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Abstract: This paper examines current understanding of the influence of orographic flow dynamics
on the turbulent transport of momentum and scalar quantities above complex terrain. It highlights
three key low-level orographic flow phenomena governed by gravity-wave dynamics: Foehn flow,
atmospheric rotors and gravity-wave modulation of the stable boundary layer. Recent observations
and numerical simulations are used to illustrate how these flows can cause significant departures from
the turbulent fluxes, which occur over flat terrain. Orographically forced fluxes of heat, moisture and
chemical constituents are currently unaccounted for in numerical models. Moreover, whilst turbulent
orographic drag parameterisation schemes are available (in some models), these do not represent the
large gravity-wave scales associated with foehn dynamics; nor do they account for the spatio-temporal
heterogeneity and non-local turbulence advection observed in wave-rotor dynamics or the gravity
waves, which modulate turbulence in the boundary layer. The implications for numerical models,
which do not resolve these flows, and for the parametrisation schemes, which should account for the
unresolved fluxes, are discussed. An overarching need is identified for improved understanding of
the heterogeneity in sub-grid-scale processes, such as turbulent fluxes, associated with orographic
flows, and to develop new physically-based approaches for parameterizing these processes.

Keywords: foehn; stable boundary layer; rotor; wave breaking; downslope windstorm; mixing; scalar
flux; drag; parametrization; physically-based

1. Introduction

The influence of hills and mountains (orography) on both the local and large-scale weather and
climate is well known and orographic flows have been the subject of extensive research over the past
few decades. Considerable progress has been made in terms of understanding how complex terrain
influences the environment locally, in terms of precipitation, wind flow and near-surface temperature.
The way in which orographic processes such as gravity waves and upstream flow blocking affect the
atmospheric momentum budget has also received considerable attention, in part because of the need
to parametrise orographic drag in Global Circulation Models (GCMs) to alleviate westerly flow biases
in the jet streams [1].
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The influence of orographic flows on the turbulent fluxes of momentum, heat, moisture and
other constituents is, however, much less studied and consequently poorly understood. There is a
wide range of dynamical processes, many of which are related to orographically generated internal
gravity waves, which can significantly modulate the exchange of momentum and scalar quantities
between the atmospheric boundary layer and the land or sea surface, and between the atmospheric
boundary-layer and the free troposphere. These aspects are not well represented in models, if at
all. This is particularly problematic for regional numerical weather prediction (NWP) in complex
terrain, for air-quality modelling in mountainous regions, and for global Earth System Models,
which require the representation of complex processes such as atmospheric chemistry and aerosols
among others. The application of models to forecast impacts such as avalanches, wild fires, or volcanic
ash dispersion [2], also requires an improved treatment of the way orographic flows affect turbulent
transport. In the case where atmospheric models are used to drive impact models, or where forecasts
of hazardous turbulent gusts are required, diagnostics are needed which account for the sub-grid
variability associated with these orographic processes.

The importance of orographically-generated gravity waves in redistributing momentum and
energy in the atmosphere has long been recognised. However there still remain many challenges in
observing and quantifying the importance of gravity waves, in accurately modelling their effects in
high-resolution models, and in parametrizing their effects in lower-resolution models. This is an active
area of research with a number of significant field campaigns in recent years [3,4].

The horizontal and vertical wavelength of orographically-generated gravity waves is such
that they are largely unresolved in GCMs and so their effects need to be parametrised.
Orographic gravity-wave drag parametrisation schemes have been widely used since the 1980’s
to account for the effects of gravity waves on the mean flow [5]. Gravity waves are also known
to cause mixing, either explicitly through wave breaking, or indirectly by increasing vertical wind
shear, which in turn leads to Kelvin-Helmholtz instability [6]. Again, this wave-induced mixing
of temperature and other atmospheric constituents is unresolved in weather and climate models,
but unlike wave drag it is generally not parametrised either.

Wave breaking is a major cause of clear air turbulence (CAT), which poses a hazard to aviation,
and such waves are often orographic in source, with for example clear hot spots of CAT over Greenland.
High resolution global NWP models are now able to resolve the large-scale wave field associated with
orographic gravity waves over broad mountain ranges, such as Greenland. Although the small-scale
turbulence is unresolved, the large-scale wave field can be used as the basis for diagnostics to produce
useful forecasts of CAT [7].

