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Abstract: In this work, we use the gridded precipitation dataset (with a resolution of 0.5◦ × 0.5◦) of the
eastern part of inland river basin of Inner Mongolian Plateau from 1961–2015 as the basis and adopt
the methods of climatic diagnosis (e.g., the Modified Mann-Kendall method, principal component
analysis, and correlation analysis) to analyze the spatial and temporal variations of six extreme
precipitation indices. Furthermore, we analyzed the relationship between El Niño–Southern
Oscillation (ENSO) events and the observed extreme precipitation. The results indicated that the
gridded dataset can be used to describe the precipitation distribution in our study area. In recent
55 years, the inter-annual variation trends of extreme precipitation indices are generally dominated
by declination except for the maximum precipitation over five days (RX5DAY) and the heavy
precipitation (R95P), in particular, the decreasing regions of consecutive dry days (CDD) accounts
for 91% of the entire basin, 17.28% of which is showing the significant downward trend. Contrary
to CDD, the spatial distribution of the other five indices is gradually decreasing from northeast to
southwest, and the precipitation intensity (SDII) ranges from 3.8–5.3 mm·d−1, with relatively small
spatial differences. To some extent, CDD and R95P can used to characterize the extreme precipitation
regimes. Moreover, the number of days with heavy precipitation (RR10), SDII, and R95P are more
susceptible to the ENSO events. In addition, the moderate El Niño event may increase the probability
of CDD, while the La Niña events may increase the risk of the heavy rainfall regime in the study area.

Keywords: inland river basin; extreme precipitation; spatiotemporal variation; Modified Mann-
Kendall; ENSO events

1. Introduction

Against the background of global warming, the precipitation in some area are generally exhibiting
the extreme trend, the intensity and frequency are continuously increasing [1–4]. In recent decades,
the disasters that are caused by the frequency occurrence of the precipitation extremes in different
countries were more and more serious [5–8]. At the same time, previous studies showed that the climate
anomaly have some correlation with El Niño–Southern Oscillation (ENSO) event [9,10], which make
the research of extreme climate phenomenon more complicated. In order to regulate the study of
extreme climate change characteristics, the World Meteorological Organization (WMO) proposed
27 extreme climate indices (16 extreme temperature indices and 11 extreme precipitation indices) from
1998 to 2001 [11]. Based on these indices, the studies on extreme precipitation events in different
regions have also become the focus of global hydrological and meteorological experts [12–14].
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The precipitation of China is affected by terrain and multiple climate types, the patterns are
particularly complicated. In recent years, the scholars who explored the extreme precipitation events in
different regions have scored a lot of remarkable achievements. Some of them used the long sequence
precipitation data observed by the national meteorological stations to analyze the extreme precipitation
characteristics in the northwest of China, and they found that the persistent drought index in this
area shows a decreasing trend, while the other indices, such as precipitation intensity and continuous
precipitation days, are on the rise [15–17]. Because of the limited number and the uneven spatial
distribution of stations, where the data from can’t meet the needs of precision, some other scholars
applied the gridded precipitation dataset to solve the problem [18–21], from whose results, we know
that the gridded precipitation dataset can also be used to describe the characteristics of precipitation
distribution ideally in somewhere, thus the application of gridded precipitation dataset breaks new
ground for the studying of extreme precipitation events.

As we know, the extreme hydrological events are closely related to ENSO event; therefore,
some studies were investigated to reveal the relationship between them. From the results of their
research on the southern watershed in China, we learn that Eastern Pacific Warming induces the
heavy precipitation events in summer, while Central Pacific Warming causes the reduction of annual
precipitation [9,22,23]. In addition, some other studies also proposed that the extreme precipitation
phenomenon in northwest of China is subject to the relatively serious influence of ENSO event [24,25].

As the ecological barrier in the north of China, Inner Mongolia was also affected by the occurrence
of precipitation extremes in recent decades, and the most sensitive region is the inland river basin
located in the agricultural and pasturing interlaced zone of Inner Mongolian Plateau, where many
basins are suffering from the disasters of drought and flood, which exacerbated the deterioration
of eco-environment. Although there were some studies on precipitation extremes before, most of
them were limited to use the precipitation data from national meteorological stations [26–29], and the
accuracy of the results must be affected by the inadequate numbers of stations, in addition, few of
them took the ENSO event into consideration. Therefore, we attempt to analyze the spatiotemporal
distributions of extreme precipitation regimes characterized by six extreme indices on the basis of the
gridded precipitation dataset, further explore the relationship between extreme precipitation event
and ENSO event to provide a reference for the management of water resources, flood prevention,
and drought mitigation of the grassland in the basin.

2. Materials and Methods

2.1. Study Area

The 2.1× 105 km2 study area is located in the eastern part of inland river basin of Inner Mongolian
Plateau (111◦10′–119◦40′ E, 41◦30′–46◦50′ N), of which the area of grassland accounts for 95% of the
total area. The elevation varies from 620 to 1998 m, and receives an annual average precipitation of 136
to 400 mm, of which the rain falls between June and September and the snow between November and
February. The annual potential evapotranspiration of the watershed is 1600 mm or higher, which is
much greater than the annual average precipitation, so, the study area belongs to the arid or semi-arid
continental monsoon climate.

There are many inland rivers in the basin, such as the Wulagai River, Balageer River, and Xilin
River, and so on (Figure 1). The local residents suffered heavy losses that were caused by several
extreme precipitation events since the new century. Particularly, the basin suffered a severe drought
from 2000 to 2001, when the precipitation and the soil moisture content all fall to a record low, resulting
in the reduction of crop yield and the death of a large number of livestock. Meanwhile, in early
August 2000, the regional torrential rains initiated the flood, which leaded to a direct economic loss for
about 400 thousand Yuan. Similarly, in June 2008, the flood occurred in the south of the basin forced
hundreds of residents to be got trapped. In recent years, the situation regarding drying-up of rivers
and degradation of grassland is getting worse, caused by the climate change and human activities.
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2.2. Data 

The gridded daily precipitation dataset (with a resolution of 0.5° × 0.5°) from 1961–2015 came 
from the National Meteorological Information Center (NMIC) of the China Meteorological 
Administration (CMA), who interpolated it by the method of Thin Plate Smoothing Spines (TPS) in 
ANUSPLIN which is a software package published by Australian National University to eliminate 
the influence of elevation based on the observed daily precipitation over 2400 national meteorological 
stations across China, and the root-mean-square error (RMSE) of this dataset ranges between 0.2 and 
0.8 mm at a monthly scale [21,30–32]. Besides, we also use the measured daily precipitation data with 
the same time series from 15 meteorological stations in our study area (Table 1) to validate whether 
the gridded data is suitable for the study area. Both of the two datasets are provided by the NMIC 
(http://cdc.nmic.cn). 

Table 1. List of the selected meteorological stations in study area. 

