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Abstract: The utilization for water resource has been of great concern to human life. To assess
the natural water system in Kangding County, the integrated methods of hydrochemical analysis,
multivariate statistics and geochemical modelling were conducted on surface water, groundwater,
and thermal water samples. Surface water and groundwater were dominated by Ca-HCO3 type,
while thermal water belonged to Ca-HCO3 and Na-Cl-SO4 types. The analyzing results concluded
the driving factors that affect hydrochemical components. Following the results of the combined
assessments, hydrochemical process was controlled by the dissolution of carbonate and silicate
minerals with slight influence from anthropogenic activity. The mixing model of groundwater and
thermal water was calculated using silica-enthalpy method, yielding cold-water fraction of 0.56–0.79
and an estimated reservoir temperature of 130–199 ◦C, respectively. δD and δ18O isotopes suggested
that surface water, groundwater and thermal springs were of meteoric origin. Thermal water should
have deep circulation through the Xianshuihe fault zone, while groundwater flows through secondary
fractures where it recharges with thermal water. Those analytical results were used to construct
a hydrological conceptual model, providing a better understanding of the natural water system in
Kangding County.

Keywords: hydrochemical characteristics; water-rock interaction; multivariate statistical analysis;
mixing model; δD and δ18O isotopes; natural water system; Kangding County

1. Introduction

Water is an incredibly important resource, and has significant uses in agriculture, industry
and domestic use. To better utilize it, a number of studies have been conducted to assess water
quality [1–4]. Water quality is determined by the hydrochemistry affected by different hydrochemical
processes. Furthermore, hydrochemical processes are determined by natural physical-chemical
activities, e.g., ion exchange, mineral dissolution and precipitation, water-rock interaction, and redox
transformation [5–7].

To date, hydrochemical analysis [8,9], multivariate statistical analysis [10,11], and geochemical
modelling [12,13] have proven to be efficient for constraining the hydrochemical process of natural
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water systems. The ratios of major ions provide critical clues to explain different hydrochemical
processes of water resource [14,15]. Principle component analysis (PCA) is useful for analyzing the
large hydrochemical dataset, defining the factors controlling hydrochemistry [16,17]. Geochemical
modelling using saturation index can specify mineral precipitation and dissolution in natural water
system [18,19]. δD and δ18O isotopes are ideal tracers for the source and pathways of groundwater
recharge [20–22].

Southwestern China is well-known for its abundant water resource, including the Dadu River,
Jinsha River and Nu River. The Kangding County is located in southwestern China, and dominated by
the Dadu River. However, previous studies were mainly focused on the genesis of thermal water in
Kangding County. Qi et al. (2017) achieved a preliminary knowledge of thermal water and discussed
the relationship between changing parameters of thermal water and solid tide [23]. Luo et al. (2017)
compared the thermal springs in northern and southern Kangding County and evaluated their
exploratory potential [24]. Guo et al. (2017) investigated the high-temperature geothermal system
using fluid and gas geochemistry [25]. Compared with thermal water, very little knowledge has been
achieved on the chemical components of surface water and groundwater and related hydrochemical
processes. Moreover, the mixing model between groundwater and thermal water is enigmatic, and has
yet to be constrained.

In this study, we investigated the occurrence of fractures, interpreted hydrochemical
characteristics, and conducted δD and δ18O isotopic analysis for surface water, groundwater,
and thermal water. Then, we attempted to obtain deeper knowledge of the hydrochemical process
based on correlations of major ions, PCA analysis and geochemical modelling. Furthermore, the mixing
ratio between groundwater and thermal water was evaluated by the silica-enthalpy method.
The recharge area of surface water, groundwater, and thermal water was identified by δD and δ18O
isotopes. Those analytical results would be helpful to build a hydrological conceptual model for natural
water system, providing valuable information for better exploiting water resource in Kangding County.

2. Geological Setting

Kangding County is situated in the Sichuan Province, southwestern China. Tectonically, it is
located in the eastern margin of Tibet Plateau where three regional fault zones (Xianshuihe (XSF),
Anninghe (ANF) and Longmenshan (LMF) fault zones) formed a Y-shape intersection (Figure 1a).

