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Abstract: Satellite-based rainfall products have extensive applications in global change studies,
but they are known to contain deviations that require comprehensive verification at different
scales. In this paper, we evaluated the accuracies of two high-resolution satellite-based rainfall
products: the Tropical Rainfall Measurement Mission (TRMM) rainfall product 3B42V7 and the
Climate Prediction Center morphing (CMORPH) technique from January 2010 to December 2011
in Shanghai, by using categorical metrics (Probability of Detection, False Alarm Ratio, and Critical
Success Index) and statistical indicators (Mean Absolute Error, Root Mean Square Error, Relative Bias,
and Correlation Coefficient). Our findings show that, firstly, CMORPH data has a higher accuracy
than 3B42V7 at the daily scale, but it underestimates the occurrence frequency of daily rainfall for
some intensity ranges. Most errors of the two products are distributed between −10 and 10 mm/day.
Second, at the monthly scale, the total accuracy of 3B42V7 is higher than CMORPH in terms of the
value of the Correlation Coefficient (CC) and Relative Bias (RB). Finally, CMORPH brings about
daily rainfall detection results from categorical metrics computation better than 3B42V7. Generally,
the two satellite-based rainfall products show a high correlation with rain gauge data in Shanghai,
particularly in spring and winter. Unfortunately, in summer, both of them do not perform well in
detecting the short-duration heavy rainfall events. Overall, the relatively poor data accuracy has
limited their further applications in Shanghai and similar urban areas.

Keywords: satellite-based rainfall products; accuracy evaluation; categorical metrics; statistical
indicators; urban areas

1. Introduction

Spatio-temporal patterns of global and regional precipitation are the highlighted focus of climate
change in the globally warming world [1–4]. IPCC (Intergovernmental Panel on Climate Change)
reports show that the precipitation or extreme precipitation frequency has been increasing with global
climate warming that results from elevated atmospheric CO2 concentrations [5]. Human activities
and the underlying surface change greatly affect urban atmospheric boundary layers and the local
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climatic environments and result in more rainfall occurrences and even rainfall extremes [6,7]. Rainfall
diverges greatly across different regions [8]. Different rainfall trends have been observed from many
discrete ground meteorological stations [7]. However, those studies are limited in terms of both their
sparse spatial scope and data accuracy [9,10].

In recent years, satellite-based precipitation estimation has witnessed significant developments.
High quality satellite-based rainfall techniques have been developed, e.g., the Tropical Rainfall
Measurement Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) [11], the Climate
Prediction Center morphing (CMORPH) technique [12], the Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks (PRESIANN) [13], and Fengyun meteorological
satellite data [14]. Some studies have validated the accuracies of these products in different regions all
over the world [15–17]. These products provide an important input for some hydrological models and
natural hazard researches [18–20], and are used for simulating the rainfall spatio-temporal distribution
at global and regional scales [21,22]. Previous research indicates that the spatial and temporal accuracies
of both the 3B42V7 and CMORPH products are obviously higher in China [23,24], and the three-hourly
0.25◦ TRMM 3B42V7 and CMORPH data have a higher correlation with rain gauge data and can
simulate precipitation spatio-temporal processes in urban areas [9]. Zhang et al. used the TRMM
3B42V6 products to simulate the rainfall spatio-temporal distribution in the Beijing metropolitan region
and found that there were fewer rain days and a higher rainfall intensity in urban areas than in other
surrounding regions under the impact of urbanization [25]. Chen et al. found that short-duration
heavy rain may have a downward trend over the metropolitan regions of the Pearl River Delta based
on CMORPH data [26]. Additionally, Meng et al. used the downscaled TRMM rainfall time series to
analyze the response from land surface temperature in a heavy rainfall event in Beijing [27]. The above
studies show that the two high satellite-based products are widely used for precipitation studies
in megacities or cluster cities, but almost no careful validations have been conducted for these two
rainfall products in urban areas. In addition, complicated urban environments and underlying surfaces
affect rainfall processes [28]. Some studies have proved that the underlying surface greatly affects
urban atmospheric boundary layers and the local climatic environments, resulting in some rainfall
occurrences or rainfall extremes [29].

