54511 Beijing 116.28 39.48 31.3
54513 Shijingshan 116.12 39.57 65.6
54514 Fengtai 116.15 39.52 55.2
54594 Daxing 116.21 39.43 37.6
54596 Fangshan 116.08 39.41 39.2
54597 Xiayunling 115.44 39.44 407.7

2.2. Selection of Extreme Cold Events

Exposure to −15 ◦C can result in frostbite, while long outdoor exposure to −10 ◦C can result
in freezing of superficial tissues. In this study, ECEs were divided into low temperature events and
extreme low temperature events. A low temperature event occurs when the daily mean temperature



Atmosphere 2018, 9, 263 4 of 20

falls below −10 ◦C but is above −15 ◦C, while an extreme low temperature event occurs when the
daily mean temperature falls below −15 ◦C. In previous studies, cold extremes were described by few
parameters: frequency, duration or length, severity, and/or intensity [22–24]. The principal aim of this
study was the risk assessment of ECEs that can provide useful information to help the 2022 Winter
Olympics. Therefore, the ECEs with long lasting times and extreme low temperatures should be paid
more attention. In this study, for each ECE, we assigned a duration and an intensity. Duration refers to
the number of days the event lasted, while intensity is computed as the mean temperature over the
entire event.

Subsequently, over the period from 1978 to 2015, we computed the frequency of occurrence,
maximum duration, and average intensity of ECEs at each station. The maximum duration refers
to the maximum time these events lasted, while all averaged quantities refer to the average value
computed for events occurring over an entire year.

2.3. Estimation of Marginal Probability Distributions

Marginal distributions of ECE duration and intensity were analyzed using a conventional
univariate approach for each station. Six distributions were employed, including normal, gamma,
generalized extreme value (GEV), extreme value (EV), three-parameter lognormal, and Weibull
distributions. Parameters for these distribution functions were estimated using maximum
likelihood estimation. The goodness-of-fit of the probability function was evaluated using the
Kolmogorov–Smirnov (K–S) test [25] at a >90% confidence level. The probability distribution function
having the best goodness-of-fit with observational data was selected for each station.

2.4. Copula Functions

Sklar [26] showed that if two random variables x and y follow arbitrary marginal distribution
functions FX(x) and FY(y), then there exists a copula C to combine these two marginal distribution
functions, as follows:

FX,Y(x, y) = C(FX(x), FY(y)) (1)

where the function FX,Y(x, y) is a two-dimensional distribution function with marginal distributions
FX(x) and FY(y). If the marginal distribution FX(x) and FY(y) are continuous, then the copula function
C is unique, and the joint probability density function can be written as follows:

fX,Y(x, y) = c(FX(x), FY(y)) fX(x) fY(y) (2)

where fX(x) and fY(y) denote the density functions corresponding to FX(x) and FY(y), respectively.
In this case, c is the density function of C, expressed as follows:

c(u, v) =
∂2C(u, v)

∂u∂v
(3)

where u and v denote the cumulative distribution functions, that is, FX(x) and FY(y), in Equations (1)
and (2), the values of which range from zero to one.

Copulas provide a convenient way to separately fit each variable to a marginal distribution and
then join them together. Multivariate normality is only one option in a wide range of copula-based
models that can capture the principal features of variable data, such as non-symmetry, nonlinear
dependence, or heavy-tail behavior. There are numerous different copulas to choose from, with various
correlation properties such as symmetry, tail dependence, and range of dependence [27].

2.4.1. Bivariate Archimedean Copulas

In this study, the Archimedean copulas (Table 2), including Clayton, Gumbel–Hougaard (GH),
and Frank copulas, were selected to analyze the joint probability of ECEs because of their simplicity
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and wide representation [28,29]. The copula parameter θ is used to measure the degree of association
between u and v. The inference functions for the marginal distribution method (IFM) proposed by
Joe (1997) [30] employed for fitting copulas involves estimating the parameters of the copula. The IFM
is a fully parametric method, so the misspecification of the marginal distributions may affect the
performance of this estimator. Thus, the joint distribution is estimated expeditiously by the marginal
distributions and the parameters in the copula function are estimated using these maximum likelihood
values individually. As noted by Joe (2005) [31], use of the technique can prevent computational
difficulty for high dimensional models in the maximum likelihood estimation where the marginal
distribution parameters and the copula parameters are estimated simultaneously.

Table 2. Formulas of various copulas and their parameter estimation. GH—Gumbel–Hougaard.