The altitude of Kangding County is generally higher than 1000 m, with the highest elevation
of 7556 m (Mount. Gongga). Due to the high-mountain topography and barren environment,
anthropogenic activity is rare here. Based on the local meteorological data, annual precipitation
and relative humidity are 500–800 mm and 73%, respectively. Annual temperatures range from −14.1
to 29.4 ◦C (mean = 7.1 ◦C).

The study area is located in the southern segment of Kangding County. The bedrocks consist of
Devonian, Permian, and Triassic sedimentary strata (Figures 1b and 2a). Devonian strata exposed in the
south are composed of limestone and mudstone; Permian strata crop in the west and are subdivided
into upper and lower Permian strata, consisting of limestone and sandstone; Triassic strata are scarcely
distributed in the middle part, dominated by sandstone. Quaternary sediments are locally exposed,
including boulder and sandy gravel. Multi-episode magmatic rocks include the Proterozoic granites
in the east and Cenozoic granites in the west [26] (Figure 1b). The structures are dominated by the
N–S-trending Xianshuihe strike-slip fault that is locally buried by Quaternary sediments [27]. Amounts
of NNE-striking secondary fractures are developed along the Xianshuihe fault (Figure 2b,c).

The Dadu River traverses southwardly through Kangding County, fed by a number of streams
(Figure 1b). Fractures are extensively distributed in the Triassic sandstone and Cenozoic granite,
while karst conduits are developed in the Permian limestone, representing a high permeability
aquifer. The less cracked Proterozoic granite and Devonian limestone and mudstone strata represent
medium permeability aquifers. Thermal springs are exposed parallel with the Xianshuihe fault,
with temperatures over a range of 35 to 81 ◦C (Local boiling temperature = 89.5 ◦C) [23–25] (Figure 1b,c).
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Figure 1. (a) Topography of Southwestern China; (b) geological map and (c) cross section of Kangding 
County. D: Devonian, P1: Lower Permian, P2: Upper Permian, T: Triassic, Q: Quaternary. 

 

Figure 2. (a) Stratigraphic column showing lithology and hydrological properties; (b) Rose diagram 
and (c) stereographic diagrams (equal area projection, lower hemisphere) with poles and contouring 
of fractures in study area. Strata legends are same as Figure 1. 

Figure 1. (a) Topography of Southwestern China; (b) geological map and (c) cross section of Kangding
County. D: Devonian, P1: Lower Permian, P2: Upper Permian, T: Triassic, Q: Quaternary.

Figure 2. (a) Stratigraphic column showing lithology and hydrological properties; (b) Rose diagram
and (c) stereographic diagrams (equal area projection, lower hemisphere) with poles and contouring of
fractures in study area. Strata legends are same as Figure 1.
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3. Sampling and Methods

Sampling work was conducted in November and December 2012, these months being regarded as
the dry season based on local meteorological record. Fifty-three groundwater samples were collected
from different cold springs in field crops and fresh rock fractures in tunnels from our study area
(Figure 1b). For comparison, 72 surface water samples were collected from the Dadu River and adjacent
streams, while 15 rain samples were collected. Additionally, 10 thermal water samples were collected
from different thermal springs. 550-mL polyethylene bottles were used to collect water samples.
Prior to sampling, these bottles were washed and rinsed at least three times. Hydrochemical analysis of
the water samples was performed within 10 days in the State Key Laboratory of Geohazard Prevention
and Geo-environment Protection, Chengdu University of Technology. HCO3

− was determined by
Gran titration with 0.025 N HCl. Cation samples were preserved with concentrated reagent HCl to pH
< 1.0. Cations (Na+, K+, Ca2+, Mg2+) were analyzed by Inductively Coupled Plasma Optical Emission
Spectrometry (ICP-OES, ICAP6300)and anions (Cl−, SO4

2−) by DIONEX-500 ion chromatograph
(ICS-1100), respectively. Quality measurement for hydrochemical data was tested by ionic balance
error (better than ±10%, calculated by Aquachem 3.7 software). δD and δ18O isotopes were measured
in the Institute of Karst Geology, Chinese Academy of Geological Science, using a mass spectrometer
(MAT253). The δD and δ18O analytical precision was better than 1‰ and 0.1‰, respectively.

