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Abstract: The prediction skill for the East Asian winter monsoon (EAWM) has been analyzed, using
the observations and different climate models that participate in the APEC Climate Center (APCC)
multi-model ensemble (MME) seasonal forecast. The authors first examined the characteristics
of the existing EAWM indices to find a suitable index for the APCC seasonal forecast system.
This examination revealed that the selected index shows reasonable prediction skill of EAWM
intensity and well-represents the characteristics of wintertime temperature anomalies associated
with the EAWM, especially for the extreme cold winters. Although most models capture the main
characteristics of the seasonal mean circulation over East Asia reasonably well, they still suffer from
difficulty in predicting the interannual variability (IAV) of the EAWM. Fortunately, the POAMA
has reasonable skill in capturing the timing and strength of the EAWM IAV and reproduces the
EAWM-related circulation anomalies well. The better performance of the POAMA may be attributed
to the better skill in simulating the high-latitude forcing including the Siberian High (SH) and Artic
Oscillation (AO) and the strong links of the ENSO to the EAWM, compared to other models.
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1. Introduction

The East Asian winter monsoon (EAWM) is one of the most active climate systems in the
northern hemisphere during the boreal winter and is driven by the thermal contrast between the cold
Asian continent and the neighboring warm oceans [1]. The characteristics of EAWM are found as
a strong Siberian high (SH), the East Asian trough (EAT) at 500 hPa, the East Asian jet stream (EAJS),
the northwesterly wind over East Asia and frequent cold surges which exhibit strong interannual
variations that affect the temperature and precipitation over the Asia region [2–5]. The EAWM plays
a significant role in the economies of societies in the East Asia region and cause the potential occurrence
of severe flooding and cold extreme disasters, such as extremely low temperatures, unexpected
blizzards and freezing rain in Southeast Asian countries [6,7].

The variations of the EAWM are controlled not only by tropical forcing such as the El Nino-Southern
Oscillation (ENSO) and the tropical Indian Ocean sea surface temperature [8,9] but also by high-latitude
forcing such as Eurasian snow cover, the Siberian high and the Arctic Oscillation (AO) [10–12]. Many studies
have explored the impact of the EAWM variability, focusing on the AO and/or ENSO. On the other
hand, several studies have argued for a decreasing role of the ENSO [13] and an increasing role of other
large-scale patterns, originating in the Northern Hemispheric mid-latitudes or the Arctic, in influencing
East Asian winter temperatures [14–16]. Recent studies have suggested the combined effects of the AO and
Western Pacific (WP) pattern [17] and the AO and Eurasian teleconnection (EU) [18] on East Asian winter
temperatures and monsoons.

The EAWM index is often used efficiently to quantify the intensity of the EAWM and describing
its climate impacts and responsible mechanisms. Therefore, many studies have applied different
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methods to construct a simple and representative EAWM index [4,19–21]. Most of the indices were
primarily defined by the circulation variables of the EAWM, such as the land-ocean pressure contrast,
the low-level wind, the East Asian trough and the upper zonal wind shear [22]. Recently, Wang and
Chen [9] proposed a new sea level pressure (SLP)-based index considering both the east-west and
the north-south pressure gradients. They suggested that the new index performs better in describing
the surface air temperature variations over East Asia compared with previous indices. Meanwhile,
some investigators use temperature to define the EAWM variability [1,23]. Wang et al. [1] identified
two dominant temperature (the northern and southern) modes over the EAWM region, which explain
much of temperature variability over the entire Asian region. They found that most of the existing
EAWM indices tend to describe the southern temperature mode.