WMO Number Station Name Longitude (°E) Latitude (°N) Annual Average Precipitation (mm)
50915 Dongwuqi 116.58 45.31 237.53 
53068 Erlianhaote 111.58 43.39 125.75 
53192 Abagaqi 114.57 44.01 230.20 
53195 Suzuoqi 113.38 43.52 173.47 
54012 Xiwuqi 117.36 44.35 314.92 
54102 Xilinhaote 116.07 43.57 264.53 
53083 Narenbaolige 114.09 44.37 210.13 
53276 Zhurihe 112.774 42.44 197.60 
50913 Wulagai 118.5 45.43 320.91 
50924 Huolinguole 119.3 45.32 345.73 
53289 Xianghuangqi 113.5 42.14 270.65 
54117 Keshenketengqi 117.02 43.15 391.74 
54204 Zhengxiangbaiqi 115 42.18 351.22 
54205 Zhenglanqi 115.7 42.14 359.61 
54305 Taipusiqi 115.16 41.66 383.47 

The data for ENSO event like Sea Surface Temperature Anomalies (SSTA) of Niño 3.4 (5° N–5° 
S, 170°–120° W) and Southern Oscillation Index (SOI) with the time series from 1961 to 2015 were 
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2.2. Data

The gridded daily precipitation dataset (with a resolution of 0.5◦ × 0.5◦) from 1961–2015
came from the National Meteorological Information Center (NMIC) of the China Meteorological
Administration (CMA), who interpolated it by the method of Thin Plate Smoothing Spines (TPS) in
ANUSPLIN which is a software package published by Australian National University to eliminate
the influence of elevation based on the observed daily precipitation over 2400 national meteorological
stations across China, and the root-mean-square error (RMSE) of this dataset ranges between 0.2 and
0.8 mm at a monthly scale [21,30–32]. Besides, we also use the measured daily precipitation data with
the same time series from 15 meteorological stations in our study area (Table 1) to validate whether
the gridded data is suitable for the study area. Both of the two datasets are provided by the NMIC
(http://cdc.nmic.cn).

Table 1. List of the selected meteorological stations in study area.

WMO Number Station Name Longitude (◦E) Latitude (◦N) Annual Average
Precipitation (mm)

50915 Dongwuqi 116.58 45.31 237.53
53068 Erlianhaote 111.58 43.39 125.75
53192 Abagaqi 114.57 44.01 230.20
53195 Suzuoqi 113.38 43.52 173.47
54012 Xiwuqi 117.36 44.35 314.92
54102 Xilinhaote 116.07 43.57 264.53
53083 Narenbaolige 114.09 44.37 210.13
53276 Zhurihe 112.774 42.44 197.60
50913 Wulagai 118.5 45.43 320.91
50924 Huolinguole 119.3 45.32 345.73
53289 Xianghuangqi 113.5 42.14 270.65
54117 Keshenketengqi 117.02 43.15 391.74
54204 Zhengxiangbaiqi 115 42.18 351.22
54205 Zhenglanqi 115.7 42.14 359.61
54305 Taipusiqi 115.16 41.66 383.47

The data for ENSO event like Sea Surface Temperature Anomalies (SSTA) of Niño 3.4 (5◦ N–5◦ S,
170◦–120◦ W) and Southern Oscillation Index (SOI) with the time series from 1961 to 2015 were

http://cdc.nmic.cn
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obtained from the Earth System Research Laboratory (ESRL) of National Oceanic and Atmospheric
Administration (NOAA) (http://www.esrl.noaa.gov). In this study, the El Niño events were defined
when the values of SSTA are greater than 0.5◦ for a minimum of six consecutive overlapping months.
Oppositely, if the values of SSTA are smaller than –0.5◦ and also can last for more than six months,
which would be defined as a La Niña event. Furthermore, the selected El Niño (La Niña) events could
be divided into two categories: strong El Niño (La Niña) events have a Niño3.4 index >1.0 (<−1.0),
and moderate El Niño (La Niña) events with a Niño3.4 index >0.5 and≤1.0 (<−0.5 and≥−1.0) [33–35].
According to the criteria, 15 El Niño events and 17 La Niña events were picked out during 1961 to 2015,
of which a total of six moderate El Niño, nine strong El Niño, six moderate La Niña, and 11 strong La
Niña years were showed in Table 2.

Table 2. The selected El Niño and La Niña years and their categories.

Events Category Years

El
Niño

Strong 1965 1972 1982 1983 1987 1992 1997 2009 2015
Moderate 1963 1969 1976 1994 2002 2004

La
Niña

Strong 1973 1974 1975 1988 1989 1998 1999 2000 2007 2008 2010
Moderate 1964 1970 1971 1985 1995 2011

In addition, the extreme indices were calculated based on the checked daily precipitation dataset
by the RClimDex software (http://etccdi.pacificclimate.org/software.shtml), which was developed
and maintained by Xuebin Zhang and Feng Yang at the Climate Research Branch, Meteorological
Service of Canada [36,37]. We selected six extreme precipitation indices that are widely used [38–41]
and are consistent with the climatic characteristics of our study area to evaluate the changes of extreme
precipitation regimes. The chosen indices are divided into four different categories: (1) duration indices
are defined as the periods of excessive dryness or wetness, such as consecutive dry days (CDD) and
consecutive wet days (CWD); (2) absolute indices represent maximum or minimum values within a
month or year, such as number of days with daily precipitation≥10 mm per year (RR10) and maximum
precipitation over five consecutive days in each month (RX5DAY); (3) intensity indices, such as the
precipitation intensity (SDII), the mean precipitation amount on a rainy day; and (4) threshold indices
defined as the precipitation value falls above a fixed threshold, such as the precipitation higher than
the threshold of 95% in one year (R95P) (Table 3).

Table 3. Definition of the six extreme precipitation indices.

Category Index Abbreviation Definition Units

Duration indices
Consecutive dry days CDD Maximum consecutive number of

days with daily precipitation <1.0 mm days

Consecutive wet days CWD Maximum consecutive number of
days with daily precipitation ≥1 mm days

Absolute indices

Number of days with
heavy precipitation RR10 Total number of days every year with

daily precipitation ≥10 mm days

Maximum precipitation
over 5 days RX5DAY Maximum precipitation over five

consecutive days in each month mm

Intensity indices Precipitation intensity SDII
The ratio between the annual

precipitation and the number of days
with daily precipitation ≥1 mm

mm·day−1

Threshold indices Heavy precipitation R95P
The sum of precipitation with daily

precipitation higher than the
threshold of 95% in one year

mm

2.3. Methods

There is little research by using the precipitation gridded dataset in study area before, so, it is
necessary to verify whether the gridded dataset is suitable for the precipitation pattern in the study area.
Firstly, the Inverse Distance Weighted (IDW) method was applied for the gridded data interpolation,

http://www.esrl.noaa.gov
http://etccdi.pacificclimate.org/software.shtml
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which assumes that each point has a local influence that diminishes with distance, and the value of
point is more affected by the closer points greater than those further away. The spatial correlation of
precipitation data accords with this rule, so it is often used in the spatial interpolation of precipitation.
Each meteorological station is surrounded by four grid boxes and the data of which is affected by those
four grids most, therefore, the nearest four grid boxes around the specific meteorological station are
weighted in the study [21]. What should be noted is when the station is located at the boundary of the
basin, the grids should be extended outside to meet the interpolation requirements. The interpolated
date was computed as:

PIDW =

n
∑

i=1

pi
di

n
∑

i=1

1
di

(1)

where pi is the precipitation of the neighboring four grid boxes, respectively; di is the distance between
the station and the four surrounded grids; n = 4 in this study.