Copula Type Function

Clayton C(u, v) = (u−θ + v−θ − 1)
−1/θ

GH C(u, v) = exp
{
−[(− ln u)θ + (− ln v)θ ]

1/θ
}

Frank C(u, v) = − 1
θ ln[1 + (e−θu−1)(e−θv−1)

e−θ−1 ]

2.4.2. Goodness-of-Fit Tests for Copula Functions

Copula functions were evaluated using an empirical copula function [28]. This empirical copula
was defined as follows:

Ce(u, v) =
1
n

n

∑
i=1

I[Fn(xi≤u] I[Hn(yi≤v)], u, v ∈ [0, 1] (4)

where xi, yi (i=1, 2, . . . , n) are samples from a two-dimensional distribution; n is the sample
size; and (X, Y), Fn(x), and Hn(y) are the empirical distribution functions of X and Y, respectively.
Here, I[•] is the indicator function; when Fn(xi) ≤ u, I[Fn(xi)≤u] = 1, otherwise I[Fn(xi)≤u] = 0.
The root-mean-square error (RMSE) was used to estimate the degree-of-fit between the empirical
copula and the theoretical copula [32]. The RMSE can be written as follows:

RMSE =

√
1
n

n

∑
i=1

[Cp(i)− Ce(i)]
2 (5)

where n is the sample size, Cp denotes the computed values of the theoretical copula, and Ce denotes
the observed values of the probability obtained from the empirical copula. The copula function with
the lowest RMSE value was selected at each station.

2.5. Return Periods

The return period and related probability distributions were derived for risk assessment. In this
study, the return periods for a bivariate distribution can be defined in two ways. The first method
defines the joint return periods using one random variable equaling or exceeding a certain magnitude
and/or another random variable equaling or exceeding another given magnitude. The second method
defines the conditional return periods for one random variable given that another random variable
equals or exceeds a specific value [33].

The two variables describing both types of ECEs are duration and intensity. Low
temperature/extreme low temperature events with long durations and low temperatures may have
a considerable influence on human society. In this case, the joint events considered in this study are
the following:

{D > d} ∧ {T < t} (6)
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Let D denote the duration and T the intensity, then joint return periods related to these two events
can be computed using the following:

R{D>d∧T<t} =
µ

P(D > d ∧ T < t)
=

µ

G(t)− C(F(d), G(t))
(7)

where ∧ denotes “and”, and R{D>d∧T<t} denotes the joint return period when D exceeds the specific
threshold and T is less than the specific threshold; P(D > d ∧ T < t) denotes the probability of this
event; and G(t) and F(d) are the marginal distribution functions of intensity and duration, respectively.
In this case, µ denotes the mean time interval between two successive events, with the unit of µ defined
as a year in this study [17].

The conditional probability of ECEs describes the possibility of certain extreme cold episodes.
The conditional return period of ECEs, when the given duration exceeds a certain threshold, is given
by the following:

R{T<t|D>d} =
µ

P(T < t|D > d)
=

µ
G(t)−C(F(d),G(t))

1−F(d)

(8)

and the conditional return period of ECEs with a given intensity threshold is expressed as follows:

R{D>d|T<t} =
µ

P(D > d|T < t)
=

µ

1− C(F(d),G(t))
G(t)

(9)

Return periods were interpolated to cover the whole area of Beijing using inverse distance
weighted (IDW) interpolation [34]. The risks of low temperature and extreme low temperature events,
respectively, were evaluated in this study. To analyze the changes in risk characteristics for these two
types of ECEs, data from 1978 to 2015 of each event were divided into two periods, covering from
1978 to 1998 and from 1999 to 2015.

3. Results

3.1. Low Temperature Events

3.1.1. Statistics of Low Temperature Events

The frequency, maximum duration, and mean intensity of low temperature events for each
station are presented in Table 3. Clearly, there are regional difference in frequency. Zhaitang station,
with 666 ECE occurrences, had the highest frequency. Generally, low temperature events occurred
more often during the period 1978–1998 than during the period 1999–2015. For example, at Yanqing
station, 393 events occurred before 1998, while 263 events occurred after 1998.

The maximum duration of ECEs at each station in Beijing averaged 10 d. The longest events
were recorded at Miyun station, with a low temperature event lasting 14 days in 1978–1998, and at
Pinggu station, with a low temperature event lasting 14 days in 1999–2015. There was little difference
in the mean intensity of ECEs among stations. For example, the mean intensity of 148 events at Shunyi
station from 1978 to 1998 was −11.53 ◦C, while the mean intensity of 170 events at Haidian station
from 1978 to 1998 was−11.35 ◦C. For all stations, the mean intensity of events for the period 1999–2015
was lower than for the period 1978–1998. Both frequency and mean intensity were higher from 1978 to
1998 than from 1999 to 2015, which suggests that frequency and intensity of winter low temperature
events are in decline.
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Table 3. Statistics of low temperature events for 20 meteorological stations in Beijing.