Here we provide a brief overview of recent progress in understanding key orographic flows and
how these appear to influence the turbulent transport of momentum and scalar quantities. The focus
is on the following low-level processes related to orographic gravity waves: Foehn flows (Section 2);
turbulent rotors associated with orographic gravity waves (Section 3); and the modulation of turbulent
fluxes by orographic gravity waves in the stably stratified boundary layer (Section 4). Each of these
orographic flow processes illustrate heterogeneity in turbulent transports and highlight this topic
as requiring future research attention. Challenges and opportunities for advancing knowledge and
improving models are discussed in Section 5.

2. Turbulent Exchange in Foehn Flows

Foehn flows were first described more than a century ago, when two mechanisms for their
warming and drying were postulated [8]. The first mechanism is the sourcing of foehn air from
higher, potentially warmer and drier, altitudes upwind of the mountain barrier, due to the blocking
of low-level flow by the mountain (the isentropic drawdown mechanism; [9]). The second mechanism
is the well-known latent heating and precipitation mechanism: During ascent on the windward slopes,
the air cools leading to condensation and latent heat gain; precipitation removes the condensed
water, rendering this heat gain irreversible and leading to warmer drier air descending the lee slopes.
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These two mechanisms have been widely discussed in the literature with a long-running debate on
which is the more important [10–12]. However, two other foehn mechanisms also exist: (a) Turbulent
sensible heating and drying of the foehn flow via mechanical mixing above rough, mountainous
terrain [13–15]; and (b) radiative heating of the low-level leeside, due to the dry, cloud-free foehn
conditions [14,16,17]. These two additional mechanisms have, until recently, been either neglected or
dismissed as unimportant.

The causes of foehn warming were directly quantified for the first time by Reference [9],
assigning heating contributions to these four mechanisms via a Lagrangian heat-budget model.
This model uses air-parcel back trajectories and output from high-resolution numerical weather
prediction (NWP) simulations to calculate the contributions. The study focused on an ideal ‘natural
laboratory’ for foehn—the Antarctic Peninsula—and their simulations use the Met Office Unified
Model (UM), a seamless weather and climate prediction system that was configured here with a
horizontal grid spacing of 1.5 km.

The Antarctic Peninsula presents a long high barrier to the prevailing atmospheric flow, with
little to disturb this flow upwind (usually to the west) and a flat homogeneous ice shelf downwind
(the Larsen C Ice Shelf), allowing foehn features to be clearly distinguished [18]. Aircraft-based
observations have been used to investigate foehn characteristics and dynamics using a case study
approach, and to validate NWP simulations [18,19]. In the cases investigated, foehn signatures in the
wind, temperature and humidity fields are seen to persist for hundreds of kilometres downwind of the
mountains. Figure 1 illustrates one such case; the north-westerly passage of air across and downwind
of the Peninsula conveyed in wind vectors and back trajectories, and strong leeside foehn warming
evident in a cross-Peninsula temperature gradient of up to 7 K. Note that ‘foehn jets’ are apparent
on the ice shelf; these are a result of gap flow acceleration through mountain passes on the Antarctic
Peninsula’s crest [18,20].
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Figure 1. Numerical simulations of a foehn wind event affecting the Antarctic Peninsula. (a) Low-level
temperature and wind vectors; (b) Low-level wind speed and back trajectories (red lines) initiated in a
foehn jet over the Larsen Ice Shelf within Whirlwind Inlet (WI). Annotated on the back trajectories are
coloured dots at 0, 50, 100, and 150 km upwind of the Peninsula’s crest. The regions marked 1 and 2
are, respectively, the Whirlwind Inlet jet and N of Whirlwind Inlet wake trajectory initiation regions.

Figure 2 illustrates the key features of the novel Lagrangian heat-budget model of Reference [9].
The model quantifies foehn-warming contributions and attributes these to particular foehn mechanisms.
It follows an air-parcel upwind from point C, near the surface in the immediate lee of the mountain range
where the foehn flow has most impact, to point B via back trajectories that follow the flow backwards
in time in Lagrangian space (e.g., Figure 1). The back trajectories are calculated using high-resolution
NWP model winds that are output at very high frequency and fed into a trajectory model.
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Figure 2. Foehn heating contributions. Panel (a) illustrates the Lagrangian heat-budget model for air
passing over a mountain and experiencing the following foehn warming mechanisms: Isentropic
drawdown (∆IDT), latent heating and precipitation (∆LHT), sensible heating due to mechanical
mixing (∆SHT), and radiative heating (∆RHT), as well as a pressure-gradient related cooling (∆∆PT).
These contributions sum to a total foehn heating (∆FT). Panels (b–d) show the foehn heating
contributions as a change in temperature (K). The total foehn warming is plotted as a large open circle
and the heating contributions are colour coded: Isentropic drawdown (green), latent heating (blue),
sensible heating through mixing (red), and pressure-gradient cooling (grey). In these cases, the radiative
heating contribution is negligible. Also shown is the cross-mountain descent (+). Six heat-budgets are
illustrated, for three cases of foehn in Whirlwind Inlet (WI) and a region north of Whirlwind Inlet (N of
WI)—see Figure 1 for locations. (Adapted from Reference [9]).