Because of rapid urbanization in the last two decades, Shanghai has become one of the most
crowded megacities in the world. It cannot be ignored that long-term observation shows that rainfall
in Shanghai has a distinct characteristic of localization and urban-rural divergence caused by the
urbanization process [30]. Due to this differentiation, local scale rainfall events may sometimes be
difficult to sample by using sparse rain gauge data [30]. Only two ground calibration meteorological
stations of the Global Precipitation Climate Center (GPCC) are located in the west and north of
Shanghai, i.e., Shanghai Hongqiao (CHM00058367) and Shanghai (CHM00058362) [31]. The limited
number of calibration meteorological stations may bring about some spatial errors in the satellite-based
rainfall products in Shanghai or similar megacities. Therefore, it is of great necessity to make a more
systematic evaluation of satellite-based rainfall products in the megacity of Shanghai.

In this paper, TRMM 3B42V7 and CMORPH products have been used for accuracy evaluation
from two aspects (detection capability and error statistics). The major objective of this study is to
understand the quality and usability of the satellite-based rainfall products in Shanghai or similar
large-scale urban areas. The rest of this paper is organized as follows. Section 2 describes the study area,
and introduces two satellite-based rainfall data and rain gauge data sets. Meanwhile, the evaluation
methods and statistic metrics are also presented in Section 2. Section 3 shows the results of accuracies
at the daily and monthly scale. Section 4 presents the discussions on errors distribution and extreme
rainfall detection. Section 5 summarizes our paper.
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2. Materials and Methods

2.1. Study Area

Shanghai is located in the Yangtze River estuary, within a latitude of 30◦40′ N–31◦53′ N and
longitude of 120◦52′ E–122◦12′ E. The south of Shanghai megacity is Hangzhou Bay, and the east is
East Sea (Figure 1). Shanghai has a population of 24.15 million, covered an area of 6340.50 km2 in
2015, and belongs to the northern subtropical monsoon climate. The average annual rainfall is about
1200 mm with obviously seasonal variations, with about 60% of annual rainfall amounting from 1 May
to 30 September.
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2.2. Dataset

2.2.1. Satellite-Based Rainfall Products

• TRMM product

The Tropical Rainfall Measurement Mission (TRMM), launched on 27 November 1997, was jointly
developed by the National Aeronautics and Space Administration (NASA) and the National Space
Development Agency (NSDA). The Visible and Infrared Radiometer System (VIRS), the TRMM
Microwave Imagery (TMI), and the Precipitation Radar (PR) are primary rainfall measurement
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equipment in the TRMM satellite [32]. The Multi-Satellite Precipitation Analysis (TMPA) algorithm
was proposed by Huffman et al. [11] and it was combined with several other high-quality rainfall
estimation algorithms, e.g., merged Active/Passive Microwave and Infrared-based rainfall estimates,
as well as other multi-source data fusion of rainfall products [33]. The TMPA rainfall products are
available both in 3B42RT (three-hourly) and 3B42 (three-hourly and daily), as well as the monthly
rainfall dataset (3B43), covering the range of latitude 50◦ S–50◦ N and longitude 180◦ W–180◦ E.
Compared to 3B42RT, 3B42V7 was corrected by the monthly rainfall data deviation from the Global
Precipitation Climate Center (GPCC) calibration meteorological stations and the product has several
computation improvements and a better data accuracy [34]. The most recent TRMM 3B42 Version
7 is a gauge-adjusted post-real-time rainfall product covering the 1998-present period from various
satellite systems [11]. The 3B42V7 data is available from Universal Time Coordinated (UTC) 1 January
1998 to the present. We selected TRMM 3B42V7 rainfall products with a Hierarchical Data File (HDF)
format from 2010 to 2011.

