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Abstract: Topographic and hydro-climatic features of South Korea are highly heterogeneous
and able to influence the drought phenomena in the region. The complex topographical and
hydro-climatic features of South Korea need a statistically accurate method to find homogeneous
regions. Regionalization of drought in a bivariate framework has scarcely been applied in South
Korea before. Hierarchical Classification on Principal Components (HCPC) algorithm together with
Principal Component Analysis (PCA) method and cluster validation indices were investigated and
used for the regionalization of drought across the South Korean region. Statistical homogeneity and
discordancy of the region was tested on univariate and bivariate frameworks. HCPC indicate that
South Korea should be divided into four regions which are closer to being homogeneous. Univariate
and bivariate homogeneity and discordancy tests showed the significant difference in their results due
to the inability of univariate homogeneity and discordancy measures to consider the joint behavior
of duration and severity. Regionalization of drought for SPI time scale of 1, 3, 6, 12, and 24 months
showed significant variation in discordancy and homogeneity of the region with the change in
SPI time scale. The results of this study can be used as basic data required to establish a drought
mitigation plan on regional scales.
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1. Introduction

Recent variation of climate on an interdecadal time scale due to global warming across South
Korea has had a large impact on agriculture production and water resource management [1], and may
cause floods [2,3] and drought conditions. The occurrence of extreme drought events has increased
abruptly in the East Asian region since 1980 [4]. The spatial and temporal relationships of drought
occurrence and intensity between South Korea and East Asia has showed strong correlation [5].
Drought is expected to become more frequent and severe, with increasing water shortage due to
increase in population and uncertainty in water supplies [6]. Since large urban and industrial areas
in the Korean peninsula have showed a significant increase in annual temperature, which may lead
to changes in precipitation pattern [1], the meteorological droughts in the Korean peninsula can be
correlated with the attributes such as hydrological, climatic, and physiographic characteristics [7].
Therefore, drought events could be characterized by the joint behavior of variables which are not
usually independent.

In regional drought modeling, multivariate analysis is a collection of procedures to analyze the
association between climatic, hydro-meteorological and physiographic variables, which are known to
be strongly correlated. Since collection and analysis of a large number of drought variables are often
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time consuming and cumbersome to handle, adequate simulation of these variables needs a reduction
in number of variables. This screening of data is able to provide a rational basis for a multi-dimensional
classification of variables and can be used as a basis to perform regional drought frequency analysis [8].

The main purpose of the multivariate analysis is to study resemblances and differences between
dataset individuals using dimension reduced subspace. To accomplish this task there are some
traditional methods available, such as Principal Component Analysis (PCA) and Factor Analysis (FA),
both of which reduce dimensionality by forming linear combinations of the features. PCA looks at the
representation of lower dimensions that account for the most variance of the variables, while FA seeks
the most correlation among the variables. PCA has been widely used to determine the spatio-temporal
patterns of climatic variables [9]. The relationship between water quality parameters and land use
types were evaluated by correlation analysis and PCA in South Korea [10]. PCA analysis was also
used to regionalize the seasonal variation in the monthly precipitation data from 1931 to 1990 at 85
stations in Turkey [11].

Multivariate datasets need to be classified in groups using some clustering algorithm after
the dimensional reduction. Various clustering methods such as fuzzy c-means (FCM) clustering,
self-organizing feature map (SOFM) [12], hierarchical clustering, and K-means clustering have
been used for the delineation of hydrological homogeneous regions. In hierarchical clustering
and partitioning methods, sites are divided into different clusters based on distance measurements
(e.g., Euclidean distance).

There are several studies devoted to the regionalization of drought and other climatic variables.
Many are based on stochastic processes for simulating the time-space variability of drought [13].
Basist et al. [14] developed statistical relationships between topography and the spatial distribution of
mean annual precipitation. These relationships were derived using linear bivariate and multivariate
analysis. In previous studies, regionalization across South Korea was done on the basis of specific
variables derived from precipitation [15,16]. Regionalization was also performed by using drought
variables [15]. However, precipitation or drought phenomena can be influenced by topographic or other
climatic variables. Precipitation patterns in South Korea are highly influenced by the summer monsoon,
known as the “changma front”, and thus rainy season during summer becomes short with an increase
in the amount of rainfall and number of heavy rainfall days [1,17]. Overall, the annual precipitation
trend across South Korea showed the decline in annual precipitation [18]. Since South Korea has a
mountainous environment (Section 2.1), there is a possibility of more rain at the areas located at higher
altitude, as the temperature gets cooler with the increase in altitude. Therefore, seasonal and annual
precipitation is far from being spatially homogeneous. Therefore, it will be preferential to regionalize
the drought after the delineation of regions based on physiographic and climatic variables, since the
Korean peninsula is characterized by heterogeneous topography, vegetation, and geology. Proper
delineation of homogeneous regions helps us to improve the quantile estimation in regional drought
frequency analysis, and can be utilized in drought risk planning and management on regional scales.

The major problem of drought frequency analysis is the lack of availability of the lengthy records
that limit the reliability of statistical estimates of drought quantiles. To cope with this problem,
“pooling” or “regionalization” of information from multiple sites is often used. To overcome the
shortage of observed data, the regional drought analysis attempts to collect the similar sites in one
region. The “L-moments” statistical approach is recommended for regional analysis because it has
many theoretical advantages such as characterization of a wide range of distributions, able to consider
correlations between samples and robust to the presence of outliers [19]. However, this approach is
limited to the performance of heterogeneity tests only at the univariate framework. The major problem
with this approach is that each variable represents its own homogeneous region. Therefore, univariate
regional heterogeneity tests can only provide a limited evaluation of drought at ungauged sites and are
not sufficient to fully represent multivariate phenomena of drought (drought duration and severity).
To cope with the above stated problem, the approach is extended to the multivariate framework,
incorporating a Multivariate Homogeneity Test in order to check the homogeneity of the region with



Water 2018, 10, 24 3 of 23

several characteristics [20]. The multivariate homogeneity test has several advantages over univariate
analysis, such as including the control of the first kind error and the consideration of the correlation
between variables etc., [20,21]. Most literature related to hydrological multivariate analysis dealt with
the at-site (local) multivariate analysis using topological, climatic or drought attributes. However, very
little effort has been done for the joint representation of drought characteristics in regional drought
modeling at ungauged sites. The purpose of this study is (i) to suggest a statistically accurate clustering
method to cope with complex topographical and climatic features of South Korea (ii) to regionalize
drought using extended bivariate discordancy and heterogeneity measures by identifying spatial
changing properties of drought, (iii) analyze the effect of the Standardized Precipitation Index (SPI)
time scale on bivariate regionalization of drought.