The foehn warming is the temperature change induced by the orographic disturbance, defined as
∆FT = TC − TA, where TC is the mean trajectory temperature at point C and TA is the mean temperature
at point A. It is the sum of five contributions (as defined in Figure 2a), four of which can be equated to
the foehn mechanisms described above (see Reference [9] for details). Foehn temperature anomalies
and warming contributions from each mechanism are shown in Figure 2b–d for three case studies and
for two exemplar regions: Whirlwind Inlet (WI) and North of WI (regions 1 and 2 on Figure 1b).
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It is clear from Figure 2b–d that the isentropic drawdown, latent heating and mechanical mixing processes
all make significant contributions to foehn warming. This finding overturns existing paradigms and
instead finds a significant role for turbulence in causing warming during foehn flows. In fact, in case B
sensible heating, due to mechanical mixing is dominant, providing the largest contribution in two of the
five regions. This reflects the uplift of stably stratified air over the mountains in a turbulent, non-linear
flow regime, with greater upwind ascent (i.e., less isentropic drawdown) than in case A and less upslope
precipitation than in case C (Figure 2b). In general, the importance of each mechanism depends on
both the orographically-forced flow dynamics and background meteorological conditions; and varies
from case to case. A similar approach to that in Reference [9] was taken by the authors of Reference [21]
who focused on several cases from the European Alps, using a similar Lagrangian air-parcel trajectory
analysis approach, and also found a significant role for turbulent mixing during foehn flows.

A further important role of turbulent mixing is in determining whether foehn warming will
reach the surface. In [22] it is shown that NWP forecasts with Polar WRF also over the Larsen C ice
shelf frequently exhibited significant isentropic drawdown over the Antarctic Peninsula, however a
surface signature of foehn was only observed for a fraction of these cases in automatic weather station
measurements over the ice shelf. The supposition was that the very stable boundary layer over the
ice shelf can inhibit the foehn penetrating down to the surface. Whether or not this occurs, and how
widespread the inhibition is, will be highly dependent on the turbulent mixing induced by the foehn
over and within the boundary layer. In other words, although we now believe turbulent mixing of
heat is critical in foehn flows [9,21], its impact at the surface is dependent on how foehn flows and
the atmospheric boundary layer interact. The propensity of scalar mixing in stable boundary layers is
discussed in Section 4.

Although the theoretical picture of foehn events presented in most sources is two-dimensional,
the simulations by both [8,23] demonstrate large spatial variations in the intensity and propagation of
foehn winds: Strong jets from gap flows propagate much further across the ice shelf than the weaker
flows behind peaks, which also leads to horizontal shear-generated mixing across the edges of these
jets. These terrain-generated jets and wakes and the attendant low-level potential vorticity signatures
(‘PV banners’) have been investigated previously in the lee of the Dinaric Alps with aircraft-based
observations and high-resolution numerical simulations [24,25]. While the strong and long-extending
‘bora jets’ in the lee-side boundary-layer flow result from flow acceleration through terrain gaps,
the wakes were found to be induced by dissipation associated with the low-level wave breaking,
which locally tends to accelerate the boundary layer flow beneath the breaking regions. The turbulence
characteristics of the bora flow in the cross-wind direction were found to be greatly influenced by the
mesoscale flow structure, with interchange of jets and wakes, and to be principally generated by the
local vertical wind shear along those horizontal shear lines [26].