Through the past couple of decades [23–27], numerical climate models have been applied to
the studies on the EAWM and even state-of-the-art models have shown a wide range of skills in
predicting the EAWM-related circulation and air temperature anomalies. Zhang et al. [28] evaluated
the Atmospheric Model Intercomparison Project (AMIP) models in simulating the EAWM, focusing on
the synoptic-scale features such as cold surges. From their study, the most models could not capture
the relationship between cold surges and tropical convection properly. Sohn et al. [29] analyzed
the seasonal prediction models in the APEC Climate Center (APCC) multi-model ensemble (MME)
seasonal forecast system. They found that the most models have difficulties in capturing the interannual
variability of East Asian climate. Recently, Li and Wang [23] showed the enhanced prediction skill
of EAWM by the models from the Development of the European Multimodel Ensemble System [30].
Jiang et al. [31] assessed the predictability of the EAWM by the National Centers for Environmental
Prediction (NCEP) Climate Forecast System (CFS) version 2 and presented considerable skill of NCEP
CFS v2 in predicting the EAWM. They emphasized the importance of ocean-atmosphere coupling in the
simulation of the EAWM and suggested various monsoon-related physical processes. Gong et al. [32]
assessed the climatology and interannual variations of the EAWM in the latest climate system models
for Coupled Model Intercomparison Project phase 5 (CMIP5) models. They pointed out that models
still suffer from biases in surface temperature and northeasterly anomalies over East Asia that are
attributed to the ability of models in capturing the EAWM-related tropical-extratropical interactions.
Despite the aforementioned studies, accurate prediction of the EAWM variability is still a challenge.

The APCC provides an important source of information on seasonal climate prediction for many
Asian countries that are affected by the EAWM. With the recent progress in the participation of climate
models in the APCC MME seasonal prediction, a comprehensive assessment for the prediction skill
of EAWM variability was provided using the hindcast for 1983–2010, with a focus on interannual
timescale. Since the EAWM variability has large meridional extent (is affected by a wide range) from
the equator to the North Pole, it may represent different regional characteristics of EAWM depending
on which index is chosen and may also affect its prediction skill. Therefore, we initially examined the
characteristics of existing EAWM indices to find a suitable index in APCC seasonal forecast system
and then explored the prediction skill of EAWM variability. The dataset and the characteristics of the
EAWM index are described in Section 2. Model performance and application to seasonal forecast are
documented in Sections 3 and 4, respectively, while the summary and discussion follow in Section 5.

2. Data and Methodology

2.1. Data

Hindcast experiments from seasonal prediction models participating in the APEC Climate Center
multimodel ensemble (APCC MME) seasonal forecast are employed to measure the variability of
the EAWM. Eight out of eleven different models are selected because they cover a relatively long
period of 25 years. Table 1 presents a brief summary of the description of the two two-tier (GDAPS
and HMC) and six one-tier models (CANCM3, CANCM4, NASA, NCEP, PNU and POAMA). In this
study, the multi-model ensemble (MME) is defined as a simple average of the model runs with equal
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weighting. The mean bias from each model is removed by forming anomalies with respect to each
model’s own seasonal climatology. The hindcasts starting from November are used so that data from
the entire winter are available. Each model has different ensemble members with different initial
conditions. All model simulations examined in this study cover the common period of December,
January and February (DJF) from 1983/1984 to 2007/2008 (25 years). Here, the winter of 1983 refers to
the 1983/84 winter.

Table 1. Seasonal prediction models used in this study.

Model
Acronym Institute/Country Number

of Ensembles SST Specification

1 GDAPS Korea Meteorological Administration/Korea 20 Predicted SST

2 HMC Hydrometeorological Center of Russia/Russia 20 Persisted SST

3 CANCM3 Meteorological Service of Canada/Canada 10 Predicted SST

4 CANCM4 Meteorological Service of Canada/Canada 10 Predicted SST

5 NASA National Aeronautics and Space Administration/USA 11 Predicted SST

6 NCEP National Centers for Environmental Prediction/USA 20 Predicted SST

7 PNU Pusan National University/Korea 10 Predicted SST

8 POAMA Bureau of Meteorology/Australia 33 Predicted SST

The observations used for model verification are from the Climate Anomaly Monitoring
System-Outgoing Longwave Radiation Precipitation Index data (CAMS_OPI) [33], Sea Surface
Temperature (SST) from the National Oceanic and Atmospheric Administration (OI SST) [34] and the
atmospheric variables such as sea-level pressure, air temperature, winds and geopotential height from
the National Centers for Environmental Prediction (NCEP) Department of Energy Atmospheric Model
Intercomparison Project–II Reanalysis (hereafter referred to as NCEP-R2) [35], which covers the same
common period. All data were interpolated to common 2.5◦ latitude × 2.5◦ longitude grids.