Following the introduction, the remaining parts of this paper are organized as follows. Section 2.1
explains the overview of the location of study area and introduces the criteria used to define the
drought and the data used in this study, Section 2.2 explains the mathematical overview used as a
preprocessor for cluster analysis, Section 2.3 provides an explanation about the clustering algorithm,
Section 2.4 explains the indices used for cluster validation, Section 3 provides the results of the effect of
different SPI time scale on drought variables, cluster analysis, cluster validating indices and bivariate
regionalization of drought using SPI multi time scale and finally, conclusions are presented in Section 4.

2. Materials and Methods

2.1. Study Area

South Korea is located in the northeastern part of the Asian continent between 33–43◦ N and
124–131◦ E (Figure 1). More than 70% of the land, especially in the north and east, is covered with
mountains. South Korea is influenced by Asian monsoon, with annual mean temperature of 12.3 ◦C,
and average temperature varies from 6.6 ◦C (winter) to 16.6 ◦C (summer). In some dry regions,
precipitation is less than 1000 mm due to topographical effects, and many parts of South Korea are
characterized by the precipitation range of 1200 mm to 1400 mm, which is about 30% greater than the
worldwide average of 973 mm [22]. Annual maximum precipitation is usually recorded from late Jun
through July, and precipitation recorded during this period accounts for more than 40% of the annual
precipitation. The climate in South Korea has complex spatial and temporal variation because of the
climate change effects and topographic characteristics consists of complicated mountainous terrain.

Drought Definition and Data

The Korean Meteorological Administration (KMA) serves as a basis to extract monthly
precipitation data for 70 rainfall stations across South Korea. The randomness of the monthly
precipitation data was investigated using homogeneity, the absence of artificial trends and
spurious auto-correlation tests. Three non-parametric tests [23], Mann-Whitney homogeneity test,
Mann-Kendall trend test, and Kendall’s, autocorrelation test, were applied on all rainfall stations.
These trend tests were performed using the “Trend” and “Kendall” packages in R programming [24,25].
A detailed description of each non-parametric tests is provided by [26]. Previous work was used as
reference to check the detailed overview of the rainfall trends in South Korea [18]. April precipitation
decreased between 15% and 74% for basins located in the south-western part of the Korean peninsula.
June precipitation increased between 18% and 180% for most basins. The Mann-Kendall test has
been applied by many researchers to detect the seasonal and annual precipitation trends in South
Korea [27–29]. The test results showed that more than 15 rainfall stations should be discarded
because of the low-quality data and more than 5% missing values. The remaining 55 rainfall stations
across South Korea cover more than 35 years (1980–2015) of data, and were used for further analysis.
For example, trend tests applied at Sokcho station are shown in Figure 2. Annual precipitation
increased from 1980 to 2004 and decreased afterwards. The Mann-Kendall test statistic value of 0.0715
confirms the presence of upward trend at Sokcho station. The Move4 technique (Maintenance of



Water 2018, 10, 24 4 of 23

Variance Extension) proposed by [30] was used to fill the gap of missing values. This method is
adopted because extended records are generated while maintaining the variance of the data series.
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SPI originally proposed by [31] was used in this study for regional assessment of the drought in
South Korea. SPI is the most widely used drought index [32] because of several advantages, such as
(1) flexibility that can be applied on different time scales [33]; (2) being less complex and requiring
relatively simple and well-set calculations [34]; (3) being able to adopt different hydroclimatic variables
besides precipitation [35]. SPI was computed by fitting gamma distribution on rainfall data at any
desired time scale (1, 3, 6, 12 and 24 months). In this study, regionalization of 55 station was done by
using all desired time scales from 1 to 24 months. It is found that the gamma distribution fit more
closely to the precipitation data of 55 stations across South Korea [36]. Since there are a number of
zero-bounded continuous variables in climatology, it is important to give a distribution that may
be used for such variables. The gamma distribution has a zero lower bound has been found to fit
several such variables well [37]. Additionally, gamma distribution has been recommended by many
researchers for SPI analysis on different time scales across South Korea [38,39]. In this context, and
for the purposes of the present study, the following two operational definitions were established, in
relation to the phenomenon of drought analyzed from a bivariate framework: drought duration and
drought severity. Drought duration is the period when the SPI value was below −0.99, and drought
severity is the cumulative deficit during that drought event.

The hydro-meteorological features of the Korean peninsula are complex, and it is generally
affected by East Asian monsoon, with the heavier precipitation in summer during a short rainy
season, and winter temperatures are higher along the southern coast and considerably lower
in the mountainous interior. Since the Korean peninsula has complex topographical features,
hydro-meteorological characteristics of the region play a vital role in the drought conditions of
the region. Therefore, eight important hydrological, climatic (weather regimes), and physiographic
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(basin) variables (that can affect droughts in South Korea) were selected for delineation of spatially
homogeneous regions. Complex phenomena of drought is considered to be correlated with the
above-stated eight attributes of the region and were, therefore, included in multivariate analysis. Data
was extracted using KMA, GIS maps, and information acquisition. Summary statistics of the 55 rainfall
stations across South Korea are presented in Table 1.
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Table 1. Statistical summary of the hydro-meteorological and location variables for the 55 stations
selected for cluster analysis.

Variables Mean SD 1 Min 1 Med 1 Max 1 CV 1 (%)

Latitude (N) 36.17 0.85 34.40 36.13 38.25 2.36
Longitude (E) 127.74 0.85 126.38 127.73 129.42 0.67

Elevation above sea level (m) 92.61 114.49 2.90 53.80 772.40 123.63
Mean annual precipitation (mm) 1345.16 193.00 1031.70 1317.30 2007.30 14.35

Mean daily maximum temperature (◦C) 18.02 1.30 11.50 18.10 19.90 7.23
Mean daily minimum temperature (◦C) 7.82 2.30 2.00 7.60 17.20 29.43

Annual evaporation (mm/year) 1138.72 99.50 956.80 1126.90 1377.60 8.74
Mean relative humidity (%) 677.91 90.07 71.10 694.00 760.00 13.29

Notes: 1 SD = standard deviation; CV = coefficient of variation; Max = Maximum; Min = Minimum; Med = Median.

