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Abstract

:

SIGMA is a regional landslide warning system based on statistical rainfall thresholds that operates in Emilia Romagna (Italy). In this work, we depict its birth and the continuous development process, still ongoing, after two decades of operational employ. Indeed, a constant work was carried out to gather and incorporate in the modeling new data (extended rainfall recordings, updated landslides inventories, temperature and soil moisture data). The use of these data allowed for regular updates of the model and some conceptual improvements, which consistently increased the forecasting effectiveness of the warning system through time. Landslide forecasting at regional scale is a very complex task, but this paper shows that, as time passes by, the systematic gathering and analysis of new data and the continuous progresses of research activity, uncertainties can be progressively reduced. Thus, by the setting up of forward-looking research programs, the performances and the reliability of regional scale warning systems can be increased with time.
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1. Introduction


Regional scale landslide early warning systems (RSLEWS) are becoming widely used tools to forecast landslide occurrence and manage the related hazards over wide areas [1,2,3,4,5,6,7,8]. They are mainly based on rainfall thresholds, which are established by empirical or statistical correlations between a landslide catalogue and a rainfall database [9]. The need of only these two kinds of input data to establish the most basic implementation is one of the keys of the success and wide use of this approach. Moreover, some studies explored the possibility of establishing threshold-based early warning systems also in case studies characterized by scarcity of data [10,11]. However, it is important to stress that input data are not superfluous: on the contrary, several studies demonstrated that the quantity and quality of data are very important and greatly influences the quality of the rainfall thresholds and thus the capabilities of the related RSLEWS. For instance, Segoni et al. [12] analytically demonstrated that, in an Italian case study characterized by the presence of thousands of dated landslides, a single regional threshold can be outperformed by a mosaic of basin-scale thresholds. After a few years, the same group of authors updated the thresholds using an extended calibration dataset and a quantitative comparison demonstrated that the calibration against a dataset that was larger (both in terms of number of events and in terms of temporal extension) led to a consistent change of some of the thresholds and to a general improvement of their forecasting effectiveness [13]. Similarly, Gariano et al. [14] demonstrated that a landslide sample decreased by just 1% can cause a significant loss in the forecasting effectiveness of a rainfall threshold. Another series of works [15,16] clearly points out that the uncertainty associated to the threshold parameters definition depends not only from the abundance of the data used in the calibration, but also from their distribution in the graphic (e.g., representativeness of a wide range of rainfall durations or rainfall intensities). In other words, an effective threshold should be calibrated against an abundant dataset in which the experimental data are not clustered and are evenly distributed in the graphic. Besides landslides, rainfall data quality and quantity are very important as well to obtain reliable thresholds [17]. Since rain gauges are the most widely used method of rainfall measurement for threshold definition, the quality of the analysis is guaranteed by a high rain gauge density or by a high temporal resolution (especially for intensity-duration thresholds [9]). In other cases, radar rainfall measurements are used instead of (or in conjunction with) rain gauges to obtain rainfall measurement with higher spatial and temporal resolution and reduced uncertainties [18,19].



These examples show that RSLEWS can be constantly updated and improved as long as new calibration data (namely, rainfall measurements and new activations of landslides) are gathered and made available to researchers. The process of amelioration of RSLEWS requires a joint effort between researchers and local administrations, the latter only rarely understanding that the setting up of a reliable RSLEWS could be a long-term objective. Indeed, the literature describes cases of RSLEWS that nowadays exhibit good results that have been obtained after continuous ameliorations fostered by a long-term collaboration between local authorities (in charge of managing landslide hazard and risk) and scientists (committed to provide reliable forecasting and managing tools) [1,20,21,22].



This manuscript describes the Emilia Romagna (Italy) case study, where the long lasting (about 20 years) collaboration between the Emilia Romagna Agency for Territorial Safety and Civil Protection and the Earth Science Department of Florence University led to a constant development and progressive improvement of a RSLEWS to be used as an operational tool to forecast and manage landslide hazard at regional scale.



This work provides a framework that could be used as a reference for both researchers and end-users that are starting from the scratch the design of a RSLEWS; moreover, it quantitatively assesses the improvements led by the progressive major and minor updates to the RSLEWS, demonstrating that RSLEWSs need to be constantly evaluated, updated and upgraded to maintain and to increase their forecasting effectiveness.




2. Materials and Methods


2.1. Test Site Description


Emilia Romagna region is located in Northern Italy. The northern and eastern parts of the region are flat as they are occupied by the alluvial Po Plain, while southern and western parts are mainly hilly and mountainous as they are occupied by the Apennines mountain chain. Apennines is a fold and thrust mountain chain and in the study area is mainly composed of turbidites deposits (sandstone and calacarenites) and politic layers [23]. Several argillaceous formations are present in the region and they have been extensity affected by large intermittent landslide during the Holocene [24].