Phreeqc 3 software was applied to calculate saturation index (SI), based on the MINTEQ
database [28]. The SI values of major minerals, containing calcite, dolomite, gypsum, and halite,
were calculated to evaluate the chemical equilibrium between minerals and water in nature environment.

Multivariate statistical analysis was carried out using SPSS 20 software. The correlation matrix
based on the Pearson’s correlation coefficient was used for showing relationships between those
variables, with a range of values from −1 to +1. Values close to +1 present strong positive correlation,
while values approximate to −1 imply strong negative correlation. Values equal to 0 mean no linear
correlation. Principle Component Analysis (PCA) was conducted to analyze the relationship between
the variables and evaluate the factors affecting hydrochemical components.

4. Results and Discussion

4.1. Hydrochemical Characteristics of Water Samples

Surface water (stream, river), groundwater (fractured water, cold spring), thermal water and rain
samples were classified, as shown in Table S1. The Schöeller diagram for those samples is illustrated in
Figure 3, indicating the variations of physicochemical parameters.
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values of different water samples. TS: Thermal spring, CS: Cold spring, FW: Fractured water.

The surface water and groundwater are neutral to alkaline in nature and have similar chemical
compositions, whereas thermal water contains higher concentrations of major ions (Figure 3). The total
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dissolved solid (TDS) values of surface water, groundwater, and thermal water are 52.2–177.1 mg/L,
82.2–227.4 mg/L, and 104.6–1666.9 mg/L, respectively. In the most water samples, the anions are
dominated by HCO3

− with abundance order of HCO3
− > SO4

2− > Cl−, while the main cation is
Ca2+, with abundance order of Ca2+ > Na+ > Mg2+ > K+. Piper’s diagram illustrates the scatter
plots of the cations (Na+ + K+, Ca2+, and Mg2+) and anions (HCO3

−, Cl− and SO4
2−), classifying the

hydrochemical characteristics [29]. Herein, two main water types have been identified; most water
samples were concentrated on the field of Ca2+-HCO3

−, whereas a few thermal water samples were
plotted on the field of Na+-Cl−-SO4

2− (Figure 4). The greater concentrations of major ions and higher
TDS values of thermal water suggest a longer residence time and stronger water-rock interaction.
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4.2. Hydrochemcial Process of Surface Water and Groundwater

4.2.1. Correlation of Major Ions

The soluble ions of groundwater can be sourced from a variety of natural processes,
such as precipitation, evaporation, and water-rock interaction. A Gibbs diagram is used to
distinguish the effects of these different processes [30]. In the Gibbs TDS versus Na+/(Na+ + Ca2+)
and Cl−/(Cl− + HCO3

−) diagrams, the majority of the samples plotted in the field of rock weathering
(Figure 5), indicating water-rock interaction is the main factor controlling dissolved hydrochemical
components of water samples.

The concentrations of major ions and their correlation give insight to the hydrochemical process
triggered by water-rock interaction [31]. Due to the major water type of Ca2+-HCO3

−, the dissolution
of carbonate minerals (calcite and dolomite) should be responsible for the source of Ca2+ and HCO3

−

in water, as shown in the following Equations (1) and (2).

CaCO3 (calcite) + H2CO3 → Ca2+ + 2HCO3
− (1)

CaMg(CO3)2 (dolomite) + 2H2CO3 → Ca2+ + Mg2+ + 4HCO3
− (2)
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Based on the Equations (1) and (2) above, the dissolution of calcite and dolomite would produce
the Ca2+/HCO3

− and (Ca2+ + Mg2+)/HCO3
− molar ratio of 0.5. In this study, the Ca2+/HCO3

− ratios
of most samples were between 0.5 and 1 (Figure 6a), while (Ca2+ + Mg2+)/HCO3

− ratios were greater
than 1 (Figure 6b). Hence, the excess concentrations of Ca2+ and Mg2+ should be affected by other
hydrochemical processes rather than sole dissolution of carbonates (calcite and dolomite). Moreover,
the Ca2+/Mg2+ molar ratio is used to clarify the dissolution of carbonates [3]. A Ca2+/Mg2+ molar ratio
below 1 triggers dissolution of dolomite, whereas a Ca2+/Mg2+ molar ratio higher than 1 indicates the
dissolution of calcite. Additionally, a Ca2+/Mg2+ molar ratio greater than 2 can be the result of the
dissolution of silicate minerals. Most samples had Ca2+/Mg2+ molar ratios largely greater than 2 in
this study. Therefore, we can infer Ca2+ concentration should be affected by the dissolution of silicate
minerals as well.