2.2. EAWM Index

The EAWM index is especially useful for monitoring and predicting the strength of EAWM at
an operational climate center and understanding the EAWM-related circulation and temperature
anomalies. In this study, a suitable index for the APCC forecast system is selected by comparing the
existing indices found from the previous studies. The selection from the 11 indices listed in Table 2 has
two criteria. First, the variables used in the definition are available from the outputs of the climate
models listed in Table 1. Second, since the temperature is the most important concern for the seasonal
forecast, the correlation coefficient between the index and the winter-mean surface air temperature
averaged over East Asia exceeds −0.505 (99% confidence level based on Student’s t-test).

Figure 1 shows the interannual variation of the 11 normalized EAWM indices discussed in this
paper. The signs of the indices are adjusted to reflect the strong EAWM winters corresponding to the
positive index. It is obvious that all indices exhibit pronounced and coherent interannual variations
in a given period. The correlation coefficients of each pair of the 11 EAWM indices have values from
0.52 to 0.98 (significant at the 99% confidence level). Using the 11 EAWM indices, the strong and weak
EAWM years are defined by two criteria: (1) the interannual standard deviation of the EAWM index
exceeds 0.5 and (2) the index number that has the same phase of EAWM is greater than six among
the 11 indices. Based on these criteria, seven winters (1983, 1984, 1985, 1995, 1999, 2005 and 2007) are
identified as strong EAWM years and seven winters (1988, 1989, 1991, 1992, 1997, 2001 and 2006) are
classified as weak EAWM years. The classification of strong/weak year will be used to examine the
characteristics of winter temperatures anomalies associated with EAWM variability.
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Figure 1. Normalized December, January and February (DJF)-mean East Asian winter monsoon
(EAWM) indices for the period 1983–2007. Two dotted lines indicate ±0.5 std dev.

Table 2. Description of the 11 EAWM indices used in this study. Here, SLP: sea level pressure, U: zonal
winds and Φ: Geopotential height. Superscript * denotes the normalized field.

Index Defining Variable, Level and Regions Reference

Chan_P SLP gradient,
(30–55◦ N, 100–120◦ E) − (30–55◦ N,150–170◦ E) Chan and Li [36]

Gong_P SLP, (40–60◦ N, 70–120◦ E) Gong et al. [3]

Guo_P SLP gradient,
(10–60◦ N, 110◦ E) − (10–60◦ N, 160◦ E) Guo [19]

Shi_P SLP * gradient,
(20–50◦ N, 110◦ E) − (20–50◦ N, 160◦ E) Shi [37]

WangC_P
SLP * gradient,

{2 × (40–60◦ N, 70–120◦ E) − (30–50◦ N, 140◦ E–170◦W) − (20◦ S–10◦ N,
110–160◦ E)}/2

Wang and Chen [9]

Wang_P SLP * gradient,
(40–70◦ N, 110◦ E) − (40–70◦ N, 160◦ E) Wang et al. [38]

Wu_P SLP * gradient,
(20–70◦ N, 110◦ E) − (20–70◦ N, 160◦ E) Wu and Wang [39]

Cui_Z Φ *, 500 hPa, (35–40◦ N, 110–130◦ E) Cui and Sun [20]

Sun_Z Φ, 500 hPa, (30–40◦ N, 125–145◦ E) Sun and Li [40]

Wang_Z PC1 of Φ *, 500 hPa, (25–50◦ N, 100–180◦ E) Wang et al. [5]

Li_U
U gradient, 200 hPa

{[(30–35◦ N, 90–160◦ E) − (50–60◦ N, 70–170◦ E)] + [(30–35◦ N,
90–160◦ E) − (5◦ S–10◦ N,90–160◦ E)]}/2

Li and Yang [41]

As the EAWM exhibits strong interannual variation (IAV, Figure 1), we assess how well the APCC
MME forecast models can capture the IAV of the EAWM. Figure 2 shows the temporal correlation
coefficients of normalized monthly mean EAWM indices between the observed and the individual
model simulations as well as the MME. The results show that the prediction skill of the EAWM IAV
depends not only on the model but also on the EAWM index. In other words, some indices such as
WangC_P, Cui_Z and Li_U exhibit higher correlation than other indices and some models such as
POAMA and NCEP reproduce better prediction skill than other models. In particular, the POAMA
model captures significantly high score when WangC_P and Li_U indices are used. To select a best
EAWM index among the candidate indices for APCC MME seasonal forecast, the prediction skill in
climate models is an important criterion. In this regard, WangC_P and Li_U have an overwhelming
advantage to be selected as the suitable index. It is evident that both indices have significant prediction
skill, possibly due to the inclusion of both the tropical and the extratropical factors in their definitions.
The other indices usually reflect only one aspect of both factors [22]. This result suggests that the
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EAWM index should include both the tropical and the extratropical processes in order to well-represent
the nature of the EAWM, consistent with previous studies [2,41].

