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Abstract: This paper presents Iber+, a new parallel code based on the numerical model Iber for
two-dimensional (2D) flood inundation modelling. The new implementation, which is coded in C++
and takes advantage of the parallelization functionalities both on CPUs (central processing units)
and GPUs (graphics processing units), was validated using different benchmark cases and compared,
in terms of numerical output and computational efficiency, with other well-known hydraulic software
packages. Depending on the complexity of the specific test case, the new parallel implementation
can achieve speedups up to two orders of magnitude when compared with the standard version.
The speedup is especially remarkable for the GPU parallelization that uses Nvidia CUDA (compute
unified device architecture). The efficiency is as good as the one provided by some of the most
popular hydraulic models. We also present the application of Iber+ to model an extreme flash flood
that took place in the Spanish Pyrenees in October 2012. The new implementation was used to
simulate 24 h of real time in roughly eight minutes of computing time, while the standard version
needed more than 15 h. This huge improvement in computational efficiency opens up the possibility
of using the code for real-time forecasting of flood events in early-warning systems, in order to help
decision making under hazardous events that need a fast intervention to deploy countermeasures.

Keywords: flood; numerical simulation; shallow water equations; Iber+; benchmark; CUDA;
OpenMP; finite volume

1. Introduction

Floods are a type of natural disaster that have affected human activity throughout history.
In recent years, these phenomena have become more frequent and intense due to climate change [1,2].
The development of numerical tools that are able to simulate these events has become essential.
These tools must be accurate, in order to provide useful data, as well as computationally efficient, to be
able to obtain results in reasonable computational times. The information provided by the numerical
models should help decision makers to design resilient structures, as well as to estimate the intensity
of an imminent extreme event in order to implement countermeasures that avoid or mitigate the
economic and human losses.

Iber [3] is a numerical model that solves the two-dimensional (2D) depth-averaged shallow water
equations with an unstructured explicit finite volume solver. In addition to the hydraulic module,
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it has a sediment transport and a water quality module [4] to solve transport processes in free surface
shallow flows. It implements the first order and second order extension of the upwind scheme of
Roe [5] to model flood inundation, and the DHD (decoupled hydrological discretization) scheme [6] to
solve the shallow water equations in rainfall–runoff applications. The algorithms implemented in the
model have been extensively validated and applied in previous studies related to river inundation,
tidal currents in estuaries and rainfall–runoff modelling [6–10].

One of the main limitations of Iber at the present time is the CPU time needed to perform
simulations over complex and large spatial domains (of several km2). This is because the model
lacks the necessary optimizations to take advantage of the parallelism available on current hardware.
This hampers the use of the model in interesting applications such as real-time flood forecasting in
early warning systems, Monte Carlo-based calibration and uncertainty analysis [10,11], high-resolution
rainfall–runoff simulation in medium and large-size watersheds, or continuous simulation methods
applied to flood frequency analysis [12].

Hydraulic models are commonly accelerated for shared memory multiprocessor systems with
OpenMP (open multi-processing), but the speedup that can be achieved by this procedure is limited.
Alternatively, MPI (message passing interface) can be used to take advantage of distributed memory
supercomputers, but are expensive and difficult to maintain. Another way to accelerate this kind
of code is the use of GPUs (graphical processing units). This technology offers a high amount of
parallel processing power in quite inexpensive cards that can be installed in a server or workstation.
GPUs have been employed successfully in mesh-free [13] and mesh-based [14–17] models reaching
speedups of two orders of magnitude.

In this work, a new parallel implementation of the hydraulics module of Iber, named Iber+,
is presented. The new code is written in C++ and it makes use of OpenMP and CUDA [18] to accelerate
the simulations. The rest of this paper is organized as follows. In Section 2, the governing equations
and the most relevant techniques used in the parallel implementation are detailed. In Section 3,
four different benchmark cases are used to validate the accuracy and analyse the computational
efficiency of Iber+ when compared with other hydraulic models. Finally, in Section 4, Iber+ is applied
to compute rainfall–runoff during a real flash-flood event in a mountain headwater catchment of
240 km2.

2. Methods

2.1. Hydrodynamic Model

The 2D depth-averaged shallow water equations solved in Iber can be written as:
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where h represents the water depth, Ux and Uy are the averaged horizontal velocities, g is the
acceleration of the gravity, ρ is the density of the water, Zb is the bed elevation, τb is the bed friction,
vt is the turbulent viscosity, r is the rainfall intensity and i is the infiltration rate. Iber also implements
terms to account for wind surface friction, the Coriolis acceleration and baroclinic pressure, but those
terms are not included here for the sake of simplicity. In Iber, the bed friction is computed with the
Manning formulation as:

τb,x = ρgh
n2Ux|U|2

h4/3 , τb,y = ρgh
n2Uy|U|2

h4/3 (4)
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2.2. Numerical Code Iber+

Iber+ is a new code that implements a parallelization of the hydraulic module of Iber [3], which is
a hydraulic model that solves 2D shallow water equations using an unstructured finite volume solver.
The software package Iber provides a user-friendly graphical user interface for pre- and post-processing
and can be freely downloaded from http://iberaula.es. The Iber code is programmed in Fortran and it
is partially parallelized with OpenMP. Even if the computation time is reduced by using this technique,
the code is unable to efficiently use current multi-core processors, so the speedup that can be achieved
is quite limited. Simulation time becomes critical when addressing certain kinds of problems such as
real-time flood forecasting, Monte Carlo-based simulations, high-resolution rainfall–runoff modelling,
or long term simulations.