1 
 

 

Figure 5. Gibbs plot. (a) Total dissolved solids (TDS) versus Na+/(Na+ + Ca2+); (b) TDS versus
Cl−/(Cl− + HCO3

−).
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If Na+ is derived from the dissolution of halite, the Na+/Cl− molar ratio generally is equal to 1.
However, the Na+/Cl− molar ratio of water samples are much higher than 1, implying the excess Na+
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concentration is derived from silicate weathering (Figure 6c). In addition, the low Cl− concentration
is consistent with the absence of Cl-bearing minerals in Kangding County. The Ca2+ and SO4

2−

concentrations of groundwater are controlled by gypsum dissolution and precipitation processes,
which are shown in Equation (3) below.

CaSO4·2H2O � Ca2+ + SO4
2− + 2H2O (3)

In the condition of simple gypsum dissolution and precipitation, the ratio between Ca2+ and
SO4

2− would be 1:1. The plots are distinctly below 1:1 line in Ca2+ versus SO4
2− diagram (Figure 6d),

implying a majority of enriched Ca2+ that would be produced from dissolution of carbonates and
silicate minerals. The deficient SO4

2− concentration suggests a weak effect from anthropogenic activity.
The Ca2+, Mg2+, HCO3

− and SO4
2− would be derived from the dissolution of carbonates and

sulfate minerals when the plots follow the 1:1 line in the (Ca2+ + Mg2+) versus (HCO3
− + SO4

2−)
diagram. Furthermore, the plots above the 1:1 line suggest ion exchange as dominant process (4),
while the plots below the 1:1 line indicate existence of reverse ion exchange (5).

Ion exchange: 2Na+-Clay + Ca2+ → 2Na+ + Ca2+-Clay2 (4)

Reverse Ion exchange: Ca2+-Clay2 + 2Na+ → Ca2+ + 2Na+-Clay (5)

Most samples plotted above the 1:1 line of (HCO3
− + SO4

2−)/(Ca2+ + Mg2+) ratio (Figure 7).
The (Ca2+ + Mg2+) concentrations are slightly deficient compared with HCO3

− and SO4
2−. As the

dominated cation, Ca2+ is more preferable than Mg2+. Considering Equations (4) and (5), we can
assume the deficiency of Ca2+ is due to ion exchange process that is a significant result from
silicate weathering.
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4.2.2. Mineral Saturations

During the process of water-rock interaction, the mineral equilibrium calculation can reflect the
thermodynamic process of natural water system [12,13]. Moreover, SI gives an insight of the reactivity
of minerals. Herein, SI values of water samples were calculated using Phreeqc 3 software, based on
Equation (6) below:

SI = log (IAP)/K (6)

where IAP is the Ion Activity Product, K is the equilibrium constant. Positive SI values (SI > 0)
show mineral oversaturation and precipitation, whereas negative SI values (SI < 0) imply minerals
under saturation and dissolution. The calculated results for surface water and groundwater samples
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are listed in Table S1. Most water samples yielded similar SI calculated results as follows: calcite
and dolomite were slightly undersaturated to oversaturated, gypsum was weakly under saturated,
and halite was strongly under saturated (Figure 8). Those calculated results propose that water-rock
interaction had not reached to equilibrium yet in the surface water and groundwater of Kangding
County. In Equation (3), abundant Ca2+ released from the dissolution of calcite will hamper the
solubility of CaSO4·2H2O, leading to the under saturation of gypsum. The absence of Cl−-bearing
minerals would account for the low SI values of halite. Due to the positive correlation between SI
values and TDS, the hydrochemical characteristics of surface water and groundwater were mainly
determined by the dissolution and precipitation of minerals from bedrocks.
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4.2.3. Multivariate Statistical Analysis