2.2. Principal Component Analysis

Principal Component Analysis (PCA) is a statistical procedure used to reduce the space into
a smaller number of dimensions that can retain most of the information in original space. PCA is
able to capture the essential information about the variables and able to determine specific regional
characteristics [9,40]. Usually, variables selected for PCA analysis are highly correlated. In this study,
the variables indicated in Table 1 were used as input in PCA analysis. The estimation of PCs is the
process of reducing inter-correlated variables to some linearly uncorrelated variables. Since the PCs
are heavily dependent on the total variation of the hydro-meteorological variables, it is preferred that
all variables should be measured in the same unit. Therefore, these variables should be passed through
the process of normalization to reduce the effect of units between the variables. A correlation matrix
served as a basis to perform the analysis. PCA approach was applied in three steps: (1) standardization
of variables and estimation of the correlation matrix, R; (2) estimation of loading matrix using PCA
method; (3) Eigenvalue greater one indicates significant PC loading.

All attributes were standardized before the estimation of correlation matrix, using
following procedure:

X =
xij − xi

Sj
(1)



Water 2018, 10, 24 6 of 23

Here value of i and j indicate number of observations (1 to N) and number of hydro-meteorological
variables (1 to V) respectively; X denote the matrix of standardized variables; xij denote ith observation
of the jth variable; xi denotes the mean of the jth variable; Sj indicate standard deviation of the jth
variable. The correlation matrix is the minor product moment of the standardized variables and its
transpose divided by N and can be expressed as follows

R =
X′ × X

N
(2)

Here, X′ denotes the transpose of the standardized matrix of the variables. PCs loading matrix
was estimated based on correlation matrix of the variables. It shows the degree of correlation of a
particular variable with different factors. It is computed by premultiplying the characteristic vector
with the square root of the characteristics values of the correlation matrix.

A = Q× D0.5 (3)

Here A indicates PCs loading matrix; Q and D indicate the characteristic vector and characteristic
value respectively, of correlation matrix.

2.3. Hierarchical Classification on Principal Components (HCPC)

HCPC combines PCA, Hierarchical Clustering (HC) and partitional clustering (specifically
K-means) [41,42]. HCPC used PCA as pre-processing step to reduce the number of dimensions
in parameter space. The attributes mentioned in Table are passed through PCA analysis. Then, HC
was applied on PCA to classify individuals into homogeneous groups using Ward criteria. Usually, it
is used in complement to factor analysis. The HCPC algorithm gathers the most closed variables on
the factorial map in pairs and then aggregates the closest group in pairs until it reaches the proposed
level of clustering. The HCPC clustering method is adopted in this study because it has the advantage
over the factor analysis that it performs an objective clustering technique to PCA results, which leads
to an improvement in the clustering results. Secondly, there is an increase in robustness of the final
clusters due to the involvement of mixed algorithm (Ward’s classification method with the K-means
algorithm). Hence, HCPC method helps to reduce the subjective adjustment in cluster analysis.

2.4. Cluster Validation

Clusters formed by the HCPC approach should be validated using cluster validity indices to
determine an optimum number of regions. In this study, four cluster validation indices were used
to validate the initial number of clusters. Cluster validation analysis were performed using “fpc”
R package.

2.4.1. Connectivity

Suppose N indicates number of observation (rows) and M indicates the number of columns. nni(j)
indicates the jth nearest neighbor of observation i, and let’s suppose xi, nni(j)

is zero if i and j are in
same cluster and 1/j otherwise. Then for a clustering partition δ = {C1, . . . ,Ck} of the N observations
into K disjoint clusters, the connectivity is defined as

Conn(δ) =
N

∑
i=1

L

∑
j=1

xi, nni(j)
(4)

The parameter L indicates the number of nearest neighbors to use. The connectivity value ranges
from 0 to ∞ and should be minimized [43].
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2.4.2. Silhouette Width

The silhouette value measures how similar an observation i is to its own cluster compared to
other clusters. It ranges from −1 to 1. Higher value indicates better match of an observation to its own
cluster. For an observation i [44] proposed as follows

S(i) =
bi − ai

max(bi, ai)
(5)

where ai is the average distance between observation i and all other observations in the same cluster,
and bi is the average distance between i and the observations in the nearest neighboring cluster.

2.4.3. Dunne Index

It is proposed by the [45], is the ratio of the smallest distance between observations not in the
same cluster to the largest intra-cluster distance.

D(δ) =
minCk ,Cl∈δ,Ck 6=Cl

(
mini∈Ck ,j∈Cl dist(i, j)

)
maxCm∈δdiam(Cm)

(6)

where diam(Cm) is the maximum distance between observations in cluster Cm; dist(i, j) is the distance
between observation i and j. Dunn Index has the value ranges from zero to ∞, and value should be
maximized for better fit.

2.4.4. Calinski and Harabasz Index

It is proposed by [46], It is also called as variance ratio criteria.

CH(k) =
[

B(k)
W(k)

]
×
[

n− k
k− 1

]
(7)

where n = number of data points, k = number of clusters, W(k) = within cluster variation, B(k) =
between cluster variation. Well defined clusters have a large variation between the clusters and small
variation within the clusters. Higher value of CH(k) shows the better clusters.

2.5. Bivariate L-Moments

Multivariate L-moments are principally developed by [20]. Let X(j) be a random variable with
distribution Fj for j = 1, 2. By analogy with a covariance representation of L-moments of order k ≥ 1,
multivariate L-moments are matrices ∧k with L-comoment elements defined by:

λk[i j] = Cov
(

X(i), P∗k−1

(
Fj(X(j))

))
, i, j = 1, 2 and k = 2, 3, . . . (8)

P∗k is called as shifted Legendre polynomial. Note that the elements [ij] and [ji] are not necessarily
equal. Particularly, the first L-comoment elements are

λ2[12] = 2Cov
(

X(1),
(

F2(X(2))
))

(9)

λ3[12] = 6Cov(X(1), (F2(X(2))− 1/2)
2
) (10)

λ4[12] = 6Cov

(
X(1), 20

(
F2(X(2))− 1

2

)3
)
− 3
(

F2(X(2))− 1
2

)
+ 1 (11)
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Which are the L-covariance, L-coskewness and L-cokurtosis, respectively. The L-comoment
coefficients are as follows:

τk[12] =
λk[12]

λ1
2

, k ≥ 3; τ2[12] =
λ2[12]

λ1
1

(12)

λ
(j)
k = λk[jj] is the is the classical kth L-moment of variable X(j), j = 1, 2, as defined by [47].