Stations Frequency The Maximum
Duration (Days) Mean Intensity (◦C)

ID Name 1978–1998 1999–2015 1978–1998 1999–2015 1978–1998 1999–2015

54398 Shunyi 148 97 13 12 −11.53 −11.43
54399 Haidian 170 105 7 6 −11.35 −11.31
54406 Yanqing 393 263 10 14 −12.52 −12.06
54410 Foyeding 323 255 9 8 −12.45 −12.32
54412 Tanghekou 354 288 10 10 −12.60 −12.68
54416 Miyun 311 239 14 9 −11.97 −11.87
54419 Huairou 180 196 8 13 −11.56 −11.92
54421 Shangdianzi 310 266 10 12 −12.09 −12.06
54424 Pinggu 319 208 10 15 −11.97 −11.74
54431 Tongzhou 196 51 10 9 −11.66 −11.17
54433 Chaoyang 187 103 10 8 −11.48 −11.28
54499 Changping 211 96 11 8 −11.48 −11.41
54501 Zhaitang 379 288 9 10 −12.14 −12.13
54505 Mentougou 184 102 10 9 −11.49 −11.51
54511 Beijing 138 74 6 8 −11.36 −11.31
54513 Shijingshan 159 70 14 8 −11.57 −11.14
54514 Fengtai 194 105 11 8 −11.35 −11.43
54594 Daxing 198 104 9 8 −11.66 −11.41
54596 Fangshan 223 135 9 6 −11.81 −11.71
54597 Xiayunling 176 125 13 13 −11.37 −11.64

3.1.2. Joint Distribution of Winter Low Temperature Based on the Copula Function

Yanqing station (ID 54506) was selected as a case study, with the aim to verify computations using
the copula function in this study. Yanqing was selected for illustration because some new venues
planned for the 2022 Winter Olympic will be built here and the ECEs are important for the Olympic
Games. The goodness-of-fit of the marginal distributions for duration and intensity of low temperature
events at Yanqing station were evaluated (Figure 2). Using the K–S test, the optimal probability
distributions for duration and intensity for 20 stations in Beijing were determined. These distributions
are listed in Table 4.

There were 393 and 263 low temperature events recorded at Yanqing station during the periods
1978–1998 and 1999–2015, respectively. At a 90% confidence level, the K–S test yielded D values of
0.0822 and 0.1005, respectively [25]. To model the intensity of these events, all probability distributions
performed well, although the GEV distribution best fitted the observed data. However, duration of
these events was only modeled by the Weibull distribution, based on the K–S test (Figure 2).

Similar results were found for the other 19 stations in Beijing (Table 4). Typically, for event
duration, only one or two distributions passed the K–S test, with marginal distributions of duration
best fitted by the Weibull distributions at the majority of stations. At a few stations, such as Miyun and
Daxing, only the normal distribution passed the K–S test; while at Xiayunling station, only the gamma
distribution passed the K–S test for the period 1978–1998. In the case of intensity, the GEV distribution
performed well for most stations. At the Haidian station, an EV distribution performed better than
other distributions in both study periods. In general, the marginal distributions of duration and
intensity of low temperature events were best fitted by the Weibull and GEV distributions, respectively.

After selecting the best-fit marginal distribution functions, the parameters of each copula function
were computed. The copula families were determined based on RMSE values. The copula that
produced the least error (lowest RMSE) was selected (Table 5). According to Table 5, the GH
copula provided the best-fit joint distribution for duration and intensity at most stations. The Frank
copula was the best-fit for only three stations during the period 1978–1998, but four stations during
the period 1999–2015. The Clayton copula distribution was selected for few stations, including
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Foyeding and Tanghekou stations, suggesting that the distributions of low temperature events may be
regionally specific.
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Figure 2. Marginal distributions for low temperature event duration (a,c) and intensity (b,d) for
Yanqing station for the study periods 1978–1998 (a,b); and 1999–2015 (c,d). EV—extreme value;
GEV—generalized EV.

Table 4. The goodness-of-fit based on the Kolmogorov–Smirnov (K–S) D statistic for marginal
distributions of duration and intensity for low temperature events at 20 meteorological stations in
Beijing. EV—extreme value; GEV—generalized EV.