The correlations applied to the eight variables (pH, TDS and major ions) shed light on the relationships
among those variables and water-rock interaction controlling the hydrochemical parameters [1–3].
The values of R > 0.75 and 0.75 > R > 0.50 suggested strong and moderate correlations between the
hydrochemical parameters, respectively [11–13]. To avoid the error triggered by different unite, all variables
were treated by log-ratio transforms prior to multivariate statistical analysis. The results of correlation
analysis are listed in Table 1. TDS had good consistency with Ca2+, Mg2+, and HCO3

−. Ca2+ showed
great consistency with Mg2+, representing the aquifer system of carbonates. Meanwhile, pH had
moderate and positive correlation with carbonates elements (Ca2+, Mg2+ and HCO3

−), indicating the
chemical equilibrium between pH and dissolution of carbonates. However, the correlation between Ca2+,
Mg2+ and HCO3

− was not as high as expected, against simple sources from the dissolution of carbonates.
In addition, the moderate positive correlation between Ca2+, Mg2+ and Na+ revealed the possibility of
ion exchange processes from the dissolution of silicate minerals. Hence, it is believable the dissolution
of carbonate and silicate minerals dominated the major anions and cations of water in the Kangding
area. Additionally, moderate consistency occurring between Ca2+ and SO4

2− indicated the dissolution
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of gypsum. The Na+-Cl− pair had weak positive correlation, suggesting that they are not considerably
affected by the simple dissolution of halite.

Table 1. Correlation matrix of the species in water samples.

Correlation pH TDS K+ Na+ Ca2+ Mg2+ Cl− SO4
2− HCO3

−

pH 1
TDS 0.340 1
K+ 0.168 0.359 1

Na+ 0.268 0.662 0.601 1
Ca2+ 0.304 0.902 0.139 0.419 1
Mg2+ 0.355 0.780 0.181 0.383 0.617 1
Cl− 0.084 0.281 0.015 0.204 0.256 0.277 1

SO4
2− 0.182 0.707 0.261 0.516 0.512 0.555 0.144 1

HCO3
− 0.288 0.924 0.357 0.644 0.874 0.751 0.252 0.435 1

Hydrochemical parameters including pH and major ions were used for principal component analysis,
which is helpful for tracing the sources of those ions [16,17]. The results of principal component analysis
includes eigenvalue, percentage of variance, cumulative percentage of variance, and the factor loading,
presented in Table 2. Scree plots for groundwater samples showed a distinct change of slop after the third
factor (Figure 9). Using the Kaiser Criterion and scree plot, three principle components (PCs) of eigenvalues
greater than 1 have been obtained, accounting for the total variance of 74.456%. The PC1 was responsible
for 50.229% of total variance and has a strong loading of TDS, Na+, Ca2+, Mg2+, and HCO3

−. This factor
indicates the general trend of hydrochemcial characteristics, probably dominated by the dissolution of
carbonates and silicate minerals. The PC2 explained 12.622% of total variance and has medium positive
loading of Ca2+ and SO4

2−. As such, PC2 could be linked to the dissolution of gypsum. PC3 contributed
only 11.604% of the variances, and it only included a single major species, Cl−, which was related to the
anthropogenic activity or limited dissolution of halite.
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Table 2. Factor loadings and eigenvalues of the eight extracted factors.

Scaled Coordinates PC1 PC2 PC3

pH 0.428 0.164 0.393
TDS 0.988 0.064 −0.100
K+ 0.364 −0.819 0.170

Na+ 0.766 −0.367 0.226
Ca2+ 0.868 0.223 −0.115
Mg2+ 0.830 0.162 −0.066
Cl− 0.098 0.419 0.735