• CMORPH product

The CMORPH satellite rainfall product provides global rainfall data generated by the Climate
Prediction Center (CPC) under the National Centers for Environmental Prediction (NCEP), and the data
is available from UTC 3 December 2002 to present. The CMORPH retrieval algorithm was presented by
Joyce et al. [12]. It uses motion vectors derived from IR imagery to propagate the relatively high-quality
precipitation estimates (QPE) derived from passive microwave data. The spatial distribution of
CMORPH rainfall data covers the range of latitude 60◦ S–60◦ N and longitude 180◦ W–180◦ E.

The spatio-temporal resolution of CMORPH is three-hourly, 0.25◦, and the same is true for that
of 3B42V7. The format of data is ‘*.comb’ from a standard UNIX file, including merged microwave
rainfall and ‘CMORPH’ rainfall estimates.

2.2.2. Rain Gauge Data

Figure 1 shows 11 rain gauges from the Shanghai Meteorological Bureau (SMB) and the rain
gauges are distributed in different districts of Shanghai. The detailed information of rain gauges
and satellite-based rainfall products is showed in Table 1, including ID, gauge number, name,
and row/column number. ID indicates the satellite grid with the row and column number and
corresponds to the location of rain gauges. If two or more rain gauges are located in the same satellite
grid (e.g., Gauge 58361 and 58367 have the same ID a; Gauge 58461 and 58462 have the same ID h),
the average rainfall data from these rain gauges is used for evaluation. The time benchmark of rain
gauge data is GMT+8.

Table 1. Detailed information of rain gauges and satellite-based rainfall products.

ID Gauge Number Name
Row Number Column Number

3B42V7 CMORPH 3B42V7 CMORPH

a 58361 Minhang
76 116 1206 48658367 Xujiahui

b 58362 Baoshan 75 115 1206 486

c 58365 Jiading 75 115 1205 485

d 58366 Chongming 74 114 1206 486

e 58369 Nanhui 76 116 1208 488
f 58370 Pudong 76 116 1207 487

g 58460 Jinshan
77 117 1206 48658463 Fengxian

h
58461 Qingpu

76 116 1205 48558462 Songjiang
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Given the comparison of satellite-based products and rain gauge data, the following assumptions
are made: (1) the rain gauge data is regarded as ‘ground truth’ to estimate the gridded satellite-based
rainfall products [35]; (2) All uncertainty of satellite-based products is due to either random errors
or systematic errors [36]. The satellite-based products are considered, including systematic and
random errors.

2.3. Evaluation Methods

Evaluation methods are selected from two aspects: detection capability analysis and error statistics.
Detection capability includes three categorical metrics: Probability of Detection (POD) [37], False Alarm
Ratio (FAR) [38], and Critical Success Index (CSI) [35], which reflect the capability of satellite-based
rainfall products to estimate the possibility of rainfall events. The value of these metrics ranges
from 0 to 1. The POD and CSI are positively correlated with the detection capability, whereas FAR
is negatively correlated with it. On the basis of determining the threshold of daily rainfall events,
these metrics are calculated based on the equations described in Table 2, where H is the number of
rainfall events detected by rain gauges and satellites, M is the number just detected by rain gauges,
and F is the number detected by satellites [13].

Table 2. Categorical metrics of detection capability.

Categorical Statistics Calculation Formula Optimal Value [0,1]

POD POD = H
H+M 1

FAR FAR = F
H+F 0

CSI CSI = H
H+M+F 1

Another aspect is error statistics including four indicators, i.e., Mean Absolute Error (MAE) [39],
Root Mean Square Error (RMSE) [40], Relative Bias (RB) [41], and Correlation Coefficient (CC) [42].
The equations of these indicators are described in Table 3, reflecting the quantitative consistency of
satellite-based rainfall products with rain gauge data. MAE represents the averaged magnitude of the
absolute error; RMSE indicates the averaged error magnitude; RB is used to measure the probability of
overestimation (RB < 0) or underestimation (RB > 0) from satellite-based products; and CC reflects the
synchronicity of precipitation variation between satellite precipitation products and meteorological
stations. Compared with rain gauge data, the higher accuracy of satellite-based products has a higher
CC, lower MAE, and RMSE [34].