The matrix of L-comoment coefficients is written as:

Λ∗k =
(
τk[ij]

)
i, j=1, 2

=

(
τk[11] τk[12]
τk[21] τk[22]

)
(13)

Originally L-comoments are similar in structure to the univariate L-moments and able to capture
their attractive properties [21].

2.5.1. Bivariate Discordancy Test

Discordancy test originally proposed by [48] is further extended to the multivariate framework
by [20,21]. Discordancy test act as a preliminary screening of the data, before the application of
homogeneity test. In this study, drought duration and severity are used to evaluate the discordant
sites from the region. It consists of identifying discordant sites among a set of N sites. For this purpose,
each site i has the matrix Ut

i =
[
Λ∗(i)2 Λ∗(i)3 Λ∗(i)4

]
which is composed by three L-moment matrices

Λ∗(i)2 , Λ∗(i)3 and Λ∗(i)4 defined in Equation (13)

u = N−1
N

∑
i=1

ui, i = 1, . . . , N. (14)

The discordancy measure for site i can be defined as

Di =
1
3
(ui − u)tS−1(ui − u) (15)

where S is the matrix of sums of squares and cross-products

S =
1

N − 1

N

∑
i=1

(ui − u)(ui − u)t (16)

Hence, if ||Di|| takes large values, a site i will be discordant with respect to considered set
of sites. For large regions, the critical discordancy (||Di||) value of the constant c can be taken as
χ1−0.5(3)/3 = 2.6049. Here, χ1−α(d) is the quantile of a chi-square distribution of order α with d
degrees of freedom. In this study, the critical value proposed by [21] (||Di||> 2.6049) is considered to
be criteria to decide discordancy of a region.

2.5.2. Bivariate Homogeneity Test

The homogeneity of the region is tested using drought duration and severity as defined in
Section 2.1. The bivariate homogeneity test is proposed by [21] which is a multivariate analogue of the
statistic proposed by [48]. It can be summarized as follows: Let statistic V||.|| is defined as:

V||.|| =

( N

∑
i=1

ni

)−1 N

∑
i=1

ni

∣∣∣∣∣∣Λ∗(i)2 −Λ∗2
∣∣∣∣∣∣2
1/2

(17)

where ||.|| is the norm defined above, Λ∗2 =
(

∑N
i=1 ni

)−1
∑N

i=1 niΛ
∗(i)
2 , Λ∗(i)2 is similar as defined in

Equation (13), when we consider L-covariance matrix at k = 2. To get interpretable results of the
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computed value of the statistic V||.|| from the observations, it is convenient to standardize it using a
large number of simulated homogeneous regions. Thus, the simulated regions are homogeneous with
sites having the same record lengths as their observed counterparts. Thus, heterogeneity measure of a
group of sites can be expressed as follows:

H||.|| =
V||.|| − µVsim

σVsim
(18)

where µVsim and σVsim are respectively the mean and standard deviation of the Nsim values of V||.|| of
simulated regions. Similar like univariate heterogeneity measure, bivariate heterogeneity measure also
has criteria to decide whether a region should be considered as homogeneous or not. In this study,
following criteria was used to decide homogeneity of the observed region: if H||.|| < 1 region was
considered as homogeneous; if 1 ≤ H||.|| < 2 region was considered as acceptably homogeneous; if
H||.|| ≥ 2 region was considered as heterogeneous.

Although it is not part of the objectives of this study, bivariate discordancy and homogeneity
measures can be applied for quantile estimation by extending [19] the approach to multivariate
domains. This includes the following steps: (i) data preparation, including standardization of
variables and application of statistical procedure based on PCA; (ii) identification and acceptance
of homogeneous regions based on HCPC and bivariate homogeneity test; (iii) selection of regional
frequency distribution for the bivariate case; and (iv) estimation of distribution parameters and quantile
function for the bivariate case.

3. Results

3.1. Selected Attributes

The attributes used for cluster analysis include a reasonable number of hydro-meteorological and
physiographic variables that can affect drought phenomena in South Korea. Table 1 showed a statistical
summary of these selected variables. The highest Mean Annual Precipitation (MAP; 2007.30 mm)
and highest Mean Daily Maximum Temperature (MDMXT; 19.9 ◦C), shown in Table 1, are recorded
at Geoje station and Miryang station, respectively. Both stations are located on the southeast coast
of South Korea (Figure 1). This is because of the reason that the synoptic disturbances, typhoons or
convective systems within the air mass at south coastal areas cause heavy rainfall during the summer
season and low rainfall during the winter season. Thus, the south coast faces extremely unusual
rainfall patterns. For example, study based on the precipitation trends across South Korea considering
typhoon-induced changes and other climate related risks, and it was concluded that over the 1966–2007
period, typhoons contributed 21–26% of seasonal precipitation and broad patterns towards an increase
in the magnitude and frequency of precipitation, especially at the south coast [29]. It can be noted
from Figure 3b that the droughts of highest Mean Severities (MS) (round about 5) were recorded at
surrounding areas of Jangheung and Goheung stations, located at the southwest coast of South Korea.
Furthermore, droughts of longest Mean Duration (MD; round about 4.5 months) and highest MS
were recorded at surrounding areas of Jecheon station. Summer is hot and humid and winter is cold
and dry across the region due to the influence of Siberian air mass [22]. The average annual relative
humidity across South Korea is 68.5% and average monthly relative humidity varies from 61.3% in
April to 81.3% in July. Relative humidity is considered to be an important attribute that can influence
precipitation climates [49], and has been used for regionalization of precipitation [50]. The attributes
used for multivariate analysis are as follows: Latitude (Lat), Longitude (Long), Elevation Above Sea
Level (EL), Mean Daily Minimum Temperature (MDMT), Annual Evaporation (AE) and Mean Relative
Humidity (MRH).