Secondly, comparing the bias and correlation coefficients between the IDW interpolated data and
the observed data from stations [21]. The formula of the bias is given as follows:

B =
PIDW − PStation

PStation
(2)

where PIDW is the mean value of interpolated data, and PStation is the means of observed data.
The Modified Mann-Kendall (MM-K) nonparametric test was employed to find the trends of the

extreme indices and their significance of trends in time series, which are considered to be statistically
significant if it is significant at the 0.1 level. The MM-K test is a rank-based nonparametric trend
detection method that is less sensitive to outliers than parametric statistics and does not assume any
priority in the distribution of the data and allows for the presence of a tendency over a long period
of data. Moreover, it has the advantage of taking the effect of autocorrelation into account [26,42,43],
which make the results more accurate. The formulas are given as follows:

S =
N−1

∑
k=1

N

∑
j=k+1

sign(xj − xk) (3)

sign(xj − xk) =


1 i f xj > xk
0 i f xj = xk
−1 i f xj < xk

(k = 1, 2, . . . , N − 1; j = k + 1, k + 2, . . . , N) (4)

var(S) =

N(N − 1)(2N + 5)−
Np

∑
p=1

[mp(mp − 1)(2mp + 5)]

18
(5)

N
N∗S

= 1 +
2

N(N − 1)(N − 2)

N−3

∑
i=1

[(N − i)(N − i− 1)(N − i− 2)(ρs(i))] (6)

var∗(S) = var(S)•( N
N∗S

) (7)

Z∗ =


S−1√
var∗(S)

i f S > 0

0 i f S = 0
S+1√
var∗(S)

i f S < 0
(8)

where X is the long-term data; N is the length of X; Np is the number of distinct ties; and, mp is
the number of tied data points in pth tie. If Z* > 0, the upward trend was detected. In contrast,
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if Z* < 0, the downward trend was detected, if |Z*| > 1.64, indicating that a significant trend exists at
α = 0.1 level.

The magnitude of a trend was estimated using Sen’s slope estimator β, defined as the median of
all the possible pairs for the whole series of indices [44]. Computed as:

β = mean
( xj − xi

j− i
), ∀j > i (9)

where 1 < i < j < n, X is the time series of data; n is length of the dataset.
In addition, the five-year smoothing average is also used to show the inter-annual variation of

indices. The principal component analysis was applied to partition the dataset into clusters with
in-cluster similarities and between-cluster dissimilarities [45] and Pearson correlation analysis was
used to examine the linear relationship between extreme precipitation indices and ENSO indices.
The spatial distribution maps of extreme indices are finished in ArcGIS 10.

3. Results

3.1. Precipitation Change Background

As shown in Figure 2A, we observe that the bias between the IDW interpolated data and the
observed data at Erlianhaote station is 17.33%, the highest value among the stations. Meanwhile,
the absolute value of the remaining station bias are all less than 15%, of which the vast majority are less
than 10%, accounting for 73.33% of the total stations, the accuracy can meet the requirement of such
research. In addition, there is a very good linear relationship between the station data and the IDW
interpolated data (R2 = 0.98), passed the significance test on the level of 0.0001. Furthermore, the slope
of this linear fitting equation reaches 1.08, which is in close proximity to 1.00 (Figure 2B). Therefore,
the gridded dataset can reflect the spatiotemporal patterns of precipitation distributions in study area.
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Figure 2. Relationship between the observed annual average precipitation and Inverse Distance
Weighted (IDW) interpolated precipitation: (A) shows the bias; (B) shows the linear relationship.

The spatial pattern of the annual precipitation in the study area from 1961–2015 exhibits the
obvious feature of “high in the northeast and low in the southwest”, and which gradually declines
from 376.54 mm in the eastern region to 136.78 mm in the western region. The difference between
the annual precipitation in the eastern and western is as high as 240 mm (Figure 3A). Moreover,
the precipitation in northeast region exhibits an upward trend with a velocity in excess of 3 mm in
a decade (mm·decade−1), but the region with an increasing trend of precipitation only accounts for
25% of the total area. The remaining 75% is the area where shows an insignificant decreasing trend,
mainly being located in the central of the study area (Figure 3B).
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in arid zone of the basin (Figure 4A). Opposite to the spatial variation trend of CDD, the other five 
extreme indices exhibit the distribution features of “high in the northeast and low in the southwest”. 
Particularly, the annual average of consecutive wet days (CWD) is 3–8 days, which is generally small 
and the maximum value appears in the northeast of the study area (Figure 4B). Similarly, the number 
of days with heavy precipitation (RR10) is range between 3 and 10 days, and heavy precipitation is 
also mainly occurs in the eastern region (Figure 4C). Regarding the precipitation amount, maximum 
precipitation over five days (RX5DAY) and heavy precipitation (R95P) decrease gradually from 61.0 
mm and 95.0 mm in the northeastern to 28.5 mm and 31.1 mm in the southwestern, respectively 
(Figure 4D–F). In addition, the average value of R95P is generally higher than RX5DAY. We can find 
from the SDII diagram that the average precipitation intensity ranges from 3.8 to 5.3 mm·day−1, and 
the spatial difference is not so large (Figure 4E). Except for CDD, the spatial variations of the other 
five extreme precipitation indices are similar to the variation of the annual precipitation. 
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annual precipitation; (B) shows the spatial distribution of trend magnitude of precipitation at the scale
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green represents the proportion of the decreasing trend).

3.2. Spatiotemporal Variations in Extreme Precipitation Indices

The spatial distributions of the extreme precipitation indices for the eastern part of inland river
basin of Inner Mongolian Plateau from 1961–2015 are shown in Figure 4. The consecutive dry days
(CDD) are gradually alleviated from southwest to northeast, and the CDD can reach up to 117 days in
arid zone of the basin (Figure 4A). Opposite to the spatial variation trend of CDD, the other five extreme
indices exhibit the distribution features of “high in the northeast and low in the southwest”. Particularly,
the annual average of consecutive wet days (CWD) is 3–8 days, which is generally small and the
maximum value appears in the northeast of the study area (Figure 4B). Similarly, the number of days
with heavy precipitation (RR10) is range between 3 and 10 days, and heavy precipitation is also mainly
occurs in the eastern region (Figure 4C). Regarding the precipitation amount, maximum precipitation
over five days (RX5DAY) and heavy precipitation (R95P) decrease gradually from 61.0 mm and
95.0 mm in the northeastern to 28.5 mm and 31.1 mm in the southwestern, respectively (Figure 4D–F).
In addition, the average value of R95P is generally higher than RX5DAY. We can find from the SDII
diagram that the average precipitation intensity ranges from 3.8 to 5.3 mm·day−1, and the spatial
difference is not so large (Figure 4E). Except for CDD, the spatial variations of the other five extreme
precipitation indices are similar to the variation of the annual precipitation.
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Figure 4. Spatial distribution of the average extreme indices: (A) consecutive dry days (CDD);
(B) consecutive wet days (CWD); (C) number of days with daily precipitation ≥10 mm per year
(RR10); (D maximum precipitation over five days (RX5DAY); (E) precipitation intensity (SDII); and, (F)
precipitation higher than the threshold of 95% in one year (R95P).

The inter-annual variations of different extreme indices were evaluated by using the average of
the values on all the grids. The inter-annual variations were not obvious. In particular, the indices
that characterize the heavy precipitation amount (RX5DAY and R95P) exhibit a weak upward trend
(Figure 5D–F), and the other indices exhibit a downward trend. In addition, we can also see from the
smoothing average curve of five years that SDII was in a stable fluctuation period in the 1970s and
increased with a relatively large magnitude from the end of the 1980s to the end of the 1990s. After the
end of the 1990s, SDII was again in a stage of stable fluctuation (Figure 5E), which is similar to the
variation trend of RR10 (Figure 5C), RX5DAY, and R95P. Both CDD and CWD have always been in a
downward stage with fluctuations (Figure 5A,B).
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Figure 5. Inter-annual change of the extreme precipitation indices: (A) CDD; (B) CWD; (C) RR10; (D)
RX5DAY; (E) SDII; and, (F) R95P.