The main aim of the Iber+ code is to significantly improve the computational efficiency of
Iber, while being fully compatible with the Iber software. The new code has an object-oriented
implementation programmed in C++. It is parallelized for shared memory systems with OpenMP and
it also provides an Nvidia CUDA implementation for execution in GPUs.

OpenMP is an API (application programming interface) that allows easy parallelization of
traditional loops using compiler directives. However, to achieve significant speedups, there are
several aspects to be taken into account. The parallelization of a loop generates an overhead, so the
parallelization of low-cycle loops could be counter-productive. It is also important to consider the
granularity of loops. Combining simple loops into larger loops can reduce parallelism overhead,
however this could affect the automatic vectorization. With vectorization enabled in the compiler,
a program can use the SIMD (single instruction multiple data) instruction set, e.g., SSE (streaming
SIMD extensions) or AVX (advanced vector extensions), that provides extra computing power in
modern CPUs. However, loops that use branching or other complex structures may not be vectorized
automatically. On the other hand, the principle of locality is fundamental. Modern CPUs have a
complex memory hierarchy, including several levels of cache memory. Accessing a memory position
that is not in cache implies a significant penalty. Therefore, memory access patterns should be
studied and the design of suitable data structures is fundamental to achieve good performance.
For instance, choices between using an array of structures or a structure of arrays should be evaluated
for each algorithm.

GPUs use highly parallel architectures that confer them a high amount of computing power.
This is needed to render complex 3D computer graphics scenes. Since most GPUs are programmable,
the manufacturers provide APIs for GPGPU (general processing graphics processing unit) computing.
This technology makes the processing power of GPUs available to problems not necessarily related
to graphics. One of the most common GPGPU APIs used for scientific purposes is Nvidia CUDA,
providing access to the GPUs with traditional programming languages like C/C++ or Fortran.

Nvidia GPUs are made of a large amount of processors organized in streaming multiprocessors
(SMs) employing a single instruction multiple thread (SIMT) architecture. Each SM executes several
threads in parallel, in groups of 32, called warps. All the threads start on the same program address
but have their own registers. However, one warp can only execute one instruction at a time. If one of
the threads branches to a different path than the rest, a divergence occurs. In that case, that path will
be executed while the other threads are stalled, and later the other path, until the threads converge
again. This procedure can produce a heavy performance penalty if it occurs frequently.

Another critical issue is reduction algorithms. In GPUs, global synchronization is expensive,
so this kind of algorithm is not as trivial as in CPUs. To avoid heavy performance penalties,
an alternative approach must be employed. In Iber+, the library Nvidia CUB (CUDA unbound) was
employed to implement reduction algorithms. CUB is an open-source high performance library [19]
developed by Nvidia that provides reusable pieces of software for CUDA programming.

The last issue to address when programming GPUs is data transfer. Unlike integrated GPUs of
mobile devices where the GPU and CPU share the same memory, discrete high-performance GPUs are
issued in separate cards with their own memories. The GPU memory is usually faster and smaller than

http://iberaula.es
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the main system memory and is located in a different address space. As the memory transfers from
the system memory to the GPU memory are done via the PCI (peripheral component interconnect)
bus, the bandwidth is limited and causes a bottleneck that needs attention. Even though the API
can provide a unified address space, data transfers should be carefully made to avoid performance
penalties. As data transfers are expensive, it could be more profitable to do certain computations
(like reductions) on the GPU and being slower than on the CPU, rather than needing to transfer the
data to system memory and run them on the CPU. Figure 1 shows the flow chart of the Iber+ execution.
Once the simulation is started, most of the computations are performed on the GPU, minimizing the
data transfers.
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The speedup achieved by using a GPU in respect to the CPU implementation increases as the
problem size gets bigger. The speedup increases until the GPU computation capacity is saturated;
this occurs when all GPU processors are effectively used.

Both the Iber and Iber+ CPU code uses only double precision computations. However, in GPU
computing, using double precision could suppose a considerable performance penalty. Depending on
the specific GPU model, the theoretical performance in double precision could be from two to more
than ten times slower [20]. In this work, the GPU computations were performed in single precision
because no significant differences were found in the cases analyzed. However, some applications may
require the use of double precision arithmetic, so this option will be added in further versions.