The consequences of the above are a clear need for turbulent processes to be adequately
represented (i.e., simulated or parametrised) in the modelling of foehn flows and the gravity
wave motions which govern them. At present, only the turbulent momentum fluxes are (in some
models) parametrised over sub-grid orography, in order to represent the turbulent orographic form
drag. Typically, this is accomplished via an enhanced roughness length [27] or explicit turbulent
orographic stresses [28], but both approaches are designed to represent the drag, due to hills with
short horizontal length scales, smaller than the gravity-wave length scales associated with foehn
dynamics. Although some attempt has been made to understand how the influence of such small-scale
hills interacts with that of broader mountain ranges [29], this is only in the context of the orographic
drag contribution to the large-scale momentum budget. Existing parametrisations do not account
for the larger-scale foehn flow or represent the turbulent mixing of heat, moisture and constituents.
The impacts of this omission are likely to be profound, for example with implications for weather
forecasts in and downwind of mountainous regions; for hazard mitigation with respect to wild
fires [30], clear air turbulence for aviation [12] and volcanic ash dispersion [2]; for modelling chemical
transport and air quality [31]; and for long term predictions of ice sheet mass balance and stability [32].
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3. Turbulent Exchange Associated with Atmospheric Rotors

Trapped lee waves occur when propagating gravity waves in stable flow over terrain are
ducted and confined to a layer of the atmosphere (typically in the troposphere), thus leading to
oscillations that extend downwind of the terrain. Trapped lee waves and their prediction have been
extensively studied [33–38]. Atmospheric rotors are closely related to lee waves through wave-induced
boundary-layer separation. While less well studied than lee waves, several rotor-focused observational
studies have been undertaken recently [39–42], complementing the historic documentation of rotors of
the previous century [43–46]. Conceptually, rotors represent an overturning recirculation beneath the
crest of lee waves that have sufficiently large amplitudes to induce boundary-layer separation and
cause flow reversal at the surface downwind of the separation point. Rotors may also accompany
low-level wave breaking [47,48]. Various theoretical and numerical studies have examined the physical
mechanisms involved in rotor formation and its prediction [35,47–51], including studies of the fine-scale
turbulent structures within the rotor recirculation that are responsible for the greatest turbulence [52].
The morphology of rotor flows can contain a high degree of three-dimensionality and complexity,
and can be affected by downwind terrain [53–58].

The horizontal variability, due to lee waves, has implications for turbulent transport both above
and within the boundary layer. For instance, at the ground level, horizontal variations in wind
associated with lee waves and rotors will alter the horizontally-averaged net momentum fluxes,
with implications for surface drag parametrisation.

While some efforts to understand the influence of large-amplitude lee waves on wave drag have
been undertaken [59–61], research devoted to understanding the effects of overturning (within rotors)
and the lofting of intense turbulence on vertical exchange, is lacking. In order to begin to structure
understanding around this, the anatomy of different types of rotor flow, and the structural complexity
present in real lee-wave rotor flows are discussed below. A more detailed review of lee wave rotor
research, including challenges around predictability, is given in Reference [62].

3.1. “Type 1” Rotors

Rotors are frequently separated into two types, “Type 1”, beneath the crests of periodic,
non-breaking lee waves, and the more severe “Type 2”, generally resembling a hydraulic jump [48].
Figure 3 shows vertical cross-sections of zonal velocity through two three-dimensional (3-D) idealised
model simulations of northerly flow over the terrain of East Falkland, South Atlantic, reproduced
from a previous study [53]. Figure 3a corresponds to a “Type 1” rotor flow pattern that occurs under
a laminar lee wave pattern existing on a strong temperature inversion at the top of the boundary
layer. The reversed flow at the surface and vertical motion aloft indicate overturning beneath the first
wave crest.

An investigation of the behaviour in “Type 1” rotors at finer scales [52] depicted small “sub-rotor”
vortices forming downwind of the flow separation point. The surface layer vorticity sheet is lofted
upward into the rotor and becomes unstable and breaks down into small vortices that may intensify
before passing around the top of the main rotor. This contributes to increased turbulence and gusty
winds particularly just downwind of the flow separation point.

The implications of this rotor type for vertical exchange can be simplified by adopting a quasi-2-D
picture of rotor flow dynamics, in which the Type 1 rotor flow can be separated into three zones:

1. Lee-wave trough (or downslope flow): Shallow, highly sheared boundary layer beneath a fast
moving, (highly) stable laminar flow.

2. Flow separation region: Highly turbulent and unsteady with local overturning and strong
vertical shear.

3. Lee-wave crest: Deeper boundary layer, light winds, but highly turbulent, topped by strong shear
and stability.
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Figure 3. Vertical cross-sections of cross-ridge wind and potential temperature through two idealised
3-D simulations of northerly flow over East Falkland in (a) “Type 1” and (b) “Type 2” rotor flows.
The wind component is shaded (units are m s−1) and potential temperature contoured every 1 K.
Flow is from the right. Reproduced from Reference [53].