In previous studies [51,52], at-site statistics were also used as an attribute for regionalization using
multivariate statistical analysis. However, [19] suggested that the practical formation of homogeneous
regions should be based on at-site characteristics; otherwise there would be a tendency to group
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together all sites that have high outliers, even though these outliers result from random fluctuations,
and testing for the homogeneity of the formed regions by a statistic calculated from the “at-site
statistics” would be misleading. Therefore, MD and MS are not included in the initial formation of
homogeneous regions because of the involvement of at-site statistics.
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Figure 3. Spatial variability of drought characteristics from 1980 to 2015, across South Korea using
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3.2. Variation of Drought on Different Time Scale

SPI values for 55 stations were computed for the time scale of 1, 3, 6, 12, and 24 months.
For example, the temporal variation of drought for the time scale of 1 to 24 at Sokcho station from 1980
to 2015 is shown in Figure 4.

It is observed that when the time scale is shorter, frequency of the dry and humid periods is short
and relatively high. The SPI for the shorter time scale is usually considered as agriculture drought
index [31,53] because it represents the water content of vegetation and the soil conditions [54,55].
The SPI for the longer time scale showed that droughts lasted longer and were less frequent. The SPI
for the longer time scales such as 12 months or greater are considered as the hydrological drought
index, as it can be used for surface water monitoring, e.g., river flows [53]. A longer time scale such as
24 months showed frequent and longer lasting droughts, with few dry or humid periods recorded.

Table 2 showed the changes in the characteristics of drought with SPI-time scale of 1 to 24 months
for 55 stations across South Korea. As the SPI timescale increases, total number of drought events
decreased because of the decrease in frequency of drought events. However, Mean, Max and Min
statistics of drought characteristics (duration and severity) increased with the increase in SPI-time
scale because of the increase in the number of long-lasting drought events.

Table 2. Characteristics of drought with changes in SPI-time scale for 55 stations across South Korea.

Time Scale Total Drought Events
Duration Severity

Mean Max Min Mean Max Min

SPI-1 5549 2.07 18 1 1.67 14.67 0.05
SPI-3 3216 3.71 24 1 2.9 27.19 0.09
SPI-6 1455 5.56 32 1 3.91 31.25 1.05

SPI-12 1093 11.3 84 2 9.17 96.92 1.95
SPI-24 727 20.67 117 5 17.29 124.6 3.65
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3.3. Principal Component Analysis

In order to reduce the effect of units, each of the eight attributes shown in Table 1 was standardized
using Equation (1). Standardization made variable comparable by scaling them to have (i) standard
deviation one and (ii) mean zero. Then, intercorrelation matrix of the standardized variables was
computed using Equation (2). The spatial pattern of the intercorrelation matrix of the eight attributes
reveals that there is a correlation coefficient of 0.6 existing between Long and AE, and MDMXT and
MDMNT (Figure 5). A moderate correlation (correlation coefficient more than 0.40) exists between Lat
and EL, MDMXT and AE. Since the attributes such as MRH showed relatively weak correlation with
any other parameter, it is hard to categorize the parameters into a component or attach any physical
significance. Therefore, in the next step, PCA method has been applied on the correlation matrix.
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Figure 5. Intercorrelation matrix of the attributes selected in this study.

The principal component analysis applied on the correlation matrix revealed that 78.7% (first
component 32.6%, second component 19.4%, third component 15.8% and fourth component 10.9%) of
the information (variances) contained in the data were retained by the first four principal components
(Figure 6). Since eigenvalues of the first four principal components (first component 2.611, second
component 1.55, third component 1.264 and fourth component 0.873) were closer to or greater
than 1, the first four principal components were selected for the cluster analysis. The principal
component-loading matrix was computed based on correlation matrix using Equation (3). The principal
component loading was used to identify the strength of correlation existing between each component
and the individual attributes. The contribution of attributes (using principal component loading) in
accounting for the variability in principal components is shown in the form of a percentage (Figure 7).
Attributes having a high contribution in first and second principal components are considered as most
important. However, attributes that do not contribute to any principal components or contributed
with the last dimensions are considered as less important in explaining the variability in the dataset.
The red dashed line on the graphs in Figure 7 denotes the expected average contribution. Supposing
contribution of the attributes is uniform, then expected average contribution value can be computed
as follows; (1/number o f attributes)× 100. In our study, 12.5% is considered to be expected average
contribution. For a given component, an attribute with a contribution larger than this limit (red
dashed line) is considered to be important in contributing to the component. Figure 7 showed that the
attributes such as MDMXT, LAT, EL and MDMNT contributed most to first principal component and
Long, AE and MRH contributed most to second principal component, and MAP and Lat contributed
most to the third principal component, and MRH, MDMNT, MDMXT and AE contributed most to the
fourth principal component. It is concluded that MRH is the least important attribute in explaining the
variability of the dataset because of their small contribution to the first three principal components.
Usually in PCA approach, the attributes that are less significant in explaining the component variance
are screened out of analysis. However, MRH still has a significant enough correlation to be included in
further analysis.
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3.4. Cluster Analysis

HCPC method was applied on the results obtained from PCA. To identify the stability of each
region, initially clusters were formed and assessed visually by plotting them on the geographical space
of South Korea. It was noted that stable regions do not change their configuration drastically with the
change in the number of clusters formed by HCPC method. However, since visual plotting method is
subjective and may lead to incorrect estimation of clusters, cluster validation indices were used to aid
the selection of an optimal number of clusters.

Four cluster validity indices, connectivity, silhouette width, Dunne index and Calinski and
Harabasz index, were tested by varying the possible number of clusters from two onwards to examine
an optimal number of clusters. It is evident that the indices, silhouette width, Dunne index and
Calinski and Harabasz index maximize their values when the number of clusters reaches four, while
connectivity minimizes when the number of clusters reaches four. Hence, the values of all validity
indices showed the good agreement when the number of clusters reached four (Figure 8). Cluster
validity indices based on the HCPC algorithm showed that the study area should be divided into four
regions, which are close to being homogeneous.
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Figure 8. Cluster validation statistics using the plots of (a) Connectivity; (b) Silhouette width; (c) Dunne
index and (d) Calinski and Harabasz index.
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3.5. Bivariate Regionalization of Drought across South Korea

Usually, the regions obtained by clustering algorithms are not statistically homogeneous.
Therefore, they must be adjusted to make them homogeneous. This step of regionalization is not
properly explained if the set of attributes considered for cluster analysis is exhaustive (i.e., the attributes
composed of causal variables which affect drought characteristics of the region under study). However,
since it is impossible to have an exhaustive set of attributes to perform regionalization of drought,
regions formed by cluster analysis (HCPC algorithm for this study) need not, and are usually not,
homogeneous, and therefore regional revision process is required to improve the homogeneity of
the region [19]. This is a well-known fact in hydrology and consequently, hydrologists proceed with
adjusting the regions to make spatially homogeneous groups. Nevertheless, adjustments need not to
be significant if the selected attributes for the cluster analysis is likely to affect drought phenomena in
the region and if an appropriate clustering algorithm is used for regionalization of drought [56].