This work focuses on the hilly and mountainous part of the region, as it is the only one prone to land sliding (Figure 1), with a landslide density of about 0.12 landslide/km2. Emilia Romagna is affected by landslides of different typologies: rotational–translational slides (affecting mainly flysch), slow earth flows (occurring in clayey lithologies), and complex movements (typically rotational failures at the head progressively changing into translational movements throughout the body and toe). Rapid shallow landslides were less frequent in the past, but their triggering became a recurring phenomenon during recent years [25]. According to the Italian Landslide Database [26], the most common type of landslides in Emilia Romagna are rotational–translational slides (45.9%), followed by slow flows (24.9%), complex landslides (22.9%), falls (0.5%) and rapid flows (mainly debris flows, 0.4%), while other types of landslides represent about 0.1% of the overall number.



Rainfall is the main landslide triggering factor in the study area: short and intense rainfalls are usually associated with the initiation of shallow landslides, while moderate and very long rainy periods (up to six months) are responsible for the triggering of deep-seated landslides and earthflows [27,28].



The study area is characterized by a Mediterranean climate, with dry and warm summers (approximately from May to October) and cold and wet winters (approximately from November to April); this climate affects seasonal landslide distribution, since they mainly occur during the wet season, even if landslides sometimes occur during summer rainstorms.




2.2. Administrative Framework


Italian civil protection is a complex system entrusted to all administrative levels of the State: in short, a “central” national department coordinates a network of regional centers, each one in charge of forecasting and managing hazards inside its administrative territory, while at the local level the most important authority of civil protection is the mayor of each municipality. Other bodies (e.g., provinces) constitute an intermediate level between the municipality and the regions, ensuring an effective management of complex hazard scenarios.



According to this complex organization, each Italian region has a Functional Center in charge of meteorological monitoring and forecasting. This activity includes a warning system for the landslide hazard which covers the whole region and issues, at least daily, a criticality state among four possible levels (absent, ordinary, medium, and high). The criticality alerts are usually differentiated for subdivisions of the regional territory (called “alert zones”) and are addressed to the Mayors, which are in charge of activating all due countermeasures, including information to the citizens.



Concerning Emilia Romagna, one of the main tools used by the regional civil protection to manage landslide hazard is a RSLEWS named SIGMA, which is based on statistical rainfall thresholds and was developed starting from the late 1990s.




2.3. Basic Assumptions of the RSLEWS


The above described physical settings and administrative framework deeply influenced the way the warning system and the core threshold model were conceived and developed.



Rainfall parameters: Since the test site is affected by both rapid shallow landslides and deep-seated landslides, antecedent rainfall was selected as the rainfall parameter to define the rainfall thresholds. The basic assumption of the model is that short-term cumulates (e.g., a few days) should identify short but exceptionally intense rainfalls that are responsible for shallow landslide triggering, while longer periods of accumulation should capture mild but exceptionally long rainfalls, which are traditionally associated to deep seated landslide triggering of reactivations.



Territorial units: Since municipalities are the basic administrative subject to face hazards, they were considered the basic spatial unit also for the rainfall threshold model. Municipalities were aggregated into wide territorial units (TU) with homogeneous geomorphological and meteorological characteristics. Then, TUs were grouped into larger spatial units called Alert Zones, which are the administrative levels for which warnings need to be issued.



Reference rain gauges: Among all the possible approaches to relate rain gauges and landslides in rainfall threshold analysis [9], it was decided to use a single reference rain gauge for each TU, to have a more straightforward comprehension of the model outputs also for personnel and end-users without advanced skills in scientific fields related to landslides.



Alert levels: The warning system, the decisional algorithm and the thresholds were aimed at defining four possible states of criticality (absent, ordinary, medium, and high), according to the regional and national laws.




2.4. Workflow


To define a RSLEWS to be used in landslide hazard management at regional scale, the department of Civil Protection of Emilia Romagna Region and the Earth Science Department of the University of Florence have been collaborating since the late 1990s. In a forward-looking perspective, the research was not conceived as a stand-alone program, but it was set up as a long-term collaboration in which a general research framework (RF) defines general objectives to be pursued. The general research framework is valid for five years (after this period, another RF agreement needs to be defined and signed) and encompasses five broadly defined tasks:




	
Research and development to define and progressively improve the RSLEWS (including the monitoring algorithm, the triggering thresholds model and the data analysis);



	
Improvement of the correlation between model outputs and criticality levels for civil protection purposes;



	
Assistance in implementing research outcomes into the informative systems of the regional Civil Protection;



	
Assistance in defining procedures for the daily employ of SIGMA and for the management of the forecasted hazard levels;



	
Training the end-users to a correct interpretation of the model outputs for a sound hazard assessment and management.