In each zone, substantial differences in the vertical profiles of stability and shear imply an
inhomogeneity in the vertical transport at fine scales, which may not be well represented in the fluxes
parametrised in coarse resolution models, whose grid box vertical profile reflects no resolved lee
wave motion.

Rotors furthermore involve non-local transport. The profile of turbulent fluxes in a column
located at a rotor crest is not related simply to the mean profile of wind and temperature within that
column, but is partly a result of turbulence generated in the shear under the upwind wave trough
(or downslope flow). This is advected, intensifying, from the flow-separation point (or returning
in the recirculation near the surface). Such departures from Monin-Obukhov similarity in rotors
have been cited as the likely source of poor closure in a surface-layer energy budget on Niwot Ridge
near Boulder, CO, USA [63]. In this situation, a column-based parametrisation of vertical exchange
becomes inappropriate.

In high-resolution model simulations, the main rotor overturning may be resolved by the
model, but the sub-rotor scale dynamics (and transport) parametrised or partly parametrised.
Current parametrisations take no account of the above specifics of sub-rotor turbulence dynamics,
which are unlikely to conform to standard scaling laws. This will lead to inaccuracies in fluxes around
the rotor. As the sub-rotor scale becomes partly resolved, parametrisation of the remaining sub-grid
turbulence may remain inaccurate.

Further research is needed to understand the extent of inaccuracies introduced by the structured,
non-local nature of rotor turbulence. This could involve model resolution-dependence investigations
to span the range from unresolved rotors to partially resolved sub-rotor spectra. Moreover,
greater understanding of internal rotor turbulence from observations is needed to inform parametrisation
development at a range of scales.

3.2. “Type 2” Rotors

The Type 2 rotor case resembles a hydraulic jump. In Figure 3b, this results from a stronger
temperature inversion compared to Figure 3a [47]. This flow type may notionally be split into zones in
a similar way to the Type 1 rotor case:

4. Downslope flow: akin to a wave trough for Type 1, but more intense.
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5. Breaking region: Overturning aloft introduces convective instability, dramatically enhancing
vertical transport and affecting a substantially deeper layer than Type 1 overturning; otherwise,
at the surface, analogous to the flow separation region in the Type 1 case.

6. Downwind region: Weak winds, but enhanced turbulence.

A transition from Type 1 to the more intense Type 2 would result in a step change in turbulent
transport. This non-linearity represents a challenge for effective parametrisation. It has been shown
how areas of overturning and instability (i.e., relating to point 5 in the above list) persist as they
are transported downwind [48]. Additionally, lee wave fields evolve with changing conditions and,
particularly in the Type 2 case, may be unsteady. Propagation of wave crests, either up- or downwind
(Type 1) and migration of overturning regions (Type 2) extend the non-locality of rotor transport
beyond the scale of the rotor itself. This adds another challenge for parametrisation, though some
research does exist, which could be built upon [64].

3.3. Three-Dimensional Complexity

Real flows introduce cross-flow transport, flow collision (for instance of cross-ridge winds with
along-valley flow [58]), wakes and vertically aligned vortices. This increases the scope for unsteadiness
in the flow, and reveals the deficiency of a 2-D rotor framework.

Figure 4a depicts vertical velocities at 500 m altitude in a nested UM simulation of a case (described
in Reference [39]) of large amplitude lee waves observed over East Falkland on 9 February 2001.
Figure 4b shows surface stress in the innermost nest (grid spacing 100 m). The images are zoomed over
the measurement array described in Reference [39], and highlight the complexity of the flow in three
dimensions, with a high degree of variability across-flow and the near absence of quasi-2-D structure.
Nevertheless, the wave motion aloft is mirrored in the pattern of surface stress, which in turn reflects
areas of acceleration and deceleration/reversal in the 10 m winds, as for the 2-D case.

Figure 4d shows the surface stress in the 4.4 km resolution domain (more typical of modern
regional NWP resolution), while Figure 4c shows the 100 m domain stress aggregated to the same
grid. This illustrates the detail missing at 4.4 km resolution, both in terms of amplitude and complexity.
The aggregated high resolution stress field is more intense than the 4.4 km resolution field and points to
a shortfall in the parametrised stress in downslope windstorm/rotor cases. Effects on vertical exchange
may be even more substantial away from the surface, due to the additional shear, turbulence and
vertical motion induced by the resolved rotor flow. Exchange processes with non-linear dependence
on sub-grid variability will display an even more pronounced shortfall.
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Figure 4. (a) Vertical velocities at 500 m altitude from a 100-m resolution simulation; (b–d) surface stress
from: (b) The 100-m resolution simulation; (c) coarse-grained onto a 4.4 km grid; and (d) simulated
at 4.4-km resolution. Simulations are from a one-way nested MetUM simulation of flow over East
Falkland at 12 UTC 9 February 2001. Note the colour scale in (c,d) is different to that in (b).