Stations
The Period 1978–1998 The Period 1999–2015

Duration Intensity Duration Intensity

ID Name K–S D Distributions K–S D Distributions K–S D Distributions K–S D Distributions

54398 Shunyi 0.1318 Weibull 0.0796 GEV 0.1246 Weibull 0.0799 GEV
54399 Haidian 0.1228 Weibull 0.0706 EV 0.1255 EV 0.1080 EV
54406 Yanqing 0.0789 Weibull 0.0544 GEV 0.1001 Weibull 0.0463 GEV
54410 Foyeding 0.0905 Weibull 0.0406 GEV 0.1019 Normal 0.0511 Normal
54412 Tanghekou 0.0872 Normal 0.0402 Normal 0.0954 Weibull 0.0394 GEV
54416 Miyun 0.0928 Normal 0.0522 GEV 0.1043 Normal 0.0451 GEV
54419 Huairou 0.1210 Weibull 0.0697 EV 0.1118 Weibull 0.0581 GEV
54421 Shangdianzi 0.0924 Weibull 0.0413 GEV 0.0950 Weibull 0.0371 GEV
54424 Pinggu 0.0909 Normal 0.0422 GEV 0.1112 Weibull 0.0668 GEV
54431 Tongzhou 0.1061 Weibull 0.0852 GEV 0.1005 Weibull 0.1388 Normal
54433 Chaoyang 0.1155 Weibull 0.0647 GEV 0.1532 Weibull 0.0944 GEV
54499 Changping 0.1107 Weibull 0.0742 Normal 0.1601 Weibull 0.0708 GEV
54501 Zhaitang 0.0836 Weibull 0.062 GEV 0.0907 Weibull 0.0467 GEV
54505 Mentougou 0.1134 Weibull 0.0682 GEV 0.1602 Weibull 0.0890 GEV
54511 Beijing 0.1373 Weibull 0.0683 GEV 0.1447 Weibull 0.0764 EV
54513 Shijingshan 0.1229 Weibull 0.0614 GEV 0.1696 Weibull 0.0873 EV
54514 Fengtai 0.1128 Weibull 0.0675 GEV 0.1104 Weibull 0.0844 Normal
54594 Daxing 0.1159 Normal 0.0635 GEV 0.1580 Normal 0.0681 GEV
54596 Fangshan 0.1084 Weibull 0.0494 GEV 0.1360 Weibull 0.0948 GEV
54597 Xiayunling 0.1224 Gamma 0.0736 GEV 0.1340 Weibull 0.0710 Normal
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Table 5. Parameter estimation and root-mean-square error (RMSE) for selected copula distributions for
20 meteorological stations in Beijing.

Stations 1978–1998 1999–2015

ID Name θ RMSE Copula θ RMSE Copula

54398 Shunyi 1.0135 0.0883 GH 1.0001 0.0886 GH
54399 Haidian 1.0001 0.0122 GH −2.2989 0.0506 Frank
54406 Yanqing 0.1197 0.0154 Clayton 1.0000 0.0807 GH
54410 Foyeding 0.3651 0.0107 Clayton 0.1610 0.0150 Clayton
54412 Tanghekou 0.2985 0.0144 Clayton 0.3024 0.1158 Clayton
54416 Miyun 1.0000 0.1048 GH 1.0000 0.0150 GH
54419 Huairou 1.0136 0.0871 GH 1.0001 0.1030 GH
54421 Shangdianzi 0.0118 0.0921 Clayton 0.0310 0.1156 Clayton
54424 Pinggu 1.0000 0.1062 GH 1.0000 0.0855 GH
54431 Tongzhou 1.0001 0.0775 GH 1.0000 0.0174 GH
54433 Chaoyang 1.0013 0.0166 GH 1.0013 0.0168 GH
54499 Changping 1.4500 0.1061 GH 1.0001 0.0218 GH
54501 Zhaitang −0.9643 0.0979 Frank −1.3006 0.0997 Frank
54505 Mentougou 1.0001 0.1091 GH 1.0000 0.1090 GH
54511 Beijing 1.0017 0.1114 GH 1.0000 0.1084 GH
54513 Shijingshan 1.0000 0.0849 GH 1.0000 0.0130 GH
54514 Fengtai 1.0001 0.1046 GH −2.3676 0.0247 Frank
54594 Daxing −2.0774 0.1111 Frank 1.0000 0.1094 GH
54596 Fangshan 1.0000 0.0933 GH −1.8516 0.0190 Frank
54597 Xiayunling −2.6704 0.0870 Frank 1.0001 0.0616 GH

For the marginal distributions of the intensity and duration of low temperature events, the joint
cumulative distribution function for the Yanqing station is shown in Figure 3. In the next section, these
joint distributions are used to predict the return periods of winter low temperature events.
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Figure 3. Joint cumulative distributions of intensity and duration for winter low temperature events at
Yanqing station for the study periods: (a) 1978–1998, and (b) 1999–2015.

3.1.3. Return Period and Risk Analysis

Here, we consider only one scenario in our analysis of joint return periods, that is, the duration of
events greater than 3 days duration with an intensity below−12 ◦C but above−15 ◦C. The results of the
joint return period (Figure 4) suggest there is spatiotemporal variation to the risk of low temperature
events within the study area.
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Figure 4. Spatial distributions of joint return periods for low temperature events during study periods:
(a) 1978–1998; (b) 1999–2015 (unit: year).