Within this framework, every year a yearly research activity plan defines a series of activities pertaining to one or more of the abovementioned tasks. During the year, the research is accomplished, a report is produced, the outcomes are quantitatively evaluated and the activities for the next year are defined on the basis of the obtained results and of the end-user needs.



In this paper, only the activities strictly connected with scientific research (Task 1 and, partially, Task 2 of the research framework) are accounted for. We do not describe the activities dealing with the implementation of the new features into the waning system, the training of the personnel and the definition of civil protection procedures.



Basically, a workflow was established that moves from a continuous collection of new data (rainfall and landslide data) (Figure 2), encompasses a periodic quantitative validation of the rainfall threshold model operated at that time in the RSLEWS and an analysis of the errors. The error analysis fosters a search for possible solutions and a series of tests to quantitatively assess the impact of the proposed solutions on the forecasting effectiveness of the warning system.





3. Results


3.1. Base Version of the Model


The first steps of the research were influenced by the lack of data. Usually, empirical rainfall thresholds are established combining a dataset of rainfall data and a dataset of landslides for which the time of occurrence is known [9,29]. For the Emilia Romagna Region, the historical recordings of a wide network of rain gauges was available, providing hourly or daily rainfall measurements since the mid-1950s. Unfortunately, when the research began, the landslide dataset available did not contain the time of triggering. Therefore, the first prototypal version of the model had to rely only on rainfall data.



The prototypal version of SIGMA was based on rainfall thresholds defined by means of a statistical analysis performed over the rainfall time series of the reference rain gauges, on the hypothesis that anomalous or extreme values of accumulated rainfall are responsible for landslide triggering. The statistical distribution of the rainfall series was analyzed, and multiples of the standard deviation (σ) were used as thresholds to discriminate between ordinary and extraordinary rainfall events. The prototypal RSLEWS was based on a decision algorithm that compares measured and forecasted rainfalls:




	
Shallow landslides, triggered by short but exceptionally intense rainfalls: rainfall threshold is defined by 2σ of the rainfall cumulated in a short period (1–10 days).



	
Deep-seated landslides, triggered by mild but exceptionally prolonged rainfalls: 1.5σ of the rainfall cumulated in long periods (10–365 days).








Further details on this prototypal version of the rainfall threshold model can be found in [28], and the detailed explanation about how σ curves are built can be found also in [24].



It is important to remark that the objective of this research stage was just to establish the broad structure of the RSLEWS, postponing a more thorough model tuning in the following years, when more data of better quality would likely be available. As an example, the exact definition of “high” and ”low” σ values and of “short” and “long” duration has varied through time, as it has been adjusted during the evolution of the model according to the bigger quantity of data collected in the meanwhile.




3.2. Model Updates


3.2.1. Optimization of the Decisional Algorithm


Indeed, during the years, as landslides occurred, they were recorded and organized into a geodatabase and the performance of the prototypal version for SIGMA could be validated. This process allowed collecting evidence that the prototypal version of the model was producing many errors (both false alarms and missed alarms). Fortunately, as year by year the amount of calibration and validation data were increasing, it was possible to define a new decisional algorithm, more complex but with increased forecasting effectiveness.



During the years, various versions of the decisional algorithm were tested (Table 1), mainly varying the number of the SIGMA curves and the length of the rainfall accumulation periods to be used in the decisional algorithm. From time to time, a quantitative validation procedure allowed identifying the best performing version of the algorithm and evaluating if the amelioration was worth implementing the changes in the RSLEWS. From Table 1 stands out that the rainfall accumulation periods were progressively reduced. In particular, the definition of the long-duration period was initially set to a whole year, with the aim of accounting for the possible influence of the rain fallen, which could potentially influence the hydrologic response of deep-seated landslides in terrain with very low hydraulic conductivity. With time, the collection of new data and single case studies [27] suggested to narrow the time span and to better address an inherent seasonal variability encountered in the hillslope response to rainfall. Temporal and seasonal variability have been considered using different time intervals to calculate the cumulative rainfalls. A variable time-window was then successfully tested and introduced, which considers the rain fallen from the beginning of the rainy season to the day of interest. Since the dry season is conventionally defined from June to September [24], the maximum possible length of the long-duration period is 245 days (influence of autumnal rainfall on early spring), while some tests suggested that the minimum possible length of 60 days (used during the dry season) was better than 30, 45 or 90 days.