A comparison of Figure 4d with Figure 4b highlights the difference in peak stress (or equivalently,
u*) values. This is important for the parametrised diagnosis of gusts; a parametrisation designed as a
“boost” to the mean wind in coarse models based on a Monin-Obukhov approach will egregiously
overplay gusts at very high resolution where in any case gusts already begin to be resolved [65].

Rotors and associated downslope windstorms transport dust and chemical particulates away
from the surface, with consequences for air quality. The photograph in Figure 5, taken during a rotor
event in the T-REX campaign, shows a downslope wind-induced dust storm (see also Reference [66]).
This is an example of a non-linear response to local winds, with winds/gusts above a threshold being
required to loft dust.

Dynamically driven downslope wind and rotor systems can also be instrumental in venting
valley pollution in the absence of the thermal forcing often associated with foehn [67,68]. On the
other hand rotors can occur during foehn flows [11], potentially providing an additional source of
turbulent mixing of heat and moisture and contributing to these budgets (c.f. Figure 2). Consequently,
an inadequate simulation of rotors (or their affects) in such flows will lead to poor predictability of, for
example, near-surface temperature and humidity. Rotors will also strongly affect transport of elevated
chemical releases (similar to effects modelled in Reference [69]). These mechanisms are unresolved in
Earth System Models, while their representation in Air Quality forecast models is resolution-dependent
as for NWP models.
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Figure 5. Photo of a severe downslope windstorm/rotor in Owens Valley showing dust lofted by
downslope winds passing over the dry Owens Lake bed. The view is to the south, along the Owens
Valley, with the westerly flow from right to left. Taken during T-REX IOP-6 from the FAAM BAe-146
research aircraft (credit: Dr Barbara Brooks, National Centre for Atmospheric Science).

4. Modulation of Boundary-Layer Turbulence by Orographic Gravity Waves

Orographically generated gravity waves are often considered important, due to their role
in transporting momentum vertically through the troposphere and into the middle atmosphere.
Under the right conditions gravity waves can play an important role lower down in the boundary
layer too. As an example, waves may be trapped within wave ducts, due to the stability profile in
and above the boundary layer, in an analogous fashion to the trapped lee waves on a temperature
inversion described in the previous section, which can lead to rotors and hydraulic jumps [37,47].

Gravity waves are also a common feature of stable boundary layers (SBLs) [70]. In the very
stable boundary layer such wave motions are crucial. Strong stratification suppresses the turbulence
seen ubiquitously in other atmospheric boundary layers, and instead sub-mesoscale motions,
including waves, dominate and lead to intermittent patches of turbulence as these motions pass [71].
Various in-situ observational studies have identified wave-like motions associated with intermittent or
enhanced turbulence [72–74]. Reference [74] showed the importance of these waves on modulating
fluxes of heat and CO2 as well as momentum. This wave-turbulence interaction may be a result of
direct wave breaking, but in the SBL it is often a result of waves changing the shear locally, and hence
the Richardson number, leading to instability of the flow and turbulence [75]. Although wave activity
can be relatively easily identified in observations, identifying the source of the waves can be much
more challenging.

Not only do gravity waves directly interact with turbulence, but they can also modify other
sub-mesoscale motions, which in turn cause turbulence. For example, Reference [75] identified gravity
waves trapped within a stable boundary layer which led to oscillations in a shallow drainage flow,
while Reference [76] identified gravity wave activity above a valley which modulated the cooling rate
of the drainage flow within the valley. Reference [77] studied gravity waves formed on the top of a
katabatic drainage flow. Although linear wave theory predicts no total vertical heat flux due to the
waves, the authors of Reference [77] observed a heat flux divergence in their case study linked to
the wave motions, likely due to the nonlinear nature of the waves. Katabatic flows can also generate
internal gravity waves [78].
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Gravity waves may impact the surface energy budget in other ways. Reference [79] presented a
case study from the MATERHORN experiment where internal gravity waves with periods of ~20 min
caused temperature fluctuations of up to 1 ◦C, which in turn led to periodic formation and dissipation
of a shallow valley fog. Fog can significantly alter the local radiation budget, and hence the surface
exchange of heat.