Figure 2. The temporal correlation coefficients between the observed and simulated normalized
DJF-mean EAWM indices for the period 1983–2007. Dashed lines denote the threshold values for the
95% and 99% significance levels.

In order to assess a best fitted EAWM index in operational climate centers, another important
criterion is how well the index can represent the surface air temperature anomalies associated with the
EAWM. Therefore, we examine the performances of indices in representing DJF-mean temperatures
variation over East Asia. Figure 3 shows the covariabilities of each EAWM index versus DJF-mean
surface air temperature anomaly averaged over the region of East Asia (20◦–50◦ N, 100◦–145◦ E) [42].
The “R-squared” (r2), a standard way of measuring the proportion of variance we can explain in one
variable, is inserted in the upper right corner of each plot. Among the 11 indices that participate in the
comparison, five indices (Cui_Z, Wang_Z, Sun_Z, Gong_P, WangC_P) explain greater than 50% of the
variance in DJF-mean temperature. Although the indices based on the geopotential height such as
Cui_Z, Wang_Z and Sun_Z explain higher variance in temperature, they fail to capture the extreme cold
winters associated with the strong EAWM. Taking a 0.5 standard deviation of EAWM index and 0.5 ◦C
of temperature anomaly as a criterion, both Gong_P and WangC_P show reasonable performance
in delineating the interannual variations of the EAWM including the extreme cold winters. For the
25-year period, the high (low) EAWM indices of Gong_P and WangC_P correspond to seven (three)
extreme cold (warm) winters over East Asia. It is obvious that both Gong_P and WangC_P properly
describe the relationship between the intensity of the EAWM and winter temperature extremes over
East Asia. Meanwhile, the Li_U with high prediction skill for EAWM variation shows relatively lower
performance in describing the East Asian temperature. Considering the criteria mentioned in Figures 2
and 3, it is suggested that the WangC_P could be the best fit for monitoring and predicting the EAWM
in the APCC MME seasonal forecast system.

Figure 3. Cont.
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Figure 3. Scatter plots of the normalized EAWM index vs. DJF-mean surface temperature anomalies
averaged over East Asia (100–145◦ E, 20–50◦ N) for the period 1983–2007 based on the EAWM index
defined in 11 papers listed in the references. The abscissa (ordinate) of each dot in each diagram
represents the amplitude and sign of the EAWM index (the temperature index) for an individual winter
season. The “R-squared” in the upper right corner of each plot explain the proportion of variance in
temperature. The strong (weak) EAWM year with cold (warm) winter defined in Section 2.2 is shown
at the lower right (left) corner with blue (red) characters of each plot.

To analyze how the EAWM index by WangC_P signifies the connection with synoptic activity
over the tropical Asia, the EAWM index, the cold surge index [43] and DJF-mean 2m air temperature
are displayed in Figure 4. The EAWM index is significantly correlated both with the temperature over
East Asia and with the cold surge index as −0.74 and 0.71 at the 99.9% confidence level, respectively.
When the EAWM is strong, the cold surges are active and cold anomalies over East Asia are dominant.
The result from Figure 4 indicates that the selected index developed by Wang and Chen [9] is an effective
way to describe the winter-mean surface air temperature variations connected with the EAWM,
especially for extreme cold winters.
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Figure 4. Normalized time series of the DJF EAWM index defined by Wang and Chen (2014) (red solid
line), the DJF mean air temperature at 2 m averaged over East Asia (100–145◦ E, 20–50◦ N) (blue dotted
line) and the Southeast Asian cold-surge index defined by Chang et al. [43] (green dotted line).

3. Characteristics of EAWM

3.1. Climatological Feature of EAWM

The EAWM is characterized by the strong Siberian high over the Eurasia region, the predominant
low-level northeasterly flow over the northeastern Asia, the strong meridional temperature gradient
and deep trough at 500 hPa over the East Asian coastal region and the strong jet stream just south of
Japan at 200 hPa [2–5,7].