3.2.2. Customization and Optimization of the Rainfall Thresholds


After almost a decade, enough data were collected in each TU to allow a most robust calibration of the rainfall thresholds against a landslide catalogue. Consequently, the decisional algorithm was customized for each TU comparing rainfall data and landslides: the scheme of the decisional algorithm remains the same in each TU, but each TU uses different σ values to define the thresholds. The optimal set of σ values for each TU was empirically defined using a recursive algorithm that selected for each TU the σ values that minimized the errors committed in a calibration dataset (further details can be found in [24]).



This process was repeated periodically: at regular intervals, new landslides and rainfall data were stored into the calibration dataset and used to re-calibrate the SIGMA curves and run a new optimization procedure. Table 2 shows that this procedure allowed consistently increasing the forecasting effectiveness of the model: considering the likelihood ratio as a global performance indicator [32], it can be seen that a more robust calibration sample increases the forecasting effectiveness of the model. The increase of the likelihood ratio observed from the first to the second major updates concerns mainly the sensitivity of the model (i.e., the capability of correctly identifying landslide occurrences, which increase from 73% to 75%). The statistical significance of the increase in the model performance needs to be better addressed in future research, however it is worth mentioning that it was obtained without changing the number of the model parameters: only some configuration of the system and the dataset size have been changed).





3.3. Fine Tuning of the Warning System


3.3.1. Contour Conditions


Territorial units: During the research program, the number of TU increased from the original number of 19 to the current number of 25 (Figure 3). This allowed to increase the spatial accuracy of the model, as the average extension of the TUs passed from about 525 km2 to about 400 km2, and some TUs located in the hilly sectors between the mountains and the alluvial plain were reduced in size to less than 140 km2 (e.g., TU 10 and 16, Figure 3). Smaller TUs allowed establishing more robust empirical correlations between rainfall and landslide, as the physiographic and meteorological characteristics of each TU were made more homogeneous.



TUs boundaries: When an error analysis revealed that some missed alarms were anomalously clustered in a few municipalities, all municipalities located on the border between two or more TUs underwent a trial-and-error procedure aimed at identifying in which TUs they would be more conveniently included to get the highest forecasting effectiveness. This process led to a general reorganization of the TUs boundaries (Figure 3), with a more uneven subdivision that brought to consistent ameliorations in many TUs. For example, in TU12 the new configuration increased the number of correct alarms (from 24 to 26) and reduced the number of missed alarms (from 39 to 35).



TUs delineation and sensitivity to environmental factors: In the literature, some attempts exist to establish in a given study area some rainfall thresholds differentiated according to environmental factors. For example, Peruccacci et al. [33] defined some rainfall thresholds differentiated according to broad lithological typologies. SIGMA did not follow this approach for two main reasons. First, a preliminary geospatial analysis highlighted that the spatial organization of missed and correctly predicted landslides does not depend on lithology, land use, and morphometric attributes. This finding is supported also by other studies: e.g., Berti et al. [34] stated that in Emilia Romagna “historical landslides are quite evenly distributed and affect all the geological units”. Second, the approach was discarded for its limitations in the applicability to civil protection procedures: even if a threshold differentiation based on lithology, land use or other environmental factors is scientifically more appropriate, it is quite difficult to understand by the broad public and to employ in the operative management of emergency response by administrators and local authority. The empirical rainfall threshold approach is based on the idea that environmental factors are intrinsically and implicitly accounted for in the empirical relationship found between rainfall and landslides. This relationship is strengthened when the available dataset is larger and allows optimizing territorial units of smaller areal extent. Moreover, a more robust approach to account for environmental variables was performed by coupling rainfall thresholds with susceptibility assessments aimed at spatial forecasting of landslides (Section 3.4.2).



Reference rain gauges: A key point in rainfall threshold definition is the selection of the rain gauge that measures the triggering rainfall for each landslide. According to the review in [9], several approaches are used in the literature and the threshold analysis result is very sensitive to the rain gauge selection method. SIGMA always relied on the “reference rain gauge” approach, but it was refined during the research program. In the first stages of the research, a reference rain gauge was chosen considering several factors: presence of a long historical dataset; reliable automatic recording and transmission of the data; central position in the TU; and elevation representative of the mean elevation of the TU. In the early 2010s, this configuration was discussed again. For each TU, all available rain gauges were tested and a performance analysis was used to select the reference rain gauge providing the best landslide forecasts. This procedure brought also important scientific results as it demonstrated that the approach of using the nearest rain gauge (the most used according to Segoni et al. [9]) did not always produce the best results.