Larger joint return periods imply a smaller probability that low temperature events will occur,
and vice versa. Figure 4a,b show similar spatial patterns to return periods for both study periods.
The highest low temperature risk was calculated for areas north and west of Beijing. Return periods
exhibited a northeast–southwest trend, consistent with the topography of the Beijing region (Figure 1).
This indicates that under the influence of topography, low temperature events occur more frequently
in the northern and western mountainous areas of Beijing and less frequently on the plain.

Comparison of Figure 4a,b shows a general decrease in the risk of low temperature events after
1999, particularly in the central area of Beijing. Low temperature events were more prevalent during the
period 1978–1998, with frequencies that were twice as high as during the period 1999–2015. Although
there was still a high risk of low temperature events in Huairou, Miyun, and Pinggu from 1999 to 2015,
the area of high risk has shrunk.

The spatial patterns for conditional return periods are shown in Figures 5 and 6. Two scenarios
were considered in our analysis of conditional return periods, that is, (1) with an intensity below
−12 ◦C but above −15 ◦C, and given duration exceeding 3 days (Figure 5); and (2) a duration greater
than 3 days with a given intensity threshold below −12 ◦C but above −15 ◦C (Figure 6).

The main concentration of low values for the conditional return period R{T<−12|D>3} was over
Huairou, Yanqing, and Mentougou stations (Figure 5), which means that events with an intensity
in the range from −12 ◦C to −15 ◦C with a duration exceeding 3 days occurred frequently in these
regions. The northern parts of Beijing experienced a shorter conditional return period compared with
southeastern parts. The conditional return periods of R{T<−12|D>3} during the period 1999–2015 were
larger than those during the period 1978–1998. The largest differential between study periods occurred
at Tongzhou station, with R{T<−12|D>3} values ranging from 0.35 to 1.77 years.
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intensity threshold of below −12 ◦C and above −15 ◦C for study periods: (a) 1978–1998; (b) 1999–2015
(unit: year).

The spatial distributions for R{T<−12|D>3}(Figure 5) and R{D>3|T<−12}(Figure 6) are relatively
consistent, implying there was a high probability of concurrence of low temperature events in winter
with longer duration and lower temperatures. The results for R{D>3|T<−12} showed that the southern
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areas of Beijing had an extended conditional return period, compared with northern areas. Hence,
the northern areas of Beijing experienced recurrent events more frequently, compared with southern
areas. Comparing Figure 6a,b, a general increase in conditional return period of R{D>3|T<−12} after
1999 is observed, particularly at Tongzhou station. However, Miyun, Yanqing, and Mentougou
stations experienced shorter return periods during the study period 1999–2015 than during the period
1978–1998, which contrasts with the conditional return period for R{T<−12|D>3}. This indicates that
the risk of a low temperature event lasting a long time was higher at Miyun, Yanqing, and Mentougou
stations after 1998.

In addition, by comparing the spatial distributions for R{T<−12|D>3} (Figure 5) and R{D>3|T<−12}
(Figure 6), it can be found that the conditional return period of R{D>3|T<−12} is smaller than that of
R{T<−12|D>3}. It indicates that the risk of the first scenario corresponding the conditional return period
of R{T<−12|D>3} (Figure 5) happening is lower than the risk of the second scenario corresponding to
the conditional return period happening.

3.2. Extreme Low Temperature Events

3.2.1. Statistics of Extreme Low Temperature Events

Descriptive statistics for extreme low temperature events are presented in Table 6. There is a
strong spatial variability in their frequency. Extreme low temperature events occurred 411 times
at Tanghekou station during the period from 1978 to 2015, while only 12 extreme low temperature
events occurred elsewhere in Beijing during this period. There were large differences in the maximum
duration among stations. For instance, there was an extreme low temperature event lasting 10 days
at Tanghekou station in the period from 1978 to 2015. However, elsewhere in Beijing, extreme low
temperature events lasted for a maximum of 2 days.

Table 6. Statistics of extreme low temperature events for 20 meteorological stations in Beijing.