Table 3. Evaluation indicators of error statistics.

Statistical Indicators Equation Indicator Meaning Unit

MAE MAE = 1
n

n
∑

i=1
|Gi − Si| Mean absolute Error mm

RMSE RMSE =

√
1
n

n
∑

i=1
(Si − Gi)

2 Data accuracy mm

RB RB =
n
∑

i=1
(Gi − Si)/

n
∑

i=1
Gi Degree of Deviation %

CC CC =

n
∑

i=1
(Si−S)(Gi−G)

n
∑

i=1
(Si−S)

2
(Gi−G)

2
Degree of Relevance Unitless

Notes: n is number of sample. Gi is rainfall from rain gauges (mm). Si is estimated rainfall from satellites (mm).
G and S are mean values of gauge rainfall and satellite-based rainfall, respectively.
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3. Results

3.1. Detection Capability Analysis on Rainfall Events

Based on the equations in Table 2 (see Section 2.3), three metrics of satellite detection capability
were computed. In general, when we chose 0.1 mm/day as the threshold of the daily rainfall event,
CMORPH had a better detection capability than 3B42V7, with an average POD of 0.68 (0.65), FAR of
0.25 (0.35), and CSI of 0.56 (0.48). We categorized the rainfalls into five classes according to different
rainfall thresholds: I. Light rain (0.1–9.9 mm/day), II. Moderate rain (10–24.9 mm/day), III. Heavy rain
(25–49.9 mm/day), IV. Torrential rain (50–99.9 mm/day), and V. Extra heavy rain (≥100 mm/day) [43].
These rainfall thresholds are also used to calculate categorical metrics, and when the rain gauge
detects light rain and the satellite also detects light rain, it is considered a successful detection (H).
With the increasing daily rainfall thresholds, POD and CSI of both 3B42V7 and CMORPH show
a downward trend. The FAR in Figure 2 has a tendency to increase at first and then decrease at class
III. Satellite-based products significantly underestimate heavy rain. Additionally, the higher ratio
of rainfall false alarmed is distributed in class II. Figure 3 compares the total detection numbers of
satellite-based rainfall and gauge rainfall under different rainfall thresholds. Satellites have lower
detection numbers than rain gauges. CMORPH has a higher rainfall detection capability than 3B42V7,
especially in light rain events.
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3.2. Error Statistics Analysis

Another aspect of satellite-based precipitation estimation is error statistics. We calculated four
indicators of error statistics in daily and monthly scales. The four indicators (MAE, RMSE, RB, and CC)
of error statistics show that the accuracies of CMORPH are higher than those of 3B42V7 at the daily
scale. However, the accuracies diverge greatly among different seasons. Figure 4 shows that the MAEs
of two satellite-based daily rainfall events vary from Sunday to Saturday. Compared with rain gauge
data, the MAEs of satellite daily rainfall are less than 5 mm/day. In ID a, c, e, g, and h, the MAEs
are less than 4 mm/day. The MAEs from 3B42V7 are almost larger than those of CMORPH. At the
monthly rainfall scale of Figure 5, the two satellite-based rainfall products have higher MAEs in the
rainy seasons (from 1 June to 30 September). The accuracies in most rain gauges show that CMORPH
has larger MAEs than 3B42V7 in non-rainy seasons.
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Figure 4. The variations of MAEs from 3B42V7 and CMORPH at the daily scale from Sunday to
Saturday ((a–h) indicate that the gauge ID in Table 1).
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Figure 5. The variations of MAEs from 3B42V7 and CMORPH at the monthly scale ((a–h) indicate that
the gauge ID in Table 1).