SO4
2− 0.585 0.214 −0.488

HCO3
− 0.921 −0.052 0.068

Eigenvalues 4.521 1.136 1.044
Variance (%) 50.229 12.622 11.604

Cumulative (%) 50.229 62.852 74.456

4.3. Mixing Model of Groundwater and Thermal Water

The main anions (Cl−, SO4
2−and HCO3

−) have been used to identify the mixture between thermal
and cold water [32]. The majority of thermal water samples were distributed on the field of peripheral
water (Figure 10a), indicative of the involvement of cold water. Furthermore, the Na-K-Mg ternary
diagram shows that all thermal water samples were typical of immature water [32] (Figure 10b), as well
as relatively deficient saturated indices of different minerals in Table S1. Giggenbach and Goguel
(1989) suggested the low equilibrium of thermal water was attributed to the dilution and mixing of
surficial cold water [33]. The water-rock equilibrium at different temperatures was interpreted using
the 10Mg2+/(10Mg2+ + Ca2+) versus 10K+/(10K+ + Na+) diagram. In Figure 10c, all thermal water
samples were plotted above the curved line of the full equilibrium, yielding the recharge of cold water.
Hence, we could infer that thermal water was typical of immature water, involved with cold water.
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To evaluate the original temperature of thermal water and mixing ratio of cold water, the field
temperatures and silica concentration of thermal and cold water have been extensively carried
out [34,35], based on the Equations (7) and (8) below:

Scx + Sh (1 − x) = Ss (7)

SiO2c + SiO2h (1 − x) = SiO2s (8)

where Sc is the enthalpy of cold water, Sh is the initial enthalpy of deep thermal water, Ss is the last
enthalpy of thermal water, SiO2c is the SiO2 concentration of cold water, SiO2h is the initial SiO2 content
of deep thermal water, and SiO2s is the SiO2 concentration of thermal water. Founier and Truesdell
(1974) proposed a graphical way to obtain the two unknowns [34]. In Figure 11, red and blue curves
are drawn, and their intersections represent the mixing portion of cold water and estimated reservoir
temperature. Based on the results from Figure 11, we can infer the original temperature and mixing
ratios were 112–195 ◦C and 0.56–0.79, respectively. Moreover, a silicon-enthalpy graphic method
has been conducted to estimate the reservoir temperature of mixing water [33]. It was assumed that
no silica deposition existed before or after mixing and that quartz determines the solubility of silica
in thermal water. A straight line connecting the points of cold water and points of thermal water
intersect with the solubility curve for quartz at a point that gives the silica content and enthalpy value
of thermal water in the condition of no steam loss (Figure 10d) [35]. Moreover, the intersection points
with the “No steam loss” line also suggested the mixing origin. Those intersection points and cold
water samples were regarded as the end member for initial thermal water and cold water, indicative of
the reservoir temperature and mixing ratios. If steam separation took place at 89.5 ◦C (local boiling
temperature), the calculated reservoir temperature is 148 ◦C. When no steam loss occurs, the reservoir
temperatures range from 130 to 199 ◦C, while mixing ratio of cold water is estimated to be 30–40%,
consistent with the calculated results from silica-enthalpy formula. Hence, the calculated results
should be reliable. It is noteworthy that the estimated reservoir temperatures were much greater than
the discharge temperature, suggesting that plenty of cold-water recharge occurred in a surficial place.

1 
 

 

Figure 11. Cont.
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Figure 11. Relations between fraction of cold water and temperature in the mixing model. Blue curve
= enthalpy, red curve = silica.

4.4. Evaluation for δD and δ18O Isotopes

The results of δD and δ18O isotopes from surface water (river), groundwater (cold spring and
fractured water) and thermal water are listed in Table S2. The δD and δ18O values of surface
water and groundwater in study area had a similar range of −75.39 to −86.47‰ and −11.01 to
−12.47‰, while δD and δ18O values of thermal water largely varied from −78.77 to −113.27 ‰,
and −10.04 to −16.13‰, respectively. Compared to thermal water, surface water and groundwater
had richer δD values. Most samples were distributed around the Global Meteoric Water Line
(GMWL) (solid line: δD = 8 × δ18O + 10‰) [36] and Local Meteoric Water Line (LMWL) (dash line:
δD = 9.4 × δ18O + 28.5‰) [37], indicating a meteoric origin (Figure 12). It is generally acceptable
that δD and δ18O values will decrease corresponding to changing elevation, due to topographic
precipitation [38]. Hence, using the recharge altitude calculated by δD and δ18O values, we can
constrain the general recharge area of those water samples. In the study area, the ratio between δD and
altitude has been suggested in −2.24‰ per 100 m [37]. The calculated results presented the recharge
altitudes of surface water and groundwater as 1059–1517 m. The recharge area of thermal water was
located in a large variation of 2199–5302 m, much higher than those of surface water and groundwater.
Therefore, we can propose that thermal water was recharged by precipitation from high elevation,
while surface water and groundwater were recharged by precipitation from low elevation. Moreover,
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obvious δ18O drift in Figure 12 suggests that thermal water experienced remarkable and prolonged
water-rock interaction during the deep circulation, corresponding to high TDS and concentrations of
major ions.
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4.5. Hydrological Conceptual Model of Natural Water System