The spatial distributions of the variation magnitude for different extreme indices during the
observation period is shown in Figure 6, from which we can see that CDD and CWD are dominated
by declination, both of which account for 91% of the study area, the difference is that the former has
a significant downward area of 17.28%, while the latter with a significant decreasing trend account
for 16% (at a significance level of α = 0.1), where mainly located in the south of the study area
(Figure 6A,B). We can see from the (Figure 6C) that the variation magnitude of the number of days
with heavy precipitation in our study area is relatively small, and does not exceed 0.3 mm·decade−1.
Similarly, the variation of RX5DAY is also relatively weak, the region exhibit a downward trend
accounts for 29% of the study area (Figure 6D).

Water 2018, 10, 35 9 of 16 

 

Figure 5. Inter-annual change of the extreme precipitation indices: (A) CDD; (B) CWD; (C) RR10; (D) 
RX5DAY; (E) SDII; and, (F) R95P. 

The spatial distributions of the variation magnitude for different extreme indices during the 
observation period is shown in Figure 6, from which we can see that CDD and CWD are dominated 
by declination, both of which account for 91% of the study area, the difference is that the former has 
a significant downward area of 17.28%, while the latter with a significant decreasing trend account 
for 16% (at a significance level of α = 0.1), where mainly located in the south of the study area (Figure 
6A,B). We can see from the (Figure 6C) that the variation magnitude of the number of days with 
heavy precipitation in our study area is relatively small, and does not exceed 0.3 mm·decade−1. 
Similarly, the variation of RX5DAY is also relatively weak, the region exhibit a downward trend 
accounts for 29% of the study area (Figure 6D). 

In spite of this, the region of SDII shows an upward trend (53%), the area of which exceed the 
downward area (47%), and the variation magnitude is extremely small, therefore, the performance 
of the precipitation intensity exhibit the downward trend (Figure 6E). The spatial distribution of the 
variation magnitude for R95P is dominated by the decreasing trend, being mainly located in the 
central of study area, which accounts for 54% of the research area, in addition, the magnitude of this 
increase in the northeastern area is 2–6 mm·decade−1, which is greater than 0–2 mm·decade−1 in the 
southwestern area (Figure 6F). None of the other four indices exhibits a significant changing trend 
expect for CDD and CWD. 

 

y = -0.01x+18.96   
R = 0.09 p=0.47

2
4
6
8

10
12

1960 1971 1982 1993 2004 2015
d 

(d
ay

s)
Year

RR10(C) y = 0.01x+35.95
R = 0.01 p=0.94

20
30
40
50
60
70

1960 1971 1982 1993 2004 2015

p 
(m

m
)

Year

RX5DAY(D)

y = -0.01x+5.21
R = 0.01 p=0.982

3

4

5

6

1960 1971 1982 1993 2004 2015

p 
(m

m
.d

-1
)

Year

SDII(E) y = 0.03x-1.33
R = 0.02 p=0.90

0

35

70

105

140

1960 1971 1982 1993 2004 2015

p 
(m

m
)

Year

R95P(F)

Figure 6. Cont.



Water 2018, 10, 35 10 of 16

Water 2018, 10, 35 10 of 16 

 

 

 

Figure 6. Spatial distribution of the variation trend for the extreme precipitation indices: (A) CDD; (B) 
CWD; (C) RR10; (D) RX5DAY; (E) SDII; and, (F) R95P. (The red part of the pie chart represents the 
proportion of the increasing trend, and the green represents the proportion of the decreasing trend). 

3.3. Factor Analysis of Extreme Precipitation Indices 

After analyzing the annual precipitation and the six extreme indices by principal component 
analysis, the results show that the first principal component accounts for 61.34% of the total variance, 
which included almost all of the indices except for CDD and CWD, and the loads of the component 
indices are all exceed 0.80, particularly, R95P has a maximum load of 0.96, which reflects that R95P 
has the indicative function for the whole heavy rainfall regime. In addition, the variance contribution 
rate of the second component is 16.25%, and the loads of CDD and CWD are relatively high, are 0.64 
and −0.72, respectively. Therefore, this kind of extreme event can be defined as the drought regime, 
which is characterized by CDD (Table 4). 

Table 4. Factor analysis of extreme precipitation indices. 

Component Annual Precipitation CDD CWD SDII RR10 RX5DAY R95P Percentage/%
1 0.90 −0.21 0.34 0.91 0.94 0.84 0.96 61.34 
2 −0.24 0.64 −0.72 0.26 −0.24 0.24 0.19 16.25 

Note: KMO: 0.78; Bartlett: 361.12; p < 0.001. 

The Pearson correlation coefficients between annual precipitation and extreme indices are 
shown in Table 5 to verify the relationships between them. In addition to CDD, the other five extreme 
indices have positive correlations with the annual precipitation and their correlation coefficients are 
statistically significant at the 0.01 level. The negative correlation coefficient between CDD and CWD 
reaches 0.60 (at a significance level of α = 0.05), but the correlation between this two extreme indices 
and the other four indices is relatively poor. When comparing the behavior of the remaining four 
extreme indices, R95P has the strongest correlations with the other three indices, and all of the 

Figure 6. Spatial distribution of the variation trend for the extreme precipitation indices: (A) CDD;
(B) CWD; (C) RR10; (D) RX5DAY; (E) SDII; and, (F) R95P. (The red part of the pie chart represents the
proportion of the increasing trend, and the green represents the proportion of the decreasing trend).

In spite of this, the region of SDII shows an upward trend (53%), the area of which exceed the
downward area (47%), and the variation magnitude is extremely small, therefore, the performance
of the precipitation intensity exhibit the downward trend (Figure 6E). The spatial distribution of the
variation magnitude for R95P is dominated by the decreasing trend, being mainly located in the
central of study area, which accounts for 54% of the research area, in addition, the magnitude of this
increase in the northeastern area is 2–6 mm·decade−1, which is greater than 0–2 mm·decade−1 in the
southwestern area (Figure 6F). None of the other four indices exhibits a significant changing trend
expect for CDD and CWD.

3.3. Factor Analysis of Extreme Precipitation Indices

After analyzing the annual precipitation and the six extreme indices by principal component
analysis, the results show that the first principal component accounts for 61.34% of the total variance,
which included almost all of the indices except for CDD and CWD, and the loads of the component
indices are all exceed 0.80, particularly, R95P has a maximum load of 0.96, which reflects that R95P
has the indicative function for the whole heavy rainfall regime. In addition, the variance contribution
rate of the second component is 16.25%, and the loads of CDD and CWD are relatively high, are 0.64
and −0.72, respectively. Therefore, this kind of extreme event can be defined as the drought regime,
which is characterized by CDD (Table 4).
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Table 4. Factor analysis of extreme precipitation indices.

Component Annual Precipitation CDD CWD SDII RR10 RX5DAY R95P Percentage/%

1 0.90 −0.21 0.34 0.91 0.94 0.84 0.96 61.34
2 −0.24 0.64 −0.72 0.26 −0.24 0.24 0.19 16.25

Note: KMO: 0.78; Bartlett: 361.12; p < 0.001.