Stations Frequency The Maximum
Duration (Days) Mean Intensity (◦C)

ID Name 1978–1998 1999–2015 1978–1998 1999–2015 1978–1998 1999–2015

54398 Shunyi 14 10 2 7 −16.20 −16.63
54399 Haidian 10 9 2 2 −15.97 −16.06
54406 Yanqing 226 97 16 15 −17.03 −16.48
54410 Foyeding 203 138 21 17 −17.65 −17.38
54412 Tanghekou 221 190 17 23 −16.69 −17.28
54416 Miyun 94 59 9 11 −16.45 −16.46
54419 Huairou 18 37 4 11 −15.93 −16.36
54421 Shangdianzi 101 85 11 11 −16.29 −16.34
54424 Pinggu 102 38 5 7 −16.32 −16.28
54431 Tongzhou 25 2 3 1 −16.14 −15.65
54433 Chaoyang 12 7 3 4 −15.94 −15.94
54499 Changping 19 6 2 3 −15.99 −16.08
54501 Zhaitang 118 98 9 11 −16.26 −16.45
54505 Mentougou 15 9 1 4 −15.94 −15.95
54511 Beijing 7 5 1 2 −15.3 −15.73
54513 Shijingshan 14 2 2 2 −15.70 −15.95
54514 Fengtai 15 5 2 6 −15.73 −15.79
54594 Daxing 24 7 3 4 −15.96 −15.77
54596 Fangshan 34 22 4 4 −16.05 −16.19
54597 Xiayunling 13 16 5 4 −15.49 −15.92

For all stations, the mean intensity of events for the period 1978–2015 was about−16 ◦C. Although
the frequency of events during the period 1978–1998 was higher than for the period 1999–2015 for
all stations. In contrast, the mean intensity of events was lower for the period 1978–1998 than for
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1999–2015 at 15 of the 20 stations. This suggests the occurrence of extreme low temperature events is
in decline, although the intensity of these events is increasing.

3.2.2. Joint Distribution of Winter Extreme Low Temperature Based on the Copula Functions

The best-fit distribution for each extreme low temperature variate was selected using K–S test
statistics (Table 7). Clearly, the best marginal distribution for duration was the Weibull distribution for
all stations in mountainous areas to the north and west of Beijing. Meanwhile, the EV distribution was
the best marginal distribution for the stations on the plain, although normal, gamma, and lognormal
distributions were better fits for certain stations on the plain for the period 1999–2015.

Table 7. The goodness-of-fit based on Kolmogorov-Smirnov (K–S) D statistics for duration and intensity
of extreme low temperature events at 20 meteorological stations in Beijing .

Stations The Period 1978–1998
Duration

The Period 1978–1998
Mean Temperature

The Period 1999–2015
Duration

The Period 1999–2015
Mean Temperature

ID Name K–S D Distributions K–S D Distributions K–S D Distributions K–S D Distributions

54398 Shunyi 0.1974 EV 0.1617 GEV 0.2020 Normal 0.1640 GEV
54399 Haidian 0.1937 EV 0.1521 GEV 0.1570 EV 0.1086 EV
54406 Yanqing 0.1064 Weibull 0.0542 GEV 0.1615 Weibull 0.0680 GEV
54410 Foyeding 0.1102 Weibull 0.0488 EV 0.1248 Gamma 0.0751 GEV
54412 Tanghekou 0.1093 Weibull 0.0668 GEV 0.1162 Gamma 0.0575 EV
54416 Miyun 0.1632 Normal 0.0613 GEV 0.1148 Normal 0.0678 GEV
54419 Huairou 0.1868 EV 0.1126 GEV 0.1700 Weibull 0.0733 GEV
54421 Shangdianzi 0.1630 Weibull 0.0626 GEV 0.1623 Weibull 0.0892 GEV
54424 Pinggu 0.1254 EV 0.1017 EV 0.1944 Weibull 0.0669 EV
54431 Tongzhou 0.1729 EV 0.0967 GEV 0.2997 Normal 0.2602 Normal
54433 Chaoyang 0.1563 EV 0.1330 EV 0.2753 EV 0.1995 EV
54499 Changping 0.1210 EV 0.0626 GEV 0.2762 Weibull 0.1811 Normal
54501 Zhaitang 0.1401 Weibull 0.0794 GEV 0.1476 Weibull 0.0759 EV
54505 Mentougou 0.2602 Normal 0.2002 GEV 0.1338 EV 0.1245 GEV
54511 Beijing 0.2595 Normal 0.1549 Normal 0.2673 Lognormal 0.1276 Normal
54513 Shijingshan 0.1974 Weibull 0.1874 GEV 0.2466 Normal 0.1602 Normal
54514 Fengtai 0.1898 Weibull 0.1237 Normal 0.2246 Weibull 0.1232 GEV
54594 Daxing 0.1764 EV 0.1102 GEV 0.2105 EV 0.1117 EV
54596 Fangshan 0.1734 EV 0.0974 GEV 0.1950 Weibull 0.1422 GEV
54597 Xiayunling 0.3980 EV 0.2614 Normal 0.2450 Weibull 0.1032 Normal

The selected marginal distributions for mean intensity showed that the GEV distribution was the
preferred marginal distribution for most stations for both study periods. For the period 1978–1998,
only three stations had a better fit using an EV distribution, although this rose to six stations for the
period 1999–2015. Likewise, more stations were best-fitted using a normal distribution in the latter
study period.