3.3.2. Model Outputs and Event Magnitude


SIGMA forecasted landslides at the TU level, but the civil protection procedures dictate that warnings should be released at the alert zone level, according to the magnitude of the impact expected. The passage from TU criticality levels to a single AZ (Alert Zone) criticality level is not a trivial matter, since during complex rainfall events adjacent TUs may have very different warning levels. Instead of relying on subjective decisions of the operators in monitoring duties, the high amount of data collected during the research was used to establish a correlation scheme that automatically weights and aggregates the TU outputs at the AZ levels providing four alert states defined in terms of number of expected landslide: absent (0 or 1 landslide), low (2–19 landslides), moderate (20–59 landslides), and high (more than 60 landslides). Of course, the finer-resolution forecasts at the TU level can be used to better address the countermeasures to be implemented in the territory. Further details on this procedure can be found in [35].




3.3.3. Rainfall Dataset Length


Every year, the SIGMA curves are updated, adding to the statistical sample the data collected during the previous year. During the first stages of the research, this procedure brought relevant modifications of the σ curves. The changes progressively became smaller as time went by. This could be partially due to the reduction of sample variability with increasing sample size, but it could also be related to climate change, which in the 1990s led to a marked change in precipitation trends in the Mediterranean area and in Italy [36,37]: the first updates brought some outliers in the datasets (in most cases, the rainfall series start from the 1950s) and consistently perturbed the statistical sample. During the years, the statistical perturbation stabilized.



These outcomes suggested to investigate the impact on SIGMA forecasting effectiveness of the use of time series of different lengths to derive the σ curves. The details of the test are explained in detail in [38], here we summarize the main findings: the best model performances are obtained with the longest possible time series, to the point that when selecting reference rain gauges, the length of the time series may be more important than the position inside the TU. Actually, this test left the SIGMA model unchanged but corroborated the robustness of the workflow and the good practice of periodical updates to the system.





3.4. Conceptual Updates


3.4.1. Snow Melt/Accumulation Processes


Although the fine-tuning and update processes improved the performance of the model, many errors were still present. However, since the number of errors was reduced, it stood out that some of the remaining ones were clustered in space and time. More specifically, many missed alarms were related to some events that took place in high-mountain areas, in a period of null or very low precipitations. In addition, we recognized some false alarms in mountainous TU, when high values of rainfall surprisingly did not trigger landslides. Both kinds of errors could not be managed adjusting the threshold values with the calibration procedure; therefore, we hypothesized the presence of external factors driving these anomalously clustered errors. After checking the seasonality of the events and considering a more complete set of weather data, we concluded that these errors were related to snow-melting and snow accumulation events. In the first case, the terrain received water from snowmelt, therefore landslides were triggered even with null precipitation. In the second case, heated rain gauges measured the water equivalent of the fallen snow, but actually a snowpack was building without any water infiltration into the soil, thus no landslides were triggered despite the high values recorded by the rain gauges.



Therefore, a challenging objective of two annual activity plans was the definition of a simple snow accumulation/melting model (SAMM) to be applied at regional scale in conjunction with SIGMA. Despite the physics governing snow melt-accumulation processes is very complex, we relied on a simple correlation scheme derived from the philosophy of statistical rainfall threshold for the initiation of landslides: as rainfall is used as the only external variable to forecast the occurrence of landslides with a specific threshold for each TU; similarly we used temperature data to assess the presence of snow-related phenomena in each TU.



In brief, SAMM is based on two modules modeling snow accumulation and melting. Each module is composed by two equations: a conservation of mass equation for snowpack thickness and an empirical equation for snow density. The model depends on 13 empirical parameters, whose optimal values were defined with an optimization algorithm (simplex flexible) using calibration measures of recorded snowpack thickness. SAMM uses as input data only temperature and rainfall measurements, thus being easy to implement and understand. Various tests (cross validation, comparison with two simpler temperature index models, and simulation of the operational employment) proved that SIGMA forecasting effectiveness can be improved if SAMM is used to filter the input rainfall data. Further details can be found in [39].




3.4.2. Coupling with a Susceptibility Map


One of the main and most known drawbacks of RSLEWS based on rainfall thresholds is the poor spatial resolution. Generally, they can be used only to issue generic warnings for the whole area of application or for a large subdivision of it. The use of territorial units and the progressive increase of their number (up to the actual configuration encompassing 25 TUs) can be considered a slight spatial refinement, but still the system cannot be used for a full spatial forecasting, e.g., to pinpoint on a map the spatial location of the landslides expected during the next warning. This drawback was partially overcome by coupling SIGMA with a purposely-developed susceptibility map (Figure 4). Susceptibility maps are static products describing the spatial probability of landslide occurrence [40], i.e., they could be used to assess where landslides could occur in an unspecified future. A procedure based on a hazard matrix was defined to correlate the criticality levels forecasted by SIGMA and the susceptibility classes provided by the map (further details in [41]). A multi-tier procedure was proposed that could be used to assist civil protection agencies during alert phase to better define the areas that could be affected by landslides. The coarser level of alert is the Alert Zone (typically thousands of square kilometers) and it is connected to the expected magnitude of the event (i.e., number of triggered landslides). The mid-resolution tier has territorial units as spatial units (typically hundreds of square kilometers) and it is based on the exceedance of the rainfall thresholds. The fine-resolution tier is addressed specifically to the municipalities (Figure 4) that are more exposed to landslide hazard (typically tens of square kilometers) and the finest-resolution tier consists in a dynamic raster map with 100 m × 100 m pixels highlighting where landslides are more likely to occur during each alert. A back analysis showed that the proposed approach would have led to define a more accurate location for 83% of the landslides examined, while 17% occurred in locations that would have been deemed as stable by our approach.