The Pearson correlation coefficients between annual precipitation and extreme indices are shown
in Table 5 to verify the relationships between them. In addition to CDD, the other five extreme indices
have positive correlations with the annual precipitation and their correlation coefficients are statistically
significant at the 0.01 level. The negative correlation coefficient between CDD and CWD reaches 0.60
(at a significance level of α = 0.05), but the correlation between this two extreme indices and the other
four indices is relatively poor. When comparing the behavior of the remaining four extreme indices,
R95P has the strongest correlations with the other three indices, and all of the correlations coefficients
fell in the confidence interval under the 99% confidence level, which further validates the results in
Table 4. To some extent, CDD and R95P can characterize the two kinds of extreme precipitation events
we defined as the drought event and the heavy rainfall event well, and the two kinds of extreme events
form the extreme precipitation events in our study.

Table 5. Correlation coefficients of extreme precipitation indices.

Precipitation Regime Annual Precipitation CDD CWD SDII RR10 RX5DAY R95P

Annual Precipitation 1
CDD −0.26 1
CWD 0.48 ** −0.6 * 1
SDII 0.72 ** −0.13 0.18 1
RR10 0.89 ** −0.20 0.34 ** 0.88 ** 1

RX5DAY 0.59 ** −0.01 0.26 * 0.73 ** 0.64 ** 1
R95P 0.77 ** −0.16 0.20 0.92 ** 0.86 ** 0.82 ** 1

Note: ** Significant at the 0.01 level; * Significant at the 0.05 level.

3.4. Response of the Extreme Precipitation Indices to ENSO Event

The Pearson correlation coefficients between the six extreme precipitation indices and the two
ENSO indices were calculated in Table 6, and there are obvious differences between them. CDD has a
negative correlation with SSTA from January to June, and has positive correlation with it from July
to December. However, in terms of the correlation with SSTA, the other five indices have almost the
opposite features with CDD at monthly scale. Including the positive correlations of RR10 and SDII
with SSTA from January to April, which are statistically significant at the 0.05 level, and the negative
correlations from June to December. In addition, R95P is also showing a significant negative correlation
with SSTA (at a significance level of α = 0.1) from September to December. Furthermore, the correlation
relationship between each extreme index and SOI is opposite to the relationship of which with SSTA,
except in May, respectively. It means that if the extreme index showing a negative (positive) correlation
with SSTA, it will appear a positive (negative) correlation with SOI at the same month. Both RR10
and SDII are closely related with SOI as well (at a significance level of α = 0.05) from January to April.
In general, RR10, SDII, and R95P are particularly sensitive to ENSO in our study area.
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Table 6. Correlation between extreme precipitation indices and Sea Surface Temperature Anomalies
(SSTA) and Southern Oscillation Index (SOI).

Month
CDD CWD RR10 RX5DAY SDII R95P

SSTA SOI SSTA SOI SSTA SOI SSTA SOI SSTA SOI SSTA SOI

January −0.14 0.13 0.18 −0.07 0.32 ** −0.33 ** 0.04 −0.11 0.25 ** −0.28 ** 0.18 −0.23 **
February −0.17 0.24 * 0.22 −0.10 0.35 ** −0.33 ** 0.08 −0.03 0.29 ** −0.26 ** 0.27 −0.13
March −0.18 0.16 0.20 −0.03 0.35 ** −0.27 ** 0.05 −0.01 0.28 ** −0.26 ** 0.20 −0.12
April −0.21 −0.03 0.12 −0.04 0.26 ** −0.28 ** −0.03 −0.08 0.26 ** −0.33 ** 0.12 −0.23 *
May −0.13 0.02 0.03 0.11 0.14 0.19 −0.06 0.21 0.12 0.17 0.03 0.19
June −0.03 −0.08 −0.17 0.13 −0.08 0.23 ** −0.19 0.12 −0.06 0.23 * −0.17 0.26 *
July 0.01 −0.17 −0.21 0.03 −0.16 0.19 −0.13 0.12 −0.13 0.17 −0.21 0.28 **

August 0.07 −0.15 −0.17 0.06 −0.14 0.17 −0.09 0.21 −0.10 0.11 −0.17 0.25 *
September 0.12 −0.18 −0.20 0.08 −0.12 0.10 −0.14 0.15 −0.10 0.07 −0.20 * 0.17
October 0.14 −0.11 −0.22 0.14 −0.13 0.04 −0.21 0.09 −0.20 −0.02 −0.22 * 0.09
November 0.12 −0.37 * −0.22 0.16 −0.12 0.12 −0.23 * 0.11 −0.12 0.08 −0.22 * 0.20
December 0.11 −0.27 * −0.23 * 0.04 −0.14 0.13 −0.22 0.10 −0.12 0.10 −0.23 * 0.17

Note: ** Significant at the 0.05 level; * Significant at the 0.1 level.

Table 7 shows how the extreme precipitation indices in a specific ENSO period deviate from the
normal period in detail. The values were calculated by the average of the indices that correspond with
the years of the specific ENSO category. The average consecutive dry days in moderate El Niño years
are as many as 117 days, 21 days more than which in normal years, while there are only 87 days in
strong El Niño years, moreover, no matter the moderate or strong La Niña events happened, the values
of CDD are always decreased. The situation of CDD is similar to that of CWD.

Table 7. Average values of extreme precipitation indices in different El Niño–Southern Oscillation
(ENSO) years and normal years.

Events CDD (Days) CWD (Days) RR10 (Days) RX5DAY (mm) SDII (mm·day−1) R95P (mm)

El Niño-Strong 87.00 5.00 5.00 36.95 4.36 42.99
El Niño-Moderate 117.00 6.00 6.00 46.54 4.83 64.95

Normal 96.00 6.00 6.00 41.61 4.57 57.79
La Niña-Strong 94.00 5.00 6.00 43.87 4.60 64.01

La Niña-Moderate 90.00 5.00 6.00 43.80 4.55 59.20

From different values of RR10 in the five periods, we can find that there is little difference
between each other, which indicates that ENSO events have limited influence on RR10 in study area.
For RX5DAY, the strong El Niño events reduce the maximum precipitation over five days by 4.66 mm,
while the moderate El Niño events increase it by 4.93 mm. Additionally, approximately 2.20 mm is
increased by the occurrence of both two categories La Niña events compared to the normal years for
RX5DAY. The influence of different ENSO periods on RX5DAY is almost identical with R95P, the only
difference is the amplitudes of R95P between ENSO years and normal years are relatively larger than
RX5DAY. The maximum value of precipitation intensity appears in moderate El Niño years, and SDII
in strong La Niña years is also greater than in normal years. However, during strong El Niño years
and moderate La Niña years, the values are both smaller than in normal years.

In summary, the values of extreme precipitation indices in moderate El Niño are usually greater
than of which in normal years, but in strong El Niño years, these values are always the smallest.
The both two kinds of La Niña events may decrease the values of CDD and CWD, but increase the
values of RX5DAY and R95P.

4. Discussion

The limited number and the uneven spatial distribution of meteorological stations in our
study area are the main reasons why we apply the gridded precipitation dataset for this study.
By comparing the bias and correlation coefficients between IDW interpolated precipitation data
and station precipitation data, we found that it was highly similar with each other. Moreover,
the interpolated data was calculated by using the spatial interpolation method (IDW) that was based
on the gridded dataset, it means that the values of grid boxes around the station are also highly similar
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with the station data. Therefore, it is considered that the gridded precipitation dataset can be used to
describe the precipitation distribution pattern accurately in our study area.