Further cross validations indicate that CMORPH exhibits a smaller MAE (averaged: 2.26 mm)
and RMSE (averaged: 7.40 mm) than 3B42V7. Indicated by RB values, 3B42V7 has the most positive
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bias, whereas CMORPH shows a negative deviation. At last, CC of 3B42V7 (CMORPH) ranges from
0.52 (0.57) to 0.69 (0.66) at the daily scale (see Figure 6). The scatter plots explain that the rainfall data
of CMORPH is more obviously underestimated than that of TRMM. Sometimes, rainfall data from
3B42V7 is overestimated. Figure 7 illustrates the distribution of daily rainfall between rain gauge
data and 3B42V7 (CMORPH) in different seasons. CMORPH has a smaller RMSE (Spring: 4.03 mm;
Summer: 13.13 mm; Autumn: 3.13 mm; Winter: 1.87 mm) than 3B42V7 (Spring: 7.29 mm; Summer:
15.53 mm; Autumn: 5.86 mm; Winter: 4.04 mm) in all seasons, and the largest RMSEs occur in Summer
and the least in Winter. The RB result shows that CMORPH underestimates the daily rainfall by 42.36%,
4.59%, 47.03%, and 67.00% in the different seasons, respectively. Thus, 3B42V7 data only explains
an underestimated trend in the winter (RB = 14.62%) and overestimates the rainfall in other seasons.
As for CC, CMORPH has a stronger correlation with rain gauge observations, especially in spring
(CC = 0.84).
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Figure 7. Scatter plots of daily rainfall from rain gauge data and 3B42V7 (CMORPH) data in four
seasons (Spring: 1 March to 31 May; Summer: 1 June to 31 August; Autumn: 1 September to 30 November;
Winter: 1 December to 27 February in second year).

At the monthly scale, 3B42V7 and CMORPH products have a higher correlation with rain gauge
data (see Figures 8 and 9). Similarly, the monthly 3B42V7 data overestimates rainfall at some rain
gauges and has a larger deviation in ID d (RB = −26.34%). In contrast, the monthly CMORPH data
underestimates rainfall in all of the selected rain gauges, especially in ID a (RB = 33.33%). Generally,
in terms of CC and RB, 3B42V7 has higher accuracies than CMORPH. The CC value of 3B42V7
(CMORPH) ranges from 0.90 (0.76) to 0.98 (0.94), and the average CC is 0.94 (0.85).
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Figure 8. Scatter plots of monthly rainfall from rain gauge data and 3B42V7 ((a–h) indicate that the
gauge ID in Table 1).
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Figure 9. Scatter plots of monthly rainfall from rain gauge data and the CMORPH data ((a–h) indicate
that the gauge ID in Table 1).

4. Discussion

In recent years, some studies showed that one important aspect of the observed intensification of
rainfall or extreme rainfall events concerns urban areas [8,30]. However, the complexity of driving
mechanisms in urban areas makes it challenging for satellite-based rainfall products to be reliably
simulated. Some studies have emphasized the evaluation of satellite-based rainfall products. In the
Beijing-Tianjing-Hebei region, Zhang et al. [44] showed that TRMM satellite data provides a good
judgment on rainstorm events and rainfall error control, but the errors vary in different rain levels.
However, in this study, the error distribution characteristics of satellite-based rainfall products are not
discussed further. Han et al. [9] also evaluated the accuracy of TRMM data in urban areas in different
climatic regions (Houston, Atlanta, Las Vegas in the United States and one in Korea, Cheongju),
as a function of climatic variables, and for different storm types. The results show that the relative
magnitude of TRMM rain accumulation compared to rain gauge accumulation is smaller for higher
rainfall intensity events. Tan and Zheng [45] evaluated the detection capability of two TRMM products
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(3B42 and 3B42RT) in Singapore, and found that satellite products do not capture any extreme rainfall
events (>50 mm/day) during the northeast monsoon period. In Shanghai, the amount of extreme
rainfall accounted for 66.97% of the average annual rainfall from 2010 to 2011. It is necessary to evaluate
the accuracy of extreme rainfall. Based on the results mentioned, error distribution characteristics and
extreme rainfall detection should be explored further.