To evaluate the performances of models in representing the climatological features of EAWM,
the DJF-mean circulation over East Asia based on the NCEP R2 dataset (hereafter referred to as
“OBS”), the MME of eight individual models and their differences are plotted in Figure 5. The MME
well-represents the major features of EAWM, such as pressure gradients between the Siberian high and
the Aleutian and Australian lows, the prominent low-level northerly wind and the strong meridional
temperature gradient over the eastern coastal region. Compared to observation, the Siberian high
in the MME is displaced slightly to the south and weakened over northern Eurasia. In addition,
the MME generally captures the strength and position of the East Asian trough and the mid- to upper
troposphere jet stream over East Asia, although there are some deviations in the magnitude and
the center locations. The model biases in MME can be explained reasonably as follows. The weak
zonal pressure gradient between the Asian continent and the neighboring oceans leads to weakened
northerly winds over northeastern Asia, which is directly related to the strength of the EAWM. As the
northerly wind over northeastern Asia becomes weak, it brings less cold air advection from Arctic
and produces a weaker meridional temperature gradient. Moreover, the weaker monsoon flow leads
to a weaker polar jet stream over East Asia, which is closely related to the meridional temperature
gradient at the surface with the thermal wind relationship.

Figure 5. Cont.
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Figure 5. Climatology (1983–2007) of the DJF mean (left panels) sea level pressure (contours, hPa),
surface air temperature (shading, ◦C) and 850 hPa winds (vectors, m s−1) (right panels). The 500 hPa
geopotential height (contours, gpm) and 200 hPa zonal wind (shading, m s−1). The upper panels are
the observations based on NCEP/NCAR R2 data (OBS), the middle panels are results of the MME of
the 9 forecast models (MME) calculated by taking the simple average of the climatology from each
model and the lower panels are the differences between the MME and the OBS.

To objectively assess the performance of models in representing the climatological features of
EAWM in more detail, we compare the pattern correlation coefficient (PCC) skill and normalized
root mean square error (NRMSE) over the entire Asian region (Figure 6). The NRMSE is the RMSE
normalized by the standard deviation, which is calculated based on the global average. Although there
are different inter-model spreads depending on the variables, most individual models can realistically
reproduce the observed climatology of EAWM. While some models demonstrate large inter-model
spread in the SLP and V850, most models show high PCC over 0.95 and low NRMSE below 0.5 in the
SLP, U200 and Z500. In addition, the MME simulates much better climatological features of the EAWM
with a high fidelity than the individual models (MME shows the highest PCC and the lowest NRMSE
in all variables), since the bias from the MME is smaller than that from the most of single models.

Figure 6. Cont.
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Figure 6. Performance of forecasts models and their MME on DJF mean sea level pressure (SLP, hPa),
850 hPa meridional wind (V850, m s−1), surface air temperature (T2m, ◦C), 200 hPa zonal wind (U200,
m s−1) and 500 hPa geopotential height (Z500, gpm). The abscissae and ordinates are the pattern correlation
coefficient (PCC) and the domain-averaged RMSE normalized by the observed spatial standard deviation
(NRMSE) of 8 models (marked by the model number in Table 1) and the MME (marked by “M”), respectively.
The domain used is the region of 60–180◦ E, 0–60◦ N. Note that each plot has different axis.

3.2. Interannual Variability of EAWM

The above analysis indicates that the climate models used in this study are capable of capturing
the major features of the DJF-mean circulation over East Asia. How well do the models predict the
EAWM IAV? To answer this question, we use the index selected in Section 2.2 as an efficient way to
describe the prediction skill of EAWM IAV. Figure 7 compares the temporal variation of the EAWM
indices from OBS and MME. Both indices experience strong variability; however, they show different
phases in most years. Although the correlation coefficient between the observed and predicted indices
is 0.35 (significant at 90% confidence level), the MME fails to capture the observed intensity of EAWM
especially in extreme winter years. The shading with pink color indicates the model spread of eight
models and implies a wide range of prediction skill for EAWM intensity that exceeds one standard
deviation of EAWM IAV in almost all years. Overall, the models are still quite diverse in simulating
the EAWM IAV, even varying in the sign of EAWM intensity of each year. This result implies that
there are still many uncertainties in predicting the EAWM IAV and accurate prediction of the EAWM
variability is still a challenge, which is consistent with previous result [44]. On the other hand, it seems
there is correlation shift before and after 1997. For the recent period (1998–2007), the MME exhibit
relatively higher correlation skill, presumably due to the intensified ENSO-EAWM relationship in the
observations and predictable component of EAWM influenced by ENSO (or relatively higher skill of
the teleconnection to the EAWM by ENSO) [44].
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Figure 7. Interannual variation of the EAWM index for observations from NCEP-R2 (black line) and
the ensemble means from the eight multi-models (red line). Dashed lines correspond to values of 0.5
and –0.5 std dev, respectively. Shading by pink denotes the range assessed from the individual model
values used in MME.