Figure 6 shows a case study from the COLPEX field experiment studied in Reference [76].
The figure shows data from a four hour period, 18–22 UTC on 10 December 2009, part of Intensive
Observation Period (IOP) 10. Details of the experiment and instrumentation are contained in
Reference [80]. Fog formed later in the night, but skies were clear at the times shown. Doppler lidar
vertical velocity profiles show coherent wave-like patterns of ascent and decent with periods of
5–10 min, which extend from near the surface up to at least 700 m above ground level. These wave-like
motions are correlated with fluctuations in the screen temperature (measured at 1.2 m) and also
5-min average sensible heat flux 50 m above the ground. The ascent rate from a radiosonde launched
at 20 UTC shows a vertical wave structure up to a height of 4 km with a vertical wavelength of
approximately 1 km. A neutrally stratified layer, which extends between 3.5 and 5 km (not shown)
traps the wave, and so the wave amplitude is significantly reduced above this level. The observational
evidence points to a trapped wave, which modulates both the temperature and the heat flux in
the boundary layer. Like many of the studies above, this example demonstrates that although we
frequently detect wave-like motions and correlated changes in mean quantities such as temperature or
in fluxes, it is very hard from observations to make a causal link or to fully characterise the source and
characteristics of the wave.
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Figure 6. Observations of vertical velocity from lidar (a), 1.2 m temperature at 1 min intervals (b),
5-min average sensible heat flux at 50 m (c) and ascent rate from a radiosonde launch at 20:00 (d). All
from 10 December 2009, during Intensive Observation Period (IOP) 10 of the COLPEX field experiment.

While identifying the source of small-scale gravity waves in the SBL from in-situ observations is
difficult, there is some hope that remote sensing techniques, such as lidar, may offer opportunities to study
the propagation of such wave features. Reference [81] discusses the range of measurement techniques
available for observing turbulent exchange and transport in complex terrain. Future experiments should
consider this when planning the deployment or scanning strategies for such instruments.

It is expected that many gravity waves in SBLs will have an orographic source, and so there
is also some hope of predictability (at least stochastically), and this may offer a new way of
modelling turbulent exchange in SBLs. Current turbulence schemes, which rely on some form of
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Reynolds-averaged decomposition of the equations of motion and assumptions about stationarity of
the turbulence, often struggle with very stable conditions where these assumptions break down [71].

NWP models typically require the addition of extra drag in SBLs in order to reproduce the correct
winds. This enhanced mixing (the so called “long tail”) can have a negative impact on other aspects
of the forecast such as the near-surface temperature. Several recent studies have looked at the role of
gravity-wave drag in the SBL, and whether this can explain the missing mixing [82–84]. These studies
suggest that inclusion of a gravity wave drag parametrisation scheme for the SBL in numerical models
may improve representation of low-level winds without the need for the physically unrealistic “long
tail”. Such schemes could also improve low-level temperatures and perhaps the turbulent exchange of
other quantities in the SBL.

Gravity waves (often orographically generated) do not directly transport atmospheric constituents,
at least for linear waves, but may lead to turbulent mixing either through wave breaking or the
generation of rotor motions beneath the smooth wave flow (as noted in Section 3), or through
waves altering the local wind shear, and hence the Richardson number, leading to instability and the
generation of turbulence. Such effects are well recognised higher up in the atmosphere, although they
are often not well represented in numerical models. They are also important at low levels in the SBL,
where they may be a major control on its development over complex terrain. However, the extent of
their impact on turbulent fluxes is not well understood; indeed it is likely to be both intermittent and
non-heterogeneous. Gravity wave processes are of course just one aspect of turbulent exchange in
SBLs, and [85,86] offer a more thorough discussion of the scientific challenges associated with exchange
processes in the boundary layer over complex terrain.

5. Discussion and Current Challenges

Foehn, gravity waves and their induced flow fields play an important role in modifying
boundary-layer turbulence and turbulent exchange. Understanding these flows is key to accurately
modelling this turbulent exchange, particularly in complex terrain. Although the role of gravity waves
has been recognised, there remain a number of challenges in translating this into a quantitative
understanding of the relative importance of different wave-related processes, and accurately
representing these processes in both high-resolution research models and lower-resolution NWP
and climate models.

From an observational perspective the heterogeneous, three-dimensional nature of turbulence
and turbulent exchange over complex terrain makes it challenging to representatively sample the flow
using in-situ measurements. The unsteady, often intermittent nature of the turbulence (particularly
in the SBL) and the role of sub-mesoscale flows means that the traditional eddy-covariance methods
used to measure turbulent exchange may not be sufficient and techniques such as multi-resolution flux
decomposition (MRFD) [87] are often required to reduce the contamination of the turbulent fluxes by
the wave motions. Additionally, the propagation and transient nature of gravity waves often makes it
difficult to isolate the wave source from observations.