The eastern part of inland river basin of Inner Mongolian Plateau is located in high attitude inland
area, where surrounded by the Daxinganling Mountains and Yinshan Mountains, the warm-wet air is
different to penetrate through the territory, thus forming the climatic features of scarce precipitation
but intensive evaporation [46,47]. In recent decades, because of the increasing air pressure leaded
by the high-latitude circulation anomaly and the inter-annual decrease of East Asian Monsoon,
along with the decrease of water vapor transport to the north, the number of consecutive wet days,
and the precipitation intensity are all reducing [17,48], which eventually led to a further decline in
precipitation in our study area [26,49]. In that context, the indices represent the extreme precipitation
and precipitation days in study area show the distribution characteristics of “high in the northeast
and low in the southwest”, and the values of northeast are on the rise, which suggests that flooding is
prone to take place in the northeastern part of study area, and that the probability of the disaster is
increasing. In addition, the persistent drought is still heavy, especially in the western part of the basin,
but the phenomenon were eased up in the past 55 years, which is in agreement with the findings of
previous work [50].

The extreme precipitation regimes in our study can be divided into two categories by the factor
analysis method, the drought regime, and the heavy rainfall regime, which can be characterized by
CDD and R95P, and the two extreme indices have good correlations with other indices belong to a same
category of regime, respectively [18]. Furthermore, the extreme indices have good correlations with
ENSO indices, of which RR10, SDII, and R95P are more sensitive to ENSO. Specifically, the moderate
El Niño event may be the main reason of the drought, while the occurrence of La Niña events may
increase the risk of floods, which is similar to the previous study [51]. It is suggested that the ENSO
events have a driving effect on the extreme precipitation regimes in the study area. Overall, the study
revealed long-term spatiotemporal variability of the extreme precipitation indices, and the response to
ENSO event, which can provide a scientific basis for helping to generate water resources management
plans. However, there are many other factors, such as human activities and atmospheric circulation,
to affect the change of precipitation, therefore, the studies that consider the factors above should be
further conducted in detail.

5. Conclusions

Based on the gridded precipitation dataset with horizontal resolution of 0.5◦ × 0.5◦ in the eastern
part of inland river basin of Inner Mongolian Plateau from 1961 to 2015, we employed the Sen’s slop and
the MM-K nonparametric test together with the factor analysis methods to research the spatiotemporal
variability of extreme precipitation regimes presented by six extreme indices, meanwhile, the response
of extreme precipitation events to ENSO events are discussed. The main conclusions are as follows:

(1) The gridded precipitation dataset is suitable for the characterization of precipitation distribution
in the study area, and the spatial pattern of precipitation is obviously characterized by the “high
in northeast and low in southwest” in the study area. Meanwhile, a non-significantly decreasing
inter-annual tendency was found during the 55 years, where it is mainly located in the central of
the study area.

(2) The CDD is more severe in the southwest of the watershed. But, beyond this, the spatial
distributions of the other five indices and the annual precipitation are the same, whose spatial
pattern is gradually decreasing from northeast to southwest. The values of CWD and RR10 in
the study area are relatively low, while the spatial difference of SDII is not obvious, between
3.8 and 5.3 mm·d−1. In terms of the temporal distributions of the extreme precipitation
indices, which mainly showing a decreasing trend except for RX5DAY and R95P, of which
17.28% and 16.00% of the regions show the significant downward trends (at a significance
level of α = 0.1), which belong to the decreasing area of CDD and CWD during the period of
1961–2015, respectively.
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(3) To some extent, CDD and R95P can be used to characterize the drought regime and the heavy
rainfall regime, respectively, and both have strong correlations (at a significance level of α = 0.1)
with the other indices that belong to the same category of extreme event. The selected two
categories of extreme regimes compose the whole extreme precipitation regimes in this study.

(4) Extreme precipitation indices have good correlations with SSTA and SOI in the study area,
but the correlation relationship with the two ENSO indices are almost the opposite. In addition,
the correlation relationships of CDD and the other five indices with the ENSO indices is also
the opposite. RR10, SDII, and R95P are more susceptible to the ENSO events in the study area.
Furthermore, the moderate El Niño event may increase the probability of the consecutive dry
days, while the strong El Niño event will decrease the probability of extreme regimes in our
study area. Meanwhile, the occurrence of La Niña events may increase the risk of the heavy
rainfall regime.

Acknowledgments: This work was financially supported by the International S&T Cooperation Program of
China (No. 2015DFA00530), the National Natural Science Foundation of China (Nos. 51620105003, 51509131 and
51139002), the Science and Technology Major Project of Inner Mongolia Autonomous Region (No. 206202100),
the Inner Mongolia Scientific Research Project of University (No. NJZY064), the Ministry of Education Innovative
Research Team (No. IRT_17R60), the Innovation Team in Priority Areas Accredited by the Ministry of Science
and Technology (No. 2015RA4013), the Natural Science Foundation of Inner Mongolia (Nos. 2015BS0514 and
2015MS0566), the program for Young Talents of Science and Technology in Universities of Inner Mongolia
Autonomous Region (No. NJYT-18-B11) and the Excellent Young Scientist Foundation of Inner Mongolia
Agricultural University of China (Grant No. 2014XYQ-11).

Author Contributions: Wei Li and Limin Duan developed the initial and final versions of this manuscript and
analyzed the data together. Yanyun Luo, Tingxi Liu and Buren Scharaw contributed their expertise and insights,
overseeing all of the analysis and supporting the writing of the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Utsumi, N.; Seto, S.; Kanae, S.; Utsumi, N.; Maeda, E.E.; Oki, T. Does higher surface temperature intensify
extreme precipitation? Geophys. Res. Lett. 2011, 38, 16708–16712. [CrossRef]

2. Fu, G.B.; Yu, J.J.; Yu, X.B.; Ouyang, R.L.; Zhang, Y.C.; Wang, P.; Liu, W.B.; Min, L.L. Temporal variation of
extreme rainfall events in China, 1961–2009. J. Hydrol. 2013, 487, 48–59. [CrossRef]

3. Jones, M.R.; Blenkinsop, S.; Fowler, H.J.; Kilsby, C.G. Objective classification of extreme rainfall regions
for the UK and updated estimates of trends in regional extreme rainfall. Int. J. Climatol. 2014, 34, 751–765.
[CrossRef]

4. Westra, S.; Fowler, H.J.; Evans, J.P.; Alexander, L.V.; Berg, P.; Johnson, F.; Kendon, E.J.; Lenderink, G.;
Roberts, N.M. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys.
2014, 52, 522–555. [CrossRef]

5. Li, Z.; Zheng, F.L.; Liu, W.Z.; Flanagan, D.C. Spatial distribution and temporal trends of extreme temperature
and precipitation events on the loess plateau of China during 1961–2007. Quat. Int. 2010, 226, 92–100.
[CrossRef]

6. Sternberg, T.; Thomas, D.; Middleton, N. Drought dynamics on the Mongolian steppe 1970–2006.
Int. J. Climatol. 2011, 31, 1823–1830. [CrossRef]

7. Wang, K.; Wang, L.; Wei, Y.M.; Ye, M.S. Beijing storm of July 21, 2012: Observations and reflections.
Nat. Hazards 2013, 67, 969–974. [CrossRef]

8. Li, Q.F.; Li, P.C.; Li, H.Y.; Yu, M.X. Drought assessment using a multivariate drought index in the Luanhe
River basin of Northern China. Stoch. Environ. Res. Risk Assess. 2015, 29, 1509–1520. [CrossRef]

9. Zhang, Q.; Li, J.F.; Singh, V.P.; Xu, C.Y.; Deng, J.Y. Influence of ENSO on precipitation in the East River basin,
South China. J. Geophys. Res. 2013, 118, 2207–2219. [CrossRef]