To evaluate the prediction skill for EAWM IAV by individual models, we compare the temporal
correlation coefficient of monthly mean EAWM index between the observed and each model with
MME in Figure 8. The prediction skill of EAWM IAV varies substantially from one model to another.
The prediction skill of individual models becomes diverse as the lead time increases, which leads to
the reduction of the MME skill. While most individual models and the MME show low prediction
skill, POAMA model has outstanding skill in describing the temporal variation of the EAWM IAV
throughout the winter. Figure 9 shows the circulation anomalies of OBS, MME and POAMA model
regressed onto the EAWM index. In the OBS, a strong EAWM is associated with significant cooling
anomalies from central Siberia to East Asia and enhanced positive (negative) SLP anomalies over
the Eurasian continent (North Pacific). Accompanied with the SLP anomaly, strengthened northerly
winds are observed over northeastern Asia. Although the MME roughly captures the SLP anomalies,
the thermal contrast between the cold Asian continent and adjacent warm oceans, is considerably
weaker than observations. The MME reproduce weaker northerly anomalies over northeastern Asia
and exaggerates the northeasterly anomalies through South China Sea to Southeast Asia. In addition,
the cooling anomalies from central Siberia to East Asia is not captured from the MME. In the middle
and upper troposphere, a remarkable feature is the negative geopotential height anomalies over
the East Asia and northwestern Pacific and positive zonal wind anomalies along the East Asian jet
stream. These features imply a deepened East Asian trough and accelerated East Asian jet stream in
a strong EAWM. Although the MME reproduces these features roughly, the East Asian trough and jet
stream are relatively weaker than observations. We also evaluate the individual models’ performance
in representing the EAWM-related circulation anomalies (figures not shown). While some models
(GDAPS, NCEP, PNU) generally reproduce the features of EAWM-related circulation anomalies,
they fail to reproduce enhanced northerly winds and significant cooling anomalies over northeastern
Asia, which are the prominent biases in most models. Among the forecast models used in this study,
only the POAMA describes the spatial pattern of EAWM-related circulation anomalies considerably
well, although there are some apparent biases over the Maritime Continents (MC) and the tropical
eastern Indian Ocean (IO).
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Figure 8. Correlation coefficients between the simulated and observed normalized DJF mean EAWM
index and those based on monthly values within the whole December–February period. Dashed lines
denote the threshold values for the 95% and 99% significance levels.

Figure 9. Regression onto the normalized EAWM index defined by Wang and Chen (2014) in the
NCEP-R2 dataset of the DJF mean (left panels) sea level pressure (SLP, contours, hPa), surface air
temperature (T2m, shading, ◦C) and 850 hPa winds (vectors, m s−1) (right panels) 500 hPa geopotential
height (Z500, contours, gpm) and 200 hPa zonal wind (U200, shading, m s−1). The upper panels are for
the observations based on NCEP-R2 (OBS) and the middle and bottom panels are for the MME and
POAMA results, respectively. Only values exceeding the 95% confidence level are shown. Note that
the shading and contours in MME are different to those in OBS and POAMA.
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3.3. Predictability of POAMA

Figure 10 shows the correlations of the EAWM index, AO index and Nino 3.4 index between
the OBS and the simulation by POAMA for different lead months. The skill of the EAWM decays
persistently with lead time, which shows marginal skill for up to three months. Because of the
significant impacts of the ENSO and AO on the prediction of EAWM, we also display the prediction
skill of these factors. While the model predicts the variation of Nino 3.4 SST very well for all time leads,
it shows marginal skill of the AO only for the one-month lead. The prediction skill of EAWM rapidly
decreases from the one-month lead to the two-month lead and then slightly decreases with lead time.