4.1. The Error Distribution Characteristics of 3B42V7 and CMORPH

The satellite-based rainfall products include some errors caused by a variety of factors, and they
can be divided into two major categories: one is sampling errors and the other is retrieval errors [33].
The sampling errors come from the grid data processing, for instance, the continuous spatial-temporal
data is often made by integrating the sparse data [33]. The sampling errors may be accumulated and
propagated from the three-hourly scale to the daily or monthly scale. More detailed characteristics
of sampling errors can be referred to in the literatures by Demaria et al. [46] and Steiner et al. [47].
Retrieval errors are generated when deriving high quality precipitation estimates from multiple satellite
rainfall observations. It correlates closely with satellite sensors, retrieval algorithms, rainfall types,
and cloud physical characteristics [48]. Retrieval error can be further decomposed into random errors
and systematic deviations [16]. Systematic deviations are caused by retrieval algorithms, which are
characterized by underestimation or overestimation of satellite rainfall products.

Therefore, it is important to analyze the error distribution characteristics of 3B42V7 and CMORPH.
The statistical principle we adopted is the absolute error of daily rainfall between satellite data and
rain gauge data (more than 0.1 mm/day). If the error is greater than 0, satellite data is underestimated;
otherwise, the satellite data is overestimated. Figures 10 and 11 illustrate the histograms of the
frequency of daily rainfall errors from 3B42V7 and CMORPH, with an interval of 5 mm. The fitted
curve shows the distribution of general errors. Skewness coefficient (S) is used to characterize the
reciprocity of the data around the means of the sample [49]; if S is positive (negative), the peak of
the distribution curve is on the left (right) side of the mean value, and the right (left) tail is thicker.
The qualitative indicator illustrates that the histogram is more likely to be right (left) offset, and so the
satellite data error is biased in terms of underestimating (overestimating) the measured rainfall.

The two figures show that the most errors of 3B42V7 and CMORPH are between −10 and
10 mm/day. According to the fitted distribution curve, CMORPH error is more concentrated in the
range of −5 to 5 mm/day, and 3B42V7 error is relatively discrete. The results of the two satellites
are different in terms of the S values. In ID a (S = −2.53) and h (S = −4.46), the lowest values of
3B42V7 approach −150, and that indicates that 3B42V7 has more overestimated results than the rain
gauge data.
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4.2. Extreme Rainfall Evaluation of 3B42V7 and CMORPH

From the above analysis in Sections 3.1 and 3.2, we found that the accuracies of satellite-based
rainfall products decrease with increasing rainfall amounts. Particularly, in heavy or extreme rainfall
events, satellite-based rainfall products have lower accuracies. In other words, satellite-based products
are not suitable for a heavy rainfall evaluation.

For example, on the 4 July 2010, the daily rainfall of six rain gauges exceeded more than
50 mm/day, and the total extreme rainfall was 383.50 mm. But the number of satellites showed
that only one gridded data set of 3B42V7 and four gridded data sets of CMORPH were detected,
and the total extreme rainfall was 50.40 mm and 310.46 mm, respectively. An extreme rainfall event is
defined as the daily rainfall over 50 mm in Shanghai [50]. We selected 21 extreme rainfall events from
rain gauge data and obtained the corresponding gridded data of the two satellite-based products from
January 2010 to December 2011. It indicates that the daily rainfall of 3B42V7 (CMORPH) has 14 (eight)
results that exceed 50 mm. 3B42V7 has a higher detection capability of extreme rainfall than CMORPH,
but the detection numbers from them both do not exceed half of the extreme rainfall events from rain
gauge data. Table 4 lists detailed information of the extreme rainfall events.