The goal of the adjustment is to make sure that no site is discordant and all regions are
homogeneous. Ref. [19] suggested many options to adjust the initial groups formed by cluster analysis.
These options include: (i) deletion of a site or few sites from the region; (ii) shifting of a site or few
sites from one region to another; (iii) subdivision of regions from one region to two or more regions;
(iv) allowance of sites to be shared partially between the regions; (v) the breaking up of regions by
shifting their sites to other regions; (vi) merging a region with another or others; (vii) merging two or
more regions and redefining the groups; (viii) obtaining more data and redefining the groups.

The regions made by HCPC algorithm are found very useful in adjusting the regions to improve
their homogeneity. Particularly, there is no need to devote special effort for the steps (i), (iii), (iv),
(v), (vi), (vii) and (vii) described above because the number of clusters is chosen reasonably using
the HCPC algorithm. In this study, only option (ii) was used on the clusters formed by the HCPC
algorithm to regionalize the drought characteristics across South Korea.

In this study, discordancy and homogeneity of the regions are tested for the SPI-time scale of 1, 3,
6, 12, and 24 months. The total number of drought events differs from shorter time scale to longer time
because of the variation in length and frequency of dry and humid periods as shown in Figure 4 and
Table 2. Therefore, selected time scale may have direct impact on the homogeneity of the region.

A site is considered to be discordant if it exceeds the critical value of the discordancy measure.
Firstly, although [19,48] defined the critical values to declare a site to be discordant, it is preferable to
mark the sites having high values of discordancy measure, for example in case of SPI-6 as shown in
Table 3. Secondly, since heterogeneity measures (H) of the region change with the addition or removal
of any site from the region, it should be continuously examined during regionalization process.

For regionalization of drought, homogeneity of the region needs to be assessed statistically
using drought variables, after the formation of homogeneous regions using cluster analysis.
An L-moment-based discordancy test proposed by [34] and extended to the multivariate framework
by [20] was applied to identify the sites with gross errors in their data or those that are grossly
discordant with the region as a whole. Discordancy is measured in terms of sample L-moments ratios
(L-CV, L-Skewness, and L-Kurtosis) in the univariate case and the L-comoment ratios (L-covariance,
L-coskewness and L-cokurtosis) in the bivariate case as described in Equations (9)–(11).

The results of univariate and bivariate discordancy tests in case of SPI-6 applied initially on
clusters formed by the HCPC algorithm is shown in Table 3. In the case of univariate discordancy
test applied on drought variables (duration and severity), no site is discordant in cluster 1, 2 and
3 except Yeoungju station in cluster 4. However, in case of bivariate discordancy test, Tongyeong
station in cluster 1, and Ganghwa, Jeonju and Boeun stations in cluster 3 are identified as discordant
sites. These sites are not discordant in the univariate case because the univariate discordancy test is
unable to take account of the correlation between drought variables. Following option (ii) stated above
for adjusting the regions, the inclusion of Jeonju station (having the highest value of discordancy)
in cluster 2 and then cluster 4 increases the heterogeneity measures of these clusters. However, the
inclusion of Jeonju station in cluster 1 reduced the heterogeneity of the region by a significant amount
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as shown in Table 4, and discordancy measure of Tongyeong station (identified as a discordant station
as shown in Table 3 reduced drastically without moving it to any other region (Table 4). Using a
similar approach, the moving of other discordant sites continues until these sites were no longer
discordant and heterogeneity of the adjusted regions was also reduced. Univariate and bivariate
discordancy measures of the final adjusted homogeneous regions are shown in Table 4. To adjust
highly heterogeneous cluster 3, all discordant sites were moved to clusters 1, 2 and 4 using option (ii).
Final adjusted homogeneous regions in Table 4 and Figure 9c showed that there is an improvement in
the size of cluster 2, which was the smallest cluster in the region, and reduction in the size of cluster 3,
which was the largest cluster in the region.

Table 3. Results of univariate and bivariate discordancy measure for SPI-6 at 55 stations across South
Korea, using the clusters formed by HCPC algorithm, and bold is selected as discordant sites, Di, D

denotes the discordancy for drought duration, Di, S denotes the drought severity and Di, SD denotes
the discordancy for both drought duration and severity.

Cluster 1

Site Di, D Di, S Di, SD Site Di, D Di, S Di, SD

Jangheung 1.54 1.85 1.38 Mokpo 1.33 1.28 0.61
Haenam 0.11 0.13 0.17 Jinju 0.96 1.03 1.17

Yeongcheon 0.10 1.19 0.91 Geoje 1.21 1.69 1.90
Miryang 0.95 0.30 0.64 Buan 1.82 2.20 2.29

Sancheong 0.49 0.46 0.74 Namhae 0.14 0.27 0.41
Ulsan 0.43 0.10 0.59 Jeongeup 0.18 0.26 0.65

Gwangju 0.29 0.56 0.69 Goheung 0.80 0.69 0.33
Busan 1.88 1.80 2.10 Yeosu 0.81 0.40 0.51

Tongyeong 1.98 2.30 3.19 Wando 1.68 1.13 1.95
Suncheon 1.96 0.97 1.45

Cluster 2

Chupungnyeong 1.00 1.00 1.37 Geochang 1.00 1.00 1.19
Geumsan 1.00 1.00 0.09

Cluster 3

Chuncheon 0.43 0.71 0.54 Buyeo 0.34 0.40 0.26
Chungju 0.65 0.62 1.10 Suwon 0.74 0.86 0.79

Boeun 2.01 1.95 3.98 Imsil 0.44 0.76 0.33
Daejeon 1.69 1.54 1.81 Boryeong 0.38 0.43 0.30
Jecheon 0.25 0.05 0.37 Namwon 0.44 1.10 0.87

Yangpyeong 0.28 0.21 0.89 Seoul 0.77 0.28 0.95
Icheon 0.51 1.76 1.52 Incheon 1.14 1.12 1.96

Ganghwa 2.29 1.91 3.81 Wonju 1.32 0.75 1.52
Jeonju 1.75 1.94 4.10 Cheongju 0.48 1.05 0.73