Figure 10. Correlation coefficients between the observed indices and the indices derived from POAMA
for different lead months. Values are shown for EAWM, AO and Nino 3.4. Two dashed lines denote the
95% and 99% confidence level, respectively. Here, the hindcast outputs were examined with different
lead times from 1 to 4 months targeting for boreal winter (DJF), which were initialized near the first
day of each month from Nov to Aug.

To access which components of the EAWM appear to have a larger impact on the prediction skill,
we analyze the EAWM-related circulation anomalies for different lead times (Figure 11). The anomalies
in the one-month lead with high skill are more similar to the observations than longer lead months
and their magnitudes gradually weaken with lead time. In particular, the predicted anomalies in the
SLP, T2m and 850 hPa wind over the Asian continent vary sharply from the one-month lead to the
two-month lead. The model does not capture the EAWM-related circulations over the Asian continent
(north of 35◦ N), except for the one-month lead prediction. In the upper atmospheric circulation,
the anomalies do not show consistent features for long leads. For example, the anomalies in Z500
and U200 of the three-month lead are relatively well represented than those of the one-month lead
compared to the two- and four-months leads. This result indicates that the predictability of EAWM
strongly depends on the skill in predicting the anomalies over Asian continent. Taking into account
the significant link of the EAWM with the ENSO (AO), predictability of EAWM is also influenced
by the model’s ability of the teleconnection to the EAWM by ENSO (AO). According to the previous
analysis by Wang et al. [1] and Jiang et al. [32], the ENSO primarily affects the tropical components
of the EAWM, while the AO affects the extratropical components of EAWM from the high latitude
continent. The model only captures the AO-related circulation over the Ural Mountains and the North
Pacific for the one-month lead, although the magnitude of the predicted circulation is weaker than the
observation (not shown). This result supports that the POAMA can only predict the EAWM and partly
is due to the skillful prediction of AO at one-month lead.
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Figure 11. Same as Figure 9 except for one-month (1M), two-months (2M), three-months (3M) and
four-months lead (4M).

4. Seasonal Forecast

4.1. Winter Temperature

The EAWM IAV is a highly influential factor for the seasonal forecast in the wintertime; therefore,
better prediction skill of the EAWM intensity, in turn, leads to a better skill of the seasonal forecast.
In this section, we focus on the performance in simulating the temporal and spatial variations of
surface air temperature anomalies over East Asia. As mentioned in Figure 9, significant cooling is
observed from central Siberia to East Asia when the EAWM is strong. This feature is confirmed
with other observation conducted by researchers at the University of Delaware (UD) [45], which also
shows predominant cooling in southeast China and Korea (not shown). The POAMA successfully
captures the spatial pattern of EAWM-related temperature anomalies, although the magnitude of
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the anomalies is relatively weaker than observations with the excessive cold bias over the Indochina
Peninsula. Moreover, the POAMA shows advanced skill in reproducing the temporal variations of
the DJF-mean surface air temperature anomalies, compared to other individual models and the MME.
Figure 12 compares the covariability of the EAWM index with the DJF-mean surface air temperature
anomaly averaged over East Asia using the OBS, MME and POAMA. Both observations (NCEP-R2
and UD) show a distinct extreme phase of surface air temperature according to the strength of the
EAWM. The MME cannot delineate the variance in temperatures related to the EAWM nor the extreme
phases of cold/warm winters over East Asia. On the other hand, the POAMA generally reproduces
not only the variance in temperature but also the relationship between the strength of the EAWM and
the surface air temperature extremes over East Asia.

Figure 12. Scatter plots of normalized EAWM index vs. DJF-mean temperature anomalies averaged
over East Asia (100–145◦ E, 20–50◦ N) for the period 1983–2007 based on the EAWM index defined by
Wang and Chen (2014).