The goodness-of-fit of the marginal distributions of duration and intensity for extreme low
temperature events at Yanqing station were also evaluated (Figure 7). There were 226 and 97 extreme
low temperature events at Yanqing station during study periods 1978–1998 and 1999–2015, respectively.
At a 90% confidence level, values of the K–S D statistic for these periods were 0.1084 and 0.1655,
respectively. For intensity, the GEV distribution was the best marginal distribution at Yanqing station,
although other distributions also passed the K–S test. For duration, only the Weibull distribution
passed the K–S test (Figure 7).

The best copula model was selected and listed for each station in Table 8. Generally, the GH copula
was selected as the best copula to represent the relationship between extreme low temperature intensity
and duration. However, the Frank copula yielded the smallest RMSE value for nine stations during
the period 1978–1998 and for two stations during the period 1999–2015. The Clayton copula was the
best-fit for only one station during the period 1978–1998 but three stations during the period 1999–2015.
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Figure 7. Marginal distributions of extreme low temperature event duration (a,c) and intensity (b,d) at
Yanqing station for study periods: 1978–1998 (a,b) and 1999–2015 (c,d).

Table 8. Parameter estimation and root-mean-square error (RMSE) for selected copula distributions for
20 meteorological stations in Beijing.

Stations 1978–1998 1999–2015

ID Name θ RMSE Copula θ RMSE Copula

54398 Shunyi −0.8500 0.0957 Frank 0.0448 0.1815 Clayton
54399 Haidian 1.0001 0.0826 GH 1.0001 0.1319 GH
54406 Yanqing 1.0000 0.0688 GH 1.0000 0.1046 GH
54410 Foyeding 1.0015 0.0676 GH 1.0000 0.0571 GH
54412 Tanghekou 1.0000 0.0581 GH 1.0000 0.0760 GH
54416 Miyun 1.0135 0.1233 GH 1.1400 0.1520 GH
54419 Huairou 1.1157 0.0445 GH 1.0000 0.1157 GH
54421 Shangdianzi −2.3067 0.0276 Frank 1.0013 0.1111 GH
54424 Pinggu 1.0000 0.0204 GH −2.2779 0.1010 Frank
54431 Tongzhou −1.7019 0.1288 Frank 0.1749 0.2002 Clayton
54433 Chaoyang −2.9860 0.1394 Frank 1.0000 0.2104 GH
54499 Changping −2.4250 0.1043 Frank 1.0000 0.2213 GH
54501 Zhaitang 1.0013 0.0550 GH 1.0003 0.08858 GH
54505 Mentougou −0.5220 0.1168 Frank −3.3670 0.1824 Frank
54511 Beijing 0.0210 0.0762 Frank 1.0000 0.2241 GH
54513 Shijingshan −1.7901 0.1804 Frank 0.1749 0.2002 Clayton
54514 Fengtai 1.0046 0.1159 GH 1.0001 0.2008 GH
54594 Daxing 0.0972 0.0471 Clayton 1.0000 0.2031 GH
54596 Fangshan −1.0530 0.1263 Frank 1.0001 0.1833 GH
54597 Xiayunling 1.0001 0.2294 GH 1.0001 0.1201 GH

The best-fit copula-based joint distributions of Yanqing station for both study periods are plotted in
Figure 8. Clearly, the copula distribution reflects the dependence of correlated extreme low temperature
variables. Comparing Figures 3 and 8, it can be found that the best-fit copula-based joint distributions
of Yanqing station for two types of ECEs are different. The Clayton copula and GH copula were the
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best-fit for winter low temperature events for two time periods, respectively. However, the GH copula
was the best-fit for winter extreme low temperature events for both two time periods.
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3.2.3. Return Period and Risk Analysis

The return period calculations were supported by IDW interpolation mapping, as shown in
Figures 9–11. Figure 9 shows the spatial patterns of joint return periods, corresponding to events
of duration longer than 2 days and intensity below −15.5 ◦C. The spatial distributions of the return
periods varied between study periods. Short return periods were mainly concentrated in northern
and western areas of Beijing, especially in mountainous areas. Long return periods mainly occurred in
urban centers. During the period 1978–1998, the return period varied from 0.2 year to almost never.
However, during the period 1999–2015, the return period varied from 0.15 to 45 years, showing a
general increase in the risk of extreme low temperature events compared with the earlier period.
During the period 1978–1998, extreme low temperature events were unlikely in urban centers, while
during the period 1999–2015, these centers were likely to experience such an event once every 20 years
on average.