3.4.3. Soil Moisture


The constant struggle to improve SIGMA effectiveness brought our error analyses to reveal that most of the false alarms were issued when long-period rainfall accumulation was taken into account. After years of calibrations and fine-tunings, it stood clear that SIGMA approach allows identifying landslides with complex hydrologic response at the cost of issuing a not negligible number of false alarms. A series of tests was therefore performed to check the feasibility of incorporating soil moisture in the warning system. This represented a major change in the philosophy of the rainfall threshold model but it was supported by a new perspective brought into landslide studies by novel approaches focused on hydrologic issues [42,43]. Indeed, in rainfall threshold studies, long-period antecedent rainfall has always been used as a proxy of the antecedent soil moisture conditions; therefore, the idea of incorporating directly soil moisture data into the warning system has a robust background, although it is quite unexplored in RSLEWS and is limited to few case studies mainly related to remotely sensed measures (e.g., [7]). In our case study, the major challenge was the application of this theory to a warning system where a reference rain gauge actually monitors a large territorial unit. Following the same approach used for temperature data in the snow melting/accumulation module, we considered soil moisture conditions averaged over each territorial unit and we found an empirical correlation between soil moisture values and landslide triggering at the TU scale. Segoni et al. [44] described in detail this approach and demonstrated that it could be easily used to reduce both false alarms and missed alarms. Unfortunately, this feature has not been implemented yet in SIGMA, because the real-time use of soil moisture data is not available for the whole study area.




3.4.4. Comparison with other Rainfall Threshold Models


The search for conceptual improvements of the rainfall threshold model brought us to question if SIGMA model would be outperformed by rainfall threshold model of different typology. Since intensity and duration are since long ago the most used rainfall parameters do define rainfall thresholds [9,29,45,46], an alert zone was selected to compare SIGMA with a state-of-the-art intensity-duration model. This test is described in detail in [35]. The main outcomes of the quantitative comparison of the forecasting effectiveness of two models demonstrate that in the selected alert zone SIGMA performs better than an intensity-duration (I-D) approach (the likelihood ratio was 89.8 with SIGMA and 51.3 with the I-D threshold). This result is connected with the quantity and typology of data and the physical features of the study area and from our perspective were encouraging: the influence of antecedent rainfall in low permeability terrain and deep-seated landslides led the I-D threshold to a poor performance and demonstrated the robustness of the SIGMA approach.





3.5. Summary of Main Results


Table 3 summarizes the main results obtained with the workflow explained in the previous sections. It is worth to notice that while some of the improvements led to effects generalized in the whole study area, some others address very specific scientific issues and therefore they led to localized effects, improving the RSLEWS only in some TUs. In the latter case, the most relevant occurrences are reported in Table 3.





4. Discussion


The described case study emphasizes that the quantity and quality of the input data are of paramount importance in establishing an effective model for the landslide triggering modeling and forecasting. Indeed, the described experience shows that the larger the quantity of rainfall and landslide data of good quality, the higher the forecasting effectiveness of the model. In many territories around the world, dozens or hundreds of landslides occur every year; therefore, the absence of landslide data is a problem that can be overcome on the long run if new occurrences are thoroughly mapped and catalogued. Meanwhile, prototypal versions of the model can be set up, even if their predictive capabilities are weak at the beginning: in those cases, the objective of the first steps of the research is not to achieve a good forecasting effectiveness, but it is defining a conceptual model and building the architecture of the EWS (Early Warning System). The performances will be enhanced in the future, when a critical mass of data will be available.



However, the collection of data and the continuous updating and fine-tuning of the threshold model cannot be regarded as the definitive answer to eliminate all errors and achieve a 100% perfect forecasting effectiveness. Our experience taught us that this approach allows reducing errors, but only until a certain point; afterwards, some conceptual improvements are needed. Models are a simplification of reality and statistical rainfall threshold models are maybe the models of the simplest kind: when landslide triggering includes more complex phenomena than a straightforward response to intense precipitation, a more hydrologically-driven approach is necessary to ameliorate the forecasting effectiveness [42] (e.g., including temperature monitoring to account also for snow-related processes or encompassing also soil moisture data).