Table 4. The detection results of extreme rainfall events of the rain gauge, the 3B42V7, and CMORPH
from 2010 to 2011.

Date
Rain Gauge 3B42V7 CMORPH

Numbers Total Extreme Rainfall (mm) Grids Total Extreme Rainfall (mm) Grids Total Extreme Rainfall (mm)

2010

3 March 1 59.00 / / / /
29 June 1 61.70 1 53.08 / /
4 July 6 383.50 1 50.40 4 310.46
5 July 3 206.05 2 121.87 / /

12 July 1 53.60 / / / /
17 August 1 55.80 / / 1 67.72
18 August 1 86.80 1 63.11 1 72.77
26 August 1 64.50 / / / /
27 August 1 64.10 / / / /
30 August 1 70.60 / / / /

1 September 3 242.60 / / / /
13 September 1 53.65 / / / /

23 October 1 59.10 / / / /

2011

10 June 1 69.90 1 87.60 / /
17 June 2 112.80 / / / /
18 June 8 747.05 6 427.98 1 55.53
14 July 1 59.00 / / / /

12 August 2 111.60 2 206.77 1 56.43
13 August 1 91.00 / / / /
17 August 1 72.40 / / / /
25 August 1 50.70 / / / /

Total 39 2775.45 14 1010.81 8 562.91
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5. Conclusions

In this study, we used two evaluation methods and explored the accuracies of two satellite-based
rainfall products: TRMM 3B42V7 and CMORPH, from January 2010 to December 2011 in Shanghai.
The conclusions are summarized as follows.

During the study period, when we chose 0.1 mm/day as the threshold of the daily rainfall
event, the results of POD, FAR, and CSI showed that CMORPH has a better detection capability
than 3B42V7 in the daily rainfall detection, with a higher POD (0.68) and CSI (0.56) and a lower FAR
(0.25). The capability of detecting rainfall from two satellites decreases as the rainfall amounts increase,
and both satellite-based rainfall products have a lower detection capability for heavy rainfall events.

At the daily scale, CMORPH has lower MAE and RMSE values than those of 3B42V7. Some RBs
of 3B42V7 overestimate the rain gauge rainfall, whereas the CMORPH underestimates the rainfall.
In summer, both 3B42V7 and CMORPH have the highest RMSE of 15.53 mm/day and 13.13 mm/day,
respectively. At the monthly scale, 3B42V7 shows a better performance than CMORPH, in terms of the
value of CC and RB, and the two satellites have higher correlations with rain gauge data and higher
MAEs in rainy seasons (from 1 June to 30 September). In non-rainy months, CMORPH has higher
MAEs than 3B42V7. 3B42V7 and CMORPH satellite rainfall products show more uncertainty at the
daily scale than at the monthly scale. The errors of 3B42V7 and CMORPH are concentrated in the
range from −10 to 10 mm/day. Both 3B42V7 and CMORPH have a worse detection capability for
extreme rainfall events.

To summarize, 3B42V7 and CMORPH satellite-based products with a daily resolution have a poor
performance in Shanghai, especially for a heavy rainfall evaluation. The accuracy of 3B42V7 and
CMORPH at the monthly scale is higher, and the accuracy of 3B42V7 is higher than that of CMORPH.
The monthly rainfall data from satellite-based rainfall products can be parameters that are input to the
hydrological model and data assimilation [51–54]. In the future, we will integrate the two evaluation
methods and deeply analyze the calculation of different error statistics to elucidate insights into rainfall
detection. Moreover, we will integrate the multi-source satellite-based rainfall products to improve the
spatio-temporal resolution using data assimilation and statistical downscaling approaches.
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