10. Liu, Z.Y.; Menzel, L.; Dong, C.Y.; Fang, R.H. Temporal dynamics and spatial patterns of drought and the
relation to ENSO: A case study in Northwest China. Int. J. Climatol. 2016, 36, 2886–2898. [CrossRef]

11. Peterson, T.C.; Folland, C.; Gruza, G.; Hogg, W.; Mokssit, A.; Plummer, N. Report on the Activities of the
Working Group on Climate Change Detection and Related Rapporteurs 1998–2001. WMO, Rep. WCDMP-47,

http://dx.doi.org/10.1029/2011GL048426
http://dx.doi.org/10.1016/j.jhydrol.2013.02.021
http://dx.doi.org/10.1002/joc.3720
http://dx.doi.org/10.1002/2014RG000464
http://dx.doi.org/10.1016/j.quaint.2010.03.003
http://dx.doi.org/10.1002/joc.2195
http://dx.doi.org/10.1007/s11069-013-0601-6
http://dx.doi.org/10.1007/s00477-014-0982-4
http://dx.doi.org/10.1002/jgrd.50279
http://dx.doi.org/10.1002/joc.4526


Water 2018, 10, 35 15 of 16

WMO-TD 1071, Geneve, Switzerland, 143p. Available online: http://etccdi.pacificclimate.org (accessed on
15 June 2016).

12. Gelati, E.; Madsen, H.; Rosbjerg, D. Stochastic reservoir optimization using El Niño information: Case study
of Daule Peripa, Ecuador. Hydrol. Res. 2011, 42, 413–431. [CrossRef]

13. Parry, S.; Hannaford, J.; Lloyd, H.B.; Prudhomme, C. Multi-year droughts in Europe: Analysis of
development and causes. Hydrol. Res. 2012, 43, 689–706. [CrossRef]

14. Skaugen, T.; Stranden, H.B.; Saloranta, T. Trends in snow water equivalent in Norway (1931–2009).
Hydrol. Res. 2012, 43, 489–499. [CrossRef]

15. You, Q.L.; Kang, S.K.; Aguilar, E.; Pepin, N.; Flugel, W.A.; Yan, Y.P.; Xu, Y.W.; Zhang, Y.J.; Huang, J.
Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation
during 1961–2003. Clim. Dyn. 2011, 36, 2399–2417. [CrossRef]

16. Wang, B.L.; Zhang, M.J.; Wei, J.L.; Wang, S.J.; Li, X.F.; Li, S.S.; Zhao, A.F.; Li, X.S.; Fan, J.P. Changes in extreme
precipitation over Northeast China, 1960–2011. Quat. Int. 2013, 298, 177–186. [CrossRef]

17. Huang, J.; Sun, S.L.; Xue, Y.L.; Zhang, J.C. Changing characteristics of precipitation during 1960–2012 in
Inner Mongolia, northern China. Meteorol. Atmos. Phys. 2015, 127, 257–271. [CrossRef]

18. Wang, S.J.; Zhang, M.J.; Sun, M.P.; Wang, B.L.; Li, X.F. Changes in precipitation extremes in alpine areas of
the Chinese Tianshan Mountains, central Asia, 1961–2011. Quat. Int. 2013, 311, 97–107. [CrossRef]

19. You, Q.L.; Zhang, M.J.; Zhang, W.; Pepin, N.; Kang, S.C. Comparison of multiple datasets with gridded
precipitation observations over the Tibetan Plateau. Clim. Dyn. 2015, 45, 791–806. [CrossRef]

20. Zhu, X.F.; Zhang, M.J.; Wang, S.J.; Qiang, F.; Zeng, T.; Ren, Z.G.; Dong, L. Comparison of monthly
precipitation derived from high-resolution gridded datasets in arid Xinjiang, central Asia. Quat. Int.
2015, 358, 160–170. [CrossRef]

21. Qiang, F.; Zhang, M.J.; Wang, S.J.; Liu, Y.M.; Ren, Z.G.; Zhu, X.F. Estimation of areal precipitation in the
Qilian Mountains based on a gridded dataset since 1961. J. Geogr. Sci. 2016, 26, 59–69. [CrossRef]

22. Zhang, Q.; Xu, C.Y.; Jiang, T.; Wu, Y.J. Possible influence of ENSO on annual maximum stream flow of the
Yangtze River, China. J. Hydrol. 2007, 333, 265–274. [CrossRef]

23. Wang, Y.; Zhang, Q.; Zhang, S.; Chen, X.H. Spatial and Temporal Characteristics of Precipitation in the
Huaihe River Basin and Its Response to ENSO Events. Sci. Geogr. Sin. 2016, 36, 128–134. [CrossRef]

24. Li, S.S.; Yang, S.N.; Liu, X.F. Spatiotemporal variability of extreme precipitation in north and south of the
Qinling-Huaihe region and influencing factors during 1960–2013. Prog. Geogr. 2015, 34, 354–363. [CrossRef]

25. Jiang, R.G.; Xie, J.C.; Zhao, Y.; He, H.L.; He, G.H. Spatiotemporal variability of extreme precipitation in
Shanxi province under climate change. Theor. Appl. Climatol. 2017, 130, 831–845. [CrossRef]

26. Wang, X.X.; Yang, X.M.; Liu, T.X.; Li, F.L.; Gao, R.Z.; Duan, L.M.; Luo, Y.Y. Trend and extreme occurrence of
precipitation in a mid-latitude Eurasian steppe watershed at various time scales. Hydrol. Processes 2014, 28,
5547–5560. [CrossRef]

27. Yan, H.M.; Chen, W.N.; Yang, F.X.; Liu, J.Y.; Hu, Y.F.; Ji, Y.Z. The spatial and temporal analysis of extreme
climatic events in Inner Mongolia during the past 50 years. Geogr. Res. 2014, 33, 13–22. [CrossRef]

28. Guo, Q.; Hu, Z.M.; Li, S.G.; Yu, G.R.; Sun, X.M.; Zhang, L.M.; Mu, S.L.; Zhu, X.J.; Wang, Y.F.; Li, Y.N.;
et al. Contrasting responses of gross primary productivity to precipitation events in a water-limited and a
temperature-limited grassland ecosystem. Agric. For. Meteorol. 2015, 214–215, 169–177. [CrossRef]

29. Guo, Q.; Hu, Z.M.; Zhao, W.; Yu, G.R.; Sun, X.M.; Li, L.H.; Liang, N.S.; Bai, W.M. Responses of gross primary
productivity to different sizes of precipitation events in a temperate grassland ecosystem in Inner Mongolia,
China. J. Arid Land 2016, 8, 36–46. [CrossRef]

30. Wang, B.L.; Zhang, M.J.; Wei, J.L.; Wang, S.J.; Li, S.S.; Ma, Q.; Li, X.F.; Pan, S.K. Changes in extreme events
of temperature and precipitation over Xinjiang, northwest China, during 1960–2009. Quat. Int. 2013, 298,
141–151. [CrossRef]

31. Zhao, Y.F.; Zhu, J.; Xu, Y. Establishment and assessment of the grid precipitation datasets in China for recent
50 years. J. Meteorol. Sci. 2014, 34, 414–420. [CrossRef]

32. Ren, Z.G.; Zhang, M.J.; Wang, S.J.; Qiang, F.; Zhu, X.F.; Dong, L. Changes in daily extreme precipitation
events in South China from 1961 to 2011. J. Geogr. Sci. 2015, 25, 58–68. [CrossRef]