The spatial distribution of the conditional return periods corresponding to an intensity below
−15.5 ◦C with a given duration exceeding 2 days is shown in Figure 10. From 1978 to 1998, the return
period of R{T<−15.5|D>2} varied from 0.1 to 50 years. Short return periods were mainly distributed in
northern areas of Beijing, with an average return period of less than 1 year. Meanwhile, southeast
areas of Beijing had longer return periods of greater than 10 years. From 1999 to 2015, the return
period of R{T<−15.5|D>2} varied from 0.1 to 12 years, with an average of 4 years. Short return periods
were also mainly distributed in northern areas of Beijing, covering an expanded area compared with
the earlier period. The return period in urban centers was less than 10 years, which is much shorter
than the return period for the earlier study period. This indicates that events with an intensity below
a threshold of −15.5 ◦C and a given duration exceeding 2 days occurred with increased frequently
during the period 1999–2015.

The spatial distributions of conditional return periods of R{D>2|T<−15.5} are shown in Figure 11
for both study periods. Clearly, the spatial distribution of the return periods of R{D>2|T<−15.5} changed
significantly. The return periods from 1978 to 1998 were longer than the return periods for the study
period 1999–2015. From 1978 to 1998, extreme low temperature events rarely occurred in most regions
of Beijing, although they occurred once every 2 years at Yanqing, Huairou, and Miyun stations.
In contrast, the return period varied from 0.15 to 40 years for the study period 1999–2015. Extreme low
temperature events were most likely to occur in suburbs, on average every 2 years. The risk of extreme
low temperature events was relatively low in all urban areas.
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By comparing Figures 10 and 11, it can be found that the conditional return period of
R{T<−15.5|D>2} is smaller than that of R{D>2|T<−15.5}. This indicates that the risk of the first scenario
corresponding to the conditional return period of R{T<−15.5|D>2} (Figure 10) happening is higher
than the risk of the second scenario corresponding to the conditional return period of R{D>2|T<−15.5}
happening (Figure 11), which is different from the comparison between the two conditional return
periods for low temperature events.

4. Discussion and Conclusions

Quantifying natural disaster risks using multivariate indicators can lead to an assessment of major
natural disasters that is more accurate, and allows preventive measures to be taken earlier to reduce
losses of life and property [18–20]. In this study, a methodology to establish probabilities and return
periods for risk analysis and disaster mitigation using copulas was presented. A risk assessment of
two types of winter ECEs in Beijing, namely low temperature and extreme low temperature events,
was carried out. An event was described using two variables: duration and intensity. These variables
were separately modeled by different marginal distributions and joined using copula functions. Based
on the return period function, the joint and conditional return periods were calculated, and their
corresponding spatial distributions were discussed.

Six marginal distributions were considered. Generally, the Weibull and GEV distributions
provided the best goodness-of-fit for duration and intensity, respectively (Tables 4 and 7). Three copula
functions were applied to construct the bivariate joint probability distribution. The GH copula
proved to be the best model for calculating the joint distribution of low temperature event variables
(Tables 5 and 8). Both the GH and Frank copulas were suited to construct the joint distribution of
extreme low temperature event variables.

The spatial distributions of different return periods highlighted significant regional differences
(Figures 4–6 and 9–11). Generally, both low temperature and extreme low temperature events had
short joint return periods and conditional return periods in northern and western mountainous areas
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of Beijing. Events with low temperature and long duration were less likely to occur in urban centers
and southeastern areas of Beijing. The spatial distributions of return periods for low temperature
and extreme low temperature events were approximately the same, but there were differences in
the frequencies of these two kinds of events over the two study periods. These temporal changes
suggest that the frequency, duration, and intensity of low temperature events have generally decreased
since 1998. In contrast, extreme low temperature events have become longer and more intense in
Beijing over the last 18 years, especially in southeastern areas of Beijing, which generally have had a
low risk of extreme low temperature events. We found that Beijing experienced fewer events driven
by low temperatures, but more events driven by extremely low temperatures over the most recent
study period, compared with data from prior to 1998. Such findings support a tendency toward more
extreme events as global temperatures rise [35–38]. Our results provide useful modeling for authorities
given that increases in extreme low temperature events will likely become more frequent, despite
global warming.

The purpose of this study was to use copula functions to establish a joint probability distribution
of meteorological data. Using these distributions, we calculated the joint return period and conditional
return period to establish risks related to ECEs. Our results have shown that calculations of the return
period based on the copula function can act as an accurate and convenient framework for disaster
assessment. Although the study period of 48 years considered herein is relatively short, it demonstrates
the advantages of using a joint probability distribution. We plan to extend the time series of ECEs to
continue to verify the accuracy of calculated return periods using a larger data set.
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