4.2. A Tailored EAWM Index

For the sake of a more reliable seasonal forecast of the winter season, efforts have been made to
improve the forecasting techniques of EAWM intensity. We recommend the use of the modified EAWM
index, which is newly calculated considering the model bias of POAMA. Figure 13 displays the SLP winter
climatology with the SLP regions selected to define the original (blue color) and modified (red color) EAWM
index. The original EAWM index developed by Wang and Chen [9] is calculated as follows:

IEASM = (2× SLP∗1 − SLP∗2 − SLP∗3 )/2 (1)

SLP1 = Siberia[40◦ − 60◦ N, 70◦ − 120◦ E] (2)
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SLP2 = North Paci f ic[30◦ − 50◦ N, 140◦ E− 170◦ W] (3)

SLP3 = Maritime Continent[20◦ S− 10◦ N, 100◦ − 160◦ E] (4)

The normalized SLP is used because the SLP variance is small in the tropical region compared
to that in the midlatitudes. In Figure 13, we can find that the POAMA has systematic errors in
simulating the location and variance of the pressure system, including the Siberian high, the Aleutian
low and the MC low. The Siberian high given by the POAMA is displaced to the south compared to
observations and Aleutian low and the MC low are also located further westward and northward
compared to observations. These errors in the SLP system give rise to a failure in prediction of the
EAWM IAV. Taking into account the model bias and TCC (Temporal Correlation Coefficient) skill of
the SLP, the EAWM index is newly calculated based on the modified pressure areas as follows:

SLP′1 = Siberia[30◦ − 45◦ N, 70◦ − 110◦ E] (5)

SLP′2 = North Paci f ic[25◦ − 45◦ N, 135◦ E− 170◦ W] (6)

SLP′3 = Maritime Continent[10◦ S− 20◦ N, 120◦ − 150◦ E] (7)

To evaluate the performance of the modified index, we compare the prediction skill of the original
EAWM IAV with that of the modified index. The results show that the modified EAWM index improves the
temporal and spatial variations of the EAWM IAV with higher fidelity than the original index (not shown).
Moreover, the index based on the modified area shows better predictability than that based on the original
areas and the prediction skill maintains statistically significant levels for most lead months (Figure 14).

Figure 13. The climatology and standard deviation of DJF mean SLP for the period 1983–2007. The three
rectangles with blue and red colors indicate the areas used to define the original and modified EAWM
index, respectively.
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Figure 14. Correlation coefficients between observed and simulated indices from POAMA for different
lead months. Red solid line and blue dotted line indicate original and modified index, respectively.
And two black dashed lines denote the 99% and 95% confidence level, respectively.

5. Discussion and Summary

The present study provides a comprehensive assessment of the EAWM IAV by the seasonal prediction
models participating in the APCC multi-model ensemble (MME) seasonal forecast. Firstly, the author
evaluated the performances of the existing 19 EAWM indices to find a suitable index for the APCC seasonal
forecast system. The criteria used to select the EAWM index is the following: the potential predictability of
the EAWM in climate models and the representability of the wintertime temperature variations associated
with the EAWM. The selected index, developed by Wang and Chen [9], not only predicts the EAWM IAV at
a high level but also describes the variations of the wintertime temperature over East Asia, especially for
the extreme cold winters. Using the selected EAWM index, the author evaluates the prediction skill of the
EAWM IAV and the atmospheric circulation anomalies related with the EAWM.

Most of the models well represent the major mean circulation related with EAWM, such as the sea level
pressure contrast between the cold Siberian high and the warm Aleutian and Australian lows, the prominent
low-level northerly wind along the eastern coast, the strong East Asian trough and the upper troposphere
jet stream over East Asia. The MME is evidently better than individual models in simulating climatological
features of the EAWM with a high fidelity (MME shows the highest PCC and the lowest NRMSE in all
variables, except for T2m). However, most individual models and the MME still suffer from the difficulty
in predicting the interannual variability of the EAWM. This bias may arise from the shortcoming of the
models in predicting the strong Siberian High and northerly winds over northeastern Asia in a strong EAWM.
Fortunately, POAMA predicts the observed values of the EAWM intensity realistically, with a correlation
coefficient of 0.59 between the observed and predicted indices. The pattern of the EAWM-related anomalies is
also well-reproduced in POAMA, although the simulated anomalies are slightly weaker than the observations.
The better performance of the POAMA may be due to the better skill to simulate the AO-related circulation
over the Ural Mountains and the North Pacific and the strong links between ENSO and the EAWM.

For more reliable MME construction and seasonal forecasts for the winter season, efforts have
been made to improve the forecasting techniques of the EAWM intensity. Taking into account model
bias, the EAWM index is newly calculated according to the modified areas of the SLP. The modified
EAWM index improves the phase of the EAWM IAV with higher fidelity than the original index and
maintains statistically significant levels for most lead months.
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