Cheonan 1.08 1.30 1.47 Gunsan 0.95 0.06 1.62
Seosan 0.40 0.72 0.95

Cluster 4

Sokcho 0.31 1.24 0.47 Uiseong 1.08 1.11 0.92
Daegwallyeong 0.16 0.3 0.55 Gumi 1.11 1.11 1.29
Gangneung 0.85 1.01 1.23 Yeongju 2.97 2.06 1.52

Uljin 2.06 1.73 1.96 Mungyeong 0.68 0.1 0.23
Pohang 1.34 1.27 1.16 Yeongdeok 0.51 0.84 0.61
Daegu 0.86 0.24 0.23 Inje 0.61 0.98 1.21
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Table 4. Results of univariate and bivariate discordancy measure for the final adjusted homogeneous
regions using SPI-6. Cu and Cb indicate the critical values of discordancy measure for univariate and
bivariate cases, respectively.

Cluster 1 (Cu = 2.63, Cb = 2.60)

Site Di, D Di, S Di, SD Site Di, D Di, S Di, SD

Jangheung 1.64 1.68 1.35 Jinju 0.92 1.09 1.32
Haenam 0.13 0.11 0.31 Geoje 1.23 1.76 1.66

Yeongcheon 0.12 1.22 0.81 Buan 1.91 2.45 1.89
Miryang 0.64 0.32 0.52 Namhae 0.15 0.2 0.56

Sancheong 0.36 0.42 0.09 Jeongeup 0.18 0.21 0.33
Ulsan 0.46 0.11 0.67 Goheung 0.73 0.58 0.81

Gwangju 0.25 0.59 0.42 Yeosu 0.81 0.44 0.51
Busan 1.86 1.91 0.95 Wando 1.78 1.19 1.41

Tongyeong 1.94 2.06 1.65 Suncheon 1.62 1.04 1.75
Mokpo 1.21 1.16 0.88 Jeonju 1.77 0.98 1.29

Cluster 2 (Cu = 1.33, Cb = 2.60)

Chupungnyeong 0.49 0.74 1.22 Boeun 1.29 1.32 1.66
Geumsan 0.83 0.89 1.65 Yeongju 1.08 1.02 0.74
Geochang 1.33 1.03 0.07

Cluster 3 (Cu = 3.00, Cb = 2.60)

Chuncheon 0.61 1.35 1.65 Imsil 0.83 1.02 1.19
Chungju 0.58 0.96 1.10 Boryeong 0.48 0.59 0.94
Daejeon 2.9 1.94 1.74 Namwon 0.66 1.51 1.65
Jecheon 0.42 0.02 0.56 Seoul 1.45 0.44 1.52

Yangpyeong 0.63 0.33 0.23 Incheon 2.13 1.69 1.71
Icheon 1.04 2.42 1.11 Wonju 1.46 0.96 0.59

Cheonan 1.22 1.16 1.06 Cheongju 0.37 0.99 1.23
Buyeo 0.47 0.53 0.65 Gunsan 1.25 0.09 0.27
Suwon 0.99 1.12 1.32 Seosan 0.50 0.86 0.59

Cluster 4 (Cu = 2.86, Cb = 2.60)

Sokcho 0.20 1.45 1.29 Uiseong 1.04 1.51 1.41
Daegwallyeong 0.13 0.26 0.61 Gumi 1.09 1.17 0.55
Gangneung 1.01 0.88 1.10 Mungyeong 0.57 0.05 0.47

Uljin 2.05 1.47 1.88 Yeongdeok 0.48 0.74 0.19
Pohang 1.41 1.34 1.21 Inje 0.61 0.98 1.21
Daegu 1.01 0.18 0.71 Ganghwa 2.39 1.96 1.01

The similar subjective adjustment approach, as described above for SPI-6, is adopted for SPI 1, 3,
12 and 24 months. In case of SPI-1, the univariate and bivariate discordancy tests applied on drought
variables (duration and severity) showed that Boeun station from cluster 3, and Suncheon and Buan
stations from cluster 1 are identified as discordant sites, and therefore moved to cluster 2 to make them
homogeneous. However, Suncheon station remains discordant even after moving to clusters 2, 3 and 4.
Therefore, to improve the homogeneity of cluster 1, Suncheon station was removed from the analysis.
In case of SPI-3, the Boeun station from cluster 3, and Suncheon and Gwangju stations from cluster
1 are identified as discordant sites, and therefore moved to cluster 2 to adjust the heterogeneity of
the cluster. In case of SPI-12, the Boeun station from cluster 3, Boryeong station from cluster 3 and
Jeongeup station from cluster 1 are identified as discordant sites, and therefore moved to cluster 2
to improve the homogeneity of each cluster. In case of SPI-24, the Gunsan station is identified as a
discordant site in cluster 3, and moved to cluster 2 to adjust heterogeneity of the region.

Heterogeneity measures of the final adjusted regions for the time scale of 1, 3, 6, 12, and 24 are
presented in Table 5. In case of drought duration, with the exception Region I, II of SPI-1, Region III of
SPI-3, Region IV of SPI-6 and Region IV of SPI-12 (acceptable homogeneous with 1≤H < 2), all regions
satisfy the condition of homogeneity (H < 1). In case of drought severity, all regions are homogeneous
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except Region II of SPI-3. In case of bivariate homogeneity for both duration and severity, except
Region IV of SPI-12 all other are homogeneous.

During the process of regional adjustment, it was noticed that the stations having larger number
of drought events have more influence on the heterogeneity measure of the region than that of smaller
number of drought events. This is because the heterogeneity measures proposed by [48] are calculated
in such a way that the weight information from each station is in proportion to its length of records.
In case of precipitation regionalization studies, where record lengths are generally short, heterogeneity
measure may affect the regionalization process because of the sample size effect on the stability of
L-moments. However, since this study is using a fixed length of precipitation record for each station
(1980–2015), there are no significant changes in number of drought events from one station to another.
Therefore, heterogeneity measure is not influenced too much by the small variation in length of drought
events between the stations.

Table 5. Heterogeneity measure for the final adjusted homogeneous regions on different time scales.