Here new remote sensing techniques, such as radar and lidar, offer the possibility to study more
fully the spatial and temporal structure and propagation of wave motions, especially if combined
with eddy-covariance observations. Remote sensing technologies provide an opportunity for detailed
observations of the flow structure and derived turbulent intensity, including airborne cloud Doppler
radar [57,88] and airborne Doppler wind lidar [89]. Figure 7 shows an example from Reference [57]
of the detailed information on wind, turbulence parameters, and wave structure available from
an airborne doppler radar pass during a case of mid-tropospheric mountain wave breaking. It is
now also possible to determine 3-D wind fields from dual instruments [90] and vorticity from a
single instrument [91], while error correction methods continue to improve [92]. The ability to map
and quantify turbulence at high frequency within rotors and downslope windstorms may lead to
generalised models of the behaviour of internal rotor turbulence and transport. New measurements
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will be needed in order to do this and these should be complemented with large-eddy simulations and
high-resolution NWP modelling, to help interpret the observations.
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Figure 7. Radar data and derived turbulence parameters along a cross-mountain leg on 26 January 2006
at ~5200 m above sea level (ASL) in a flight across Medicine Bow Mountains (Wyoming, USA). (a) Radar
reflectivity Z, (b) vertical Doppler velocity w, (c) variance of vertical velocity σw

2, (d) eddy dissipation
rate estimated using vertical velocity, EDRw, and (e) relative uncertainty of the estimate. The black
contour in (c–e) marks the region, in which the relative uncertainty of the σw

2 estimate is lower than
25%. Arrows in (c,d) indicate local maxima in σw

2 and EDR.

High-resolution numerical simulations are a key tool in studying this spatial and temporal
variability in turbulent exchange, as demonstrated by the examples in this manuscript. For larger-scale
flows such as foehn these models have begun to allow a deeper understanding of the complexity of the
induced turbulent exchange over complex terrain. The introduction of kilometre-scale NWP models
has seen a step change in the representation of, for example, gap flows and convection; however these
resolutions may still not be sufficient for representing the detailed motion in rotors where resolutions of
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order 100 m may be needed. Even large-eddy simulations at extremely high resolution, of the order of
a few metres, can struggle to accurately model the stable boundary layer. Part of the challenge here is
retaining the very high resolutions required to resolve turbulence in stable boundary layers, while also
including the sub-mesoscale motions and gravity waves, which modulate the turbulence. A further
challenge is ensuring that the ancillary data (e.g., terrain, land use, etc.) and the initial conditions and
boundary conditions for the model are available at the same high resolution to accurately represent
the small-scale, but important, wave motions.

For lower-resolution numerical models such as global NWP and climate models, where there
may be significant sub-grid orography and where the effects of turbulence are parametrised, there are
still significant challenges in accurately representing the bulk effects of foehn, rotors and SBL gravity
waves on turbulent exchange. The current gravity-wave drag parametrisations need to be extended
to represent these phenomena, and these extensions should include representation of the effects on
boundary-layer turbulent fluxes, moving away from the classic models of homogeneous turbulence,
implicit in current turbulence parametrisation schemes. Operational tuning, for example the “long tails”
used in many NWP turbulence models for stable conditions, may alleviate some of the problems caused
by not including the effects of these process. But more physically-based approaches to parametrizing
these processes are required to improve the representation of turbulent exchange over complex
terrain. Recent work on gravity-wave drag in the boundary layer [82,84] suggests this might be a
fruitful avenue of research, and perhaps similar approaches are required for the effects of foehn and
rotors. However, parameterisations of turbulence within the stable boundary layer itself are still a
challenge in NWP models, which tend to rely on turbulence closures that limit representation [93].
Alternative closure schemes (e.g., Reference [94]) are available but have not been comprehensively
evaluated for operational use.

Finally, much of the interest regarding parametrisation schemes to date has been focused on the
impact on turbulent exchange of momentum, since this directly impacts on winds, however increasingly
there is a need for accurate representation of the turbulent exchange of other quantities: Heat and
moisture are also key for weather forecasting, volcanic ash for hazard forecasting and aerosols,
particulates and chemical species are important for air quality forecasting. All are also important in the
climate system. It is vital that future research includes this wider scope for parametrisation schemes.
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