33. Ropelewski, C.F.; Jones, P.D. An extension of the Tahiti-Darwin Southern Oscillation Index. Mon. Weather Rev.
1987, 115, 2161–2165. [CrossRef]

http://etccdi.pacificclimate.org
http://dx.doi.org/10.2166/nh.2011.009
http://dx.doi.org/10.2166/nh.2012.024
http://dx.doi.org/10.2166/nh.2012.109
http://dx.doi.org/10.1007/s00382-009-0735-0
http://dx.doi.org/10.1016/j.quaint.2013.01.025
http://dx.doi.org/10.1007/s00703-014-0363-z
http://dx.doi.org/10.1016/j.quaint.2013.07.008
http://dx.doi.org/10.1007/s00382-014-2310-6
http://dx.doi.org/10.1016/j.quaint.2014.12.027
http://dx.doi.org/10.1007/s11442-016-1254-7
http://dx.doi.org/10.1016/j.jhydrol.2006.08.010
http://dx.doi.org/10.13249/j.cnki.sgs.2016.01.016
http://dx.doi.org/10.11820/dlkxjz.2015.03.010
http://dx.doi.org/10.1007/s00704-016-1910-y
http://dx.doi.org/10.1002/hyp.10054
http://dx.doi.org/10.11821/dlyj201401002
http://dx.doi.org/10.1016/j.agrformet.2015.08.251
http://dx.doi.org/10.1007/s40333-015-0136-7
http://dx.doi.org/10.1016/j.quaint.2012.09.010
http://dx.doi.org/10.3969/2013jms.0008
http://dx.doi.org/10.1007/s11442-015-1153-3
http://dx.doi.org/10.1175/1520-0493(1987)115&lt;2161:AEOTTS&gt;2.0.CO;2


Water 2018, 10, 35 16 of 16

34. Jia, X.J.; Ge, J.W.; Wang, S. Diverse impacts of ENSO on wintertime rainfall over the Maritime Continent.
Int. J. Climatol. 2016, 36, 3384–3397. [CrossRef]

35. Llamedo, P.; Hierro, R.; Torre, A.; Alexander, P. ENSO-related moisture and temperature anomalies over
South America derived from GPS radio occultation profiles. Int. J. Climatol. 2016, 37, 268–275. [CrossRef]

36. Zhang, K.X.; Pan, S.M.; Cao, L.G.; Wang, Y.; Zhao, Y.F.; Zhang, W. Spatial distribution and temporal trends in
precipitation extremes over the Hengduan Mountains region, China, from 1961 to 2012. Quat. Int. 2014, 349,
346–356. [CrossRef]

37. Gao, Y.; Feng, Q.; Liu, W.B.; Lu, A.G.; Wang, Y.; Yang, J.; Cheng, A.F.; Wang, Y.M.; Su, Y.B.; Liu, L.; et al.
Changes of daily climate extremes in Loess Plateau during 1960–2013. Quat. Int. 2015, 371, 5–21. [CrossRef]

38. Frich, P.; Alexander, L.V.; Della-Marta, P.; Gleason, B.; Haylock, M.; Tank, A.K.; Peterson, T. Observed
coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 2002, 19,
193–212. [CrossRef]

39. Liu, X.D.; Cheng, Z.G.; Yan, L.B.; Yin, Z.Y. Elevation dependency of recent and future minimum surface
air temperature trends in the Tibetan Plateau and its surroundings. Glob. Planet. Chang. 2009, 68, 164–174.
[CrossRef]

40. Sohrabi, M.M.; Ryu, J.H.; Abatzoglou, J.; Tracy, J. Climate extreme and its linkage to regional drought over
Idaho, USA. Nat. Hazards 2013, 65, 653–681. [CrossRef]

41. Skansi, M.M.; Brunet, M.; Sigró, J.; Aguilarb, E.; Groeningd, J.A.A.; Oscar, J.; Bentancure, O.J.; Geierf, Y.R.C.
Warming and wetting signals emerging from analysis of changes in climate extreme indices over South
America. Glob. Planet. Chang. 2013, 100, 295–307. [CrossRef]

42. Hamed, K.H.; Rao, R.A. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204,
182–196. [CrossRef]

43. Yue, S.; Wang, C.Y. The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially
Correlated Hydrological Series. Water Resour. Manag. 2004, 18, 201–218. [CrossRef]

44. Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 39, 1379–1389.
[CrossRef]

45. Li, Z.X.; He, Y.Q.; Wang, P.Y.; Theakstone, W.H.; An, W.L.; Wang, X.F.; Lu, A.G.; Zhang, W.; Cao, W.H.
Changes of daily climate extremes in southwestern China during 1961–2008. Glob. Planet. Chang. 2011,
80–81, 255–272. [CrossRef]

46. Wang, H. The weakening of the Asian monsoon circulation after the end of the 1970s. Adv. Atmos. Sci. 2001,
18, 376–386. [CrossRef]

47. Hung, C.; Kao, P. Weakening of the winter monsoon and abrupt increase of winter rainfalls over northern
Taiwan and southern China in the early 1980s. J. Clim. 2010, 23, 2357–2367. [CrossRef]

48. Gao, J.Q.; Yang, X.G.; Dong, C.Y.; Li, K.N. Precipitation resource changed characteristics in arid and humid
regions in Northern China with climate changes. Trans. Chin. Soc. Agric. Eng. 2015, 31, 99–110. [CrossRef]

49. Dong, L.; Zhang, M.J.; Wang, S.J.; Zhu, X.F.; Ren, Z.G.; Wang, Q. Extreme Precipitation Events in Arid Areas
in Northwest China Based on Gridded Data. J. Nat. Resour. 2014, 29, 2048–2057. [CrossRef]

50. Wang, H.M.; Li, Z.H.; Han, G.D. The analysis on the spatial-temporal change of climate aridity in Xilinguole
Steppe. Acta Ecol. Sin. 2010, 30, 6538–6545.

51. Bao, G.; Liu, Y.; Liu, N.; Linderholm, H.W. Drought variability in eastern Mongolian Plateau and its linkages
to the largescale climate forcing. Clim. Dyn. 2015, 44, 717–733. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/joc.4562
http://dx.doi.org/10.1002/joc.4702
http://dx.doi.org/10.1016/j.quaint.2014.04.050
http://dx.doi.org/10.1016/j.quaint.2014.08.052
http://dx.doi.org/10.3354/cr019193
http://dx.doi.org/10.1016/j.gloplacha.2009.03.017
http://dx.doi.org/10.1007/s11069-012-0384-1
http://dx.doi.org/10.1016/j.gloplacha.2012.11.004
http://dx.doi.org/10.1016/S0022-1694(97)00125-X
http://dx.doi.org/10.1023/B:WARM.0000043140.61082.60
http://dx.doi.org/10.1080/01621459.1968.10480934
http://dx.doi.org/10.1016/j.gloplacha.2011.06.008
http://dx.doi.org/10.1007/BF02919316
http://dx.doi.org/10.1175/2009JCLI3182.1
http://dx.doi.org/10.11975/j.issn.1002-6819.2015.12.014
http://dx.doi.org/10.11849/zrzyxb.2014.12.006
http://dx.doi.org/10.1007/s00382-014-2273-7
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Data 
	Methods 

	Results 
	Precipitation Change Background 
	Spatiotemporal Variations in Extreme Precipitation Indices 
	Factor Analysis of Extreme Precipitation Indices 
	Response of the Extreme Precipitation Indices to ENSO Event 

	Discussion 
	Conclusions 
	References