As can be argued from the workflow established in the present case study, an essential stage of the research is a periodical quantitative validation of the threshold model. A recent review of the international literature [9] stressed that unfortunately a quantitative and rigorous validation of rainfall thresholds is seldom proposed; however, our study demonstrates that a validation process is necessary to reach different objectives:




	
Measuring the reliability of a model and assessing if it is ready to be implemented in an operational EWS;



	
Identifying systematic errors (to be successively fixed with model improvements);



	
Comparing different versions or different settings of the model in order to select the configuration that provides the best forecasting effectiveness;








From our case study stood out clearly that a RSLEWS should not be considered as a research product to be defined once and for all, delivered and used carelessly for an indefinite period of time. On the contrary, it should be regarded as a dynamic product that changes, adapts to new data, new needs and new circumstances and improves through time. The changes progressively occurred to the decisional algorithm of SIGMA well illustrate the concept of “dynamic” RSLEWS. The time span considered to cumulate rainfall depths has been gradually adjusted and reduced: the short period of cumulates were initially conceived as 10-day cumulate. To reduce false alarms, it was subsequently reduced to five days and, finally, to three days (currently employed configuration). The long period started with 365 days, then it was reduced to 245 days, subsequently it was split into 60 days for the dry period and a variable length for the rainy season, while the latest experiments suggested that it could be completely discarded in favor of soil moisture measures.



Therefore, when stakeholders and researchers plan the definition of a RSLEWS, an extended long-term research program would be needed to encompass at least also a quantitative validation, an error analysis and periodic updates and improvements.




5. Conclusions


We described the development process of a regional scale landslide early warning system operating in Emilia Romagna (Italy), from its birth to the present setting, through over a decade of operational employment. This case study taught us several lessons that could be conveniently exploited in other cases of study:




	
A prototypal RSLEWS can be implemented even if a complete archive of landslides is not available.



	
The setting up of a RSLEWS should be conceived as a long-term objective, to be reached by a joint effort between researchers and local administrators involved in hazard management.



	
The collaboration between these two different sectors should be formalized with long-term framework programs of applied research, where year by year the research activities are addressed by operational needs and defined on the basis of short-term objectives.



	
The RSLEWS should be constantly validated and an error analysis should be periodically carried out to find systematic errors and to study possible solutions.



	
A quantitative evaluation procedure should be used not only to validate the various versions of the RSLEWS, but also to: (i) compare the effectiveness of different versions of the model; and (ii) objectively test and identify the best scientific and operational solutions that deserve to be implemented in the operational version of the RSLEWS.



	
A constant effort to establish a workflow of constantly updated data (rainfall measures, landslide occurrences, and other potentially useful environmental data) is of paramount importance to achieve good results.








In our case study, this process has led to an evolution of the warning system and to a tangible improvement of its forecasting effectiveness. The main upgrades reviewed in this paper concern: periodic re-calibrations of the thresholds against increased and updated datasets, development of a computation module accounting for snow melt/accumulation processes, fine tuning of the algorithm, fine-tuning of the contour conditions of the system (e.g., boundaries of the territorial units and rain gauges selection), establishment of a correspondence between alert levels and magnitude of the event (i.e., number of landslides expected), use of soil moisture data, and integration with a landslide susceptibility map to improve the spatial accuracy of the model.



Landslide forecasting at regional scale is a very complex task, over time, and with the systematic gathering and analysis of new substantial data and continuous research, uncertainties can be progressively reduced. Thus, forward-looking research programs can be set up that increase with time the performance and reliability of regional scale warning systems.
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Figure 1. Map of the Emilia Romagna Region showing both landslide and rain gauges distribution. 
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Figure 2. Collection of landslides data over the years, showing the total number of landslides collected each year and the number of landslides with good spatial and temporal accuracy that could be used for SIGMA. 
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Figure 3. Change in the TU number, boundaries and reference rain gauges. 
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Figure 4. Landslide susceptibility map: the output is aggregated at the municipality level. 
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Table 1. Main updates to the decisional algorithm.
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	Model Version
	Prototypal SIGMA
	SIGMA 2006
	SIGMA 2010
	SIGMA 2012





	Reference
	[28]
	[30]
	[24]
	[31]



	Number of different SIGMA curves used as thresholds
	3 fixed (1σ, 1.5σ, 2σ)
	3 fixed (1.5σ, 2σ, 3σ)
	4 customized for each TU
	4 customized (according to a larger calibration dataset)



	Definition of short-duration period
	1–10 days
	1–5 days
	1–3 days
	1–3 days



	Definition of long-duration period
	5–365 days
	6–365 days
	4–60 days in the dry season (or up to 245 days in the wet season)
	4–60 days in the dry season (or up to 245 days in the wet season)



	Alert stages
	3
	3
	4
	4
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Table 2. Documented increase of the forecasting effectiveness of SIGMA by expanding the calibration dataset.