Generally speaking, the concentrations of radiogenic elements (e.g., U, Th, K) in granitic rocks
are closely related to thermal source of the Earth, whose radioactive decay can generate great heat
production [39]. Mount. Gongga, as a young batholith uplift during Mioncene, preserves quite
high amounts of thermal energy [26]. Meanwhile, a previous study proposed that deep magmatic
activity is occurring in the Kangding area, which could be another potential thermal source [25].
Moreover, the Xianshuihe fault provides a beneficial circulating conduit for thermal water. Combined
the hydrochemical and δD and δ18O isotopes, we can briefly conclude the formation of thermal
springs as below: meteoric water was infiltrated and mixed with magmatic water in a deep place.
Then, meteoric water was heated by radioactive decay and deep magmatic source. During the
circulation, Cl− was derived from inputs of magmatic water, while SO4

2− probably originated from the
dissolution of sulfide minerals (e.g., pyrite) in granite. When thermal water reaches shallow location,
the mixture between thermal water and cold water would occur through fractures (Figure 13).
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Based on the aforementioned geological setting, hydrochemical and isotopic analyses above,
a hydrological conceptual model for the natural water system (surface water, groundwater, and thermal
water) in Kangding County was constructed (Figure 14). A joint study of the ratio of major ions,
geochemical modelling, and multivariate statistical analysis concluded that hydrochemical processes
of surface water and groundwater were dominated by the dissolution of carbonates and silicate
minerals, corresponding to the limestone and granite aquifers in Kangding County. δD and δ18O
isotopic results showed high recharge elevations of 2199–5302 m, implying the potential recharge area
from Mount. Gongga (7556 m) and adjacent mountain areas. Based on the concentrations of major
ions and SiO2, thermal water samples were identified as immature water, with a cold-water mixing
ratio of 0.56–0.79. Meanwhile, the discharge temperatures in surficial places were much lower than the
estimated reservoir temperatures, indicative of large involvements of cold water. The N–S Xianshuihe
fault direction and adjacent NNE-striking secondary fractures are responsible for vertical and lateral
flow in natural water system. Herein, it is reasonable that abundant groundwater penetrating through
those fractures recharges the thermal aquifer system. Additionally, the favorable hydraulic connection
between surface water and groundwater has been determined by their similar hydrochemical and
δD-δ18O isotopic characteristics. Therefore, we can conclude the Xianshuihe fault provides a deep
channel for upwelling of thermal water, while those fractures are the ideal chamber for the surface
water-groundwater interaction and recharge to thermal water in a surficial place.
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5. Conclusions

Integrated assessments of variable data based on hydrochemical analysis, multivariate statistics
and geochemical modelling, provide the basis for comprehensive understanding of natural water
systems in Kangding County, which can be summarized as follows:

1. Surface water and groundwater are dominated by Ca-HCO3 type, while thermal water belongs
to Ca-HCO3 and Na-Cl-SO4 types.
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2. Correlations of major ions, multivariate statistical analysis, and saturation index indicated that the
dissolution of carbonates and silicate minerals were the main hydrochemical processes affecting
chemical components of natural water systems in limestone and granite aquifers. Detailed effects
of anthropogenic activity on hydrochemistry have yet to be further investigated by more minor
elements in the future.

3. Thermal water is typical of immature water that is involved with a cold-water fraction of 0.56–0.79.
The estimated reservoir temperatures have a range of 130 to 199 ◦C.

4. δD and δ18O isotopes revealed a meteoric origin of hydrological system. Thermal water is
recharged by precipitation from high elevation, while surface water and groundwater are
recharged by precipitation from low elevation.

5. The Xianshuihe fault is the rising channel for thermal water, while adjacent secondary fractures
provide the chambers for groundwater-surface water interaction and groundwater recharging
with thermal water.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/10/1/80/s1,
Table S1: Hydrochemical composition of water samples, Table S2: δD and δ18O isotopes of representative
water samples.
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