Scale (Months) Region Drought Events Stations D S DS

SPI-1

I 1730 17 1.10(A.H 2) −0.73(H 1) 0.35(H 1)
II 484 5 1.49(A.H 2) −1.39(H 1) −1.23(H 1)
III 1970 19 −0.10(H 1) −1.68(H 1) −0.29(H 1)
IV 1365 13 0.71(H 1) −0.29(H 1) 0.52(H 1)

SPI-3

I 938 16 −2.56(H 1) −1.00(H 1) −0.23(H 1)
II 352 6 0.43(H 1) 1.39(A.H 2) 0.95(H 1)
III 1221 21 1.21(A.H 2) −0.13(H 1) 0.58(H 1)
IV 705 12 −1.13(H 1) −0.84(H 1) −1.56(H 1)

SPI-6

I 516 20 −0.70(H 1) −0.82(H 1) −0.11(H 1)
II 139 5 0.85(H 1) −0.12(H 1) −0.34(H 1)
III 492 18 −2.21(H 1) −2.26(H 1) −1.45(H 1)
IV 308 12 1.47(A.H 2) 0.74(H 1) 0.56(H 1)

SPI-12

I 325 17 −2.87(H 1) −3.33(H 1) −2.75(H 1)
II 110 6 −2.39(H 1) −2.67(H 1) −2.21(H 1)
III 420 20 −1.56(H 1) −1.52(H 1) −1.20(H 1)
IV 238 12 1.46(A.H 2) 1.23(A.H 2) 1.13(A.H 2)

SPI-24

I 245 18 −0.86(H 1) −0.97(H 1) −0.85(H 1)
II 41 4 −0.85(H 1) −1.16(H 1) −1.02(H 1)
III 283 21 −2.25(H 1) −0.33(H 1) −1.26(H 1)
IV 158 12 −0.48(H 1) −0.22(H 1) −0.36(H 1)

Notes: 1 H = Homogeneous region, 2 A.H = Acceptably homogeneous region.

The spatial distribution of finally identified homogeneous regions for SPI 1, 3, 6, 12, and 24 are
shown in Figure 9a–e, respectively. Region I for all SPI-time scales is spread mainly along the south
coast of South Korea and consists of extremely unusual precipitation patterns as compared to other
regions. For example, in case of SPI-6, it can be observed from Figure 3b that south coastal areas
(surrounding areas of Jangheung and Goheung stations) faced droughts of highest severities because
of abrupt changes in precipitation patterns. Overall Region I faced droughts of longest duration and
highest severities as compared to other regions because of major contribution of typhoons to the
seasonal (particularly summer) precipitation patterns and convective systems within the air mass at
south coastal areas. These results match well with the previous literature [29]. A study [17] based on
spatial patterns of trends in summer precipitation showed a significant increasing trend in amount
and intensity of precipitation at southeast coastal areas.

Region II is the smallest region and delineated for the SPI-time scales (1, 3, 6, 12, and 24 months).
The number of stations in this region varies from 4 to 6 and occupies the mid-latitude inland of South
Korea. Moderate drought attributes observed in Region II may be because of its location near the
coastal areas, thus less affected by summer typhoons, which occur less at the coastal areas.
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Region III delineated for the SPI-time scales (1, 3, 6, 12, and 24 months) are spread mainly along
the north-east side of South Korea. The number of stations varies from 18 to 21. This region has
relatively low elevation above sea level as compared to Region I, II and IV, as shown in Figure 1.
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Region IV is spread mainly along the northeast coast of South Korea. Delineation of Region IV for
the SPI-time scales (1, 3, 6, 12, and 24 months) indicate that the number of stations varies from 12 to
13. Topographical and hydro-climatic features of this region are extremely complex as compared to
other regions. The EL attribute of the region varies from a lowest elevation above sea level to highest
elevation above sea level as compared to Region I, II and III, as shown in Figure 1. The greater variation
in hydro-climatic attributes in this region can be correlated with an increase in intensity, frequency,
and duration of summer typhoons originating in the west Pacific regions.

4. Conclusions

This study has attempted to investigate the regionalization of drought variables together
with other physiographic and climatic variables. It aims to cope with complex hydro-climatic
and topographical features of South Korea. Therefore, eight important hydrologic, climatic and
physiographic characteristics were selected for the process of regionalization. Drought characteristics
were extracted using SPI truncation level approach across 55 rainfall stations. HCPC algorithm,
which is a blend of Ward’s classification method with the K-means algorithm and PCA approach, is
investigated and used for the regionalization of drought across the South Korean region. The clusters
formed by HCPC algorithm were further validated using four cluster validity indices, connectivity,
silhouette width, Dunne index and Calinski and Harabasz index. Statistical homogeneity of the
region was tested using a newly extended approach based on L-moment bivariate discordancy and
heterogeneity measures. The regionalization of drought is accomplished using the SPI time scale of 1,
3, 6, 12, 24 months. The primary conclusions determined from this study are as follows:

(1) PCA method applied on the selected attributes indicates that almost all selected attributes
contributed significantly to the leading principal components because of the existence of a
significant correlation between them.
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(2) Although the mixed nature of HCPC clustering algorithm helps to increase the robustness in
the partitioning of the region, a comprehensive understanding of hydro-climatic and topological
characteristics across the region is necessary for deciding number of clusters.

(3) HCPC cluster validation indices such as connectivity, silhouette width, Dunne index and Calinski
and Harabasz index are found effective in identifying the optimal partitions and helped to
reduce the subjective adjustment in the formation of clusters. Validation indices indicate
that the 55 stations across South Korea should be divided into four regions that are closer
to being homogeneous.

(4) The clusters formed by the HCPC algorithm is found very useful in adjusting the regions to
improve their homogeneity. It is suggested that the clusters formed by the HCPC algorithm
should be considered as primary clusters, which could be easily modified with relatively less
effort to make them homogeneous.

(5) Univariate and bivariate homogeneity and discordancy tests applied on drought variables
(duration and severity) showed the significant difference in their results. This is because of the
reason that the univariate homogeneity and discordancy measure can use only one variable (either
duration or severity) at a time to modify clusters, and unable to take account of the correlation
between drought variables. Compared to univariate L-moment, bivariate L-comoment is better
able to model drought events described by their duration and severity. This fact is particularly
important when bivariate drought frequency analysis is a matter of interest.

(6) Regionalization of drought for SPI time scale of 1, 3, 6, 12, and 24 months showed that the
variation in SPI time scale has a direct impact on the discordancy and homogeneity of the region
because of the variation in length and frequency of dry and humid periods.
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