Table 2. Documented increase of the forecasting effectiveness of SIGMA by expanding the calibration dataset.





	Work Phase
	SIGMA Prototypal Version
	First Major Update
	Second Major Update





	Reference
	[28]
	[24]
	[31]



	Calibration period
	2000–2003 (highly incomplete)
	2004–2007
	2004–2010



	Landslides used for calibration
	180 (only pertaining to a single TU)
	888
	1652



	Performance indicator
	Likelihood ratio = 8.38
	Likelihood ratio = 16.43
	Likelihood ratio = 17.01
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Table 3. Summary of the main results of the work.
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	Problem
	Analysis
	Implemented Solution
	Results
	Reference





	Need to establish a RSLEWS.
	At this time, only rainfall data are available, a complete catalogue of dated and geo-registered landslides is not available.
	Rainfall thresholds based on a statistical analysis of daily rainfall time series.

Regional agency starts to organize a database of landslide occurrences.
	A prototypal version of SIGMA is implemented and run daily.
	[28]



	After some years of monitoring and validation, SIGMA effectiveness is deemed poor.
	The decisional algorithm is too simple. Need to account for landslides seasonal variability. Need to account for thresholds spatial variability.
	The decisional algorithm is modified and accounts also for the seasonality. Thresholds are different in each TU and calibrated against well documented landslide events. SIGMA is implemented and operated daily.
	The forecasting effectiveness improves: likelihood ratio increases from 8.38 to 16.43. In the test period 2004–2007, false alarms are reduced from 845 to 562 in the whole region.
	[24]



	Errors are present that cannot be adjusted with the calibration procedure.
	Snow melting processes are involved in some missed alarms and snow accumulation processes are involved in some false alarms.
	Implementation of a snow melting—accumulation module. A daily check on air temperature turns it on/off, modifying the rainfall equivalent before comparison to thresholds.
	The implemented snow module reduces errors in mountainous TUs, e.g., in TU 15, the number of correct alarms increased from 83 to 105.
	[39]



	Errors are still present.

The original configuration of the system (reference rain gauges, TU borders) is discussed.
	The number of collected landslides has greatly increased and now allows a thorough calibration and further tests.

Some contour conditions were verified and tuned.
	New threshold calibration against a greater number of landslides.

Increased TU number.

The effectiveness of all available rain gauges has been tested and some reference rain gauges were changed.
	Performance indicators increase: the global likelihood ratio is now 17.01. The higher number of TUs allows a finer spatial resolution.
	[31]



	Need to fulfill the regional and national rules.
	Alert levels should be issued at the AZ scale and should be related to the expected event magnitude.
	SIGMA outputs in each TU are aggregated at the alert zone level (with a weighted mean) to forecast the number of expected landslides.
	Higher significance of the 17.01 likelihood ratio, because now obtaining a correct prediction is a harder task.
	[31]



	SIGMA provide a coarse spatial resolution.
	Temporal forecasts are good, but spatial resolution is poor because AZs are very wide. Conversely, susceptibility maps are static products providing a fine spatial prediction.
	A susceptibility map is produced and integrated with the SIGMA outputs.
	A multi-tier approach is proposed to identify the spots where the spatial probability of landslide triggering is higher during a forecasted event.
	[41]



	In literature Intensity-Duration Rainfall thresholds are the most used
	An Alert Zone is selected to compare SIGMA with a state-of-the-art I-D model and check if SIGMA would be outperformed.
	None. SIGMA remains unchanged.
	In the selected test site SIGMA performs better than the ID approach (the likelihood ratio is 16.5 and 6.5, respectively).
	[35]



	Climate modifications trends may influence the effectiveness of the model.
	An alternate version of the model, based on shorter and more recent rainfall time series, is compared with the original one.
	Future rain gauges network re-organizations should maintain the “oldest” measurement stations, since long time series help forecasts.
	On average, the original model performs better (lr 20.74 instead of 20.43). Rain gauges with very long time series perform better, especially in the western mountain sectors (TU 14, 17 and 20 have +6 lr).
	[38]



	Can errors be reduced further?
	Some errors are systematic: they occur in particular conditions of soil moisture.
	An alternate approach replacing antecedent rainfall with averaged soil moisture values is tested.
	False alarms are reduced by 15% and missed alarms are reduced by 22%.
	[44]
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