The Iber+ implementation is based on the Iber code, but reimplemented from scratch in C++.
No substantial modifications were made to the original algorithms. The computations are made
using unstructured meshes and the fluxes are solved at the edges of the underlying graph data
structure. However, data structures were revised and optimized to reduce the memory footprint
and to improve the memory access patterns. Even though Iber has most of its loops parallelized
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with OpenMP, these were redesigned in Iber+ to avoid critical regions and data dependencies that
limited the speedup that could be achieved. These and other minor optimizations were done for the
computation routines. Moreover, I/O (input/output) routines were optimized to avoid unnecessary
data reading and writing.

For the GPU implementation, several drawbacks as mentioned previously should be considered.
In order to achieve the highest speedup with GPU computing, memory transfers should be reduced as
much as possible. Therefore, most of the computation routines were implemented in CUDA. Once the
simulation is initialized, the data is transferred to the GPU. Then, most of the simulation is performed
on the GPU and the only data transferred from the GPU are the results that should be written to disk
or single variables like the time step. Additionally, as the CPU is free while the GPU is performing the
computations, the CPU can run other tasks like writing the results to disk in parallel, hence, further
improving the overall run time of the simulation.

3. Validation Tests

To validate the new code, four tests included in the benchmark of the hydraulic modelling
packages published by the Environmental Agency of the U.K. government [21] were replicated.
This benchmark consists of a set of nine tests that were run with 19 hydraulic models. The models were
compared in terms of numerical accuracy and computational efficiency. Note that neither experimental
nor theoretical solutions are provided as reference data, so the only way of comparing the model
results is against other code. The three numerical models chosen to be compared with Iber and Iber+
are TUFLOW FV (v2012.000b) [22], InfoWorks ICM (v2.5.2) [23] and JFlow+ (v2.0) [14]. These models
were chosen due their popularity [24] and similarity with Iber, since all of them solve 2D shallow water
equations using finite volume solvers. Different hardware configurations were used in the validation
of Iber+. The CPU simulations (both Iber and Iber+ CPU) were run in a server with an Intel Xeon
E5-2695 v4 processor (18 cores). The GPU simulations (Iber+ GPU) were run in a workstation with an
Intel Core i7-4770 CPU and two different GPUs: a modern GPU (Nvidia GTX 1080) and an older GPU
(Nvidia GTX 480). The latter one was used to carry out a more objective comparison with JFlow+ and
InfoWorks ICM, which used a Nvidia GTX 285 and a Nvidia Tesla C2050, respectively. The Nvidia GTX
480 offers a comparable performance [25,26] to those cards and shares the same architecture (Fermi) as
the Tesla C2050. The main characteristics of the previously mentioned GPUs are shown in Table 1.

Table 1. Characteristics of the Nvidia GPUs used by the compared models. Memory units are expressed
in gigabytes (GB). GDDR3, GDDR5 and GDDR5X refers to different specifications of Graphics Double
Data Rate memory types.

Model Release
Date

Micro-
Architecture Code Name CUDA

Cores
Base

Frequency Memory

GTX 285 January 2009 Tesla GT200-350-B3 240 1476 Mhz 1 GB GDDR3
GTX 480 March 2010 Fermi GF100 480 1401 Mhz 1.5 GB GDDR5

Tesla C2050 July 2011 Fermi GF100 448 1150 Mhz 3 GB GDDR5
GTX 1080 May 2016 Pascal GP104-400-A1 2560 1607 Mhz 8 GB GDDR5X

All the validation tests presented in this section were run with the first order of the discretization
scheme of Roe and a wet-dry tolerance of 0.0001 m. Notice that the nomenclature of the tests, as well
as the numbering of the control points, are the same as those used in [21] for an easier comparison
with the original benchmark document.

3.1. Test 1: Flooding a Disconnected Water Body

3.1.1. Case Description

The first test is designed to check the basic capabilities of the hydraulic models. The domain
is shown in Figure 2. It consists of a rectangular flume of 700 m length and 100 m width with a
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variable elevation (Figure 3a). The initial water level is 9.7 m in the whole flume. The spatial domain is
discretized using a structured grid with an element size of 10 m. The Manning’s coefficient is set to
0.03 s/m1/3. The inlet boundary condition is defined at the left side of the domain (red line in Figure 2).
The inlet hydrograph is shown in Figure 3b. The total physical time is 20 h. Time series of the water
level were extracted at the two control points shown in Figure 2, in order to compare the results with
the other software packages.
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3.1.2. Results

Figure 4 shows the time series of the water level obtained at the two control points for the
simulations carried out with TUFLOW FV, InfoWorks ICM, JFlow+ and Iber+. The water levels
obtained with Iber and Iber+ using both the CPU and GPU are almost the same. The differences are
due to round-off errors of the different implementations. These differences could not be appreciated in
the plots. The coefficient of variation of the RMSD (root mean square deviation) is defined as follows:

CV(RMSD) =
RMSD

x
, RMSD =

√
∑N

i=1(xi − yi)
2

N
(5)

were x and y are the time series and N their number of elements. This was used to measure the error
of Iber+ (including CPU and GPU implementation) regarding the Iber time series. The coefficients
obtained were lower than 0.001%, so for the sake of clarity, only one plot has been used for the different
Iber implementations. The rest of the numerical models performed similar to the Iber implementations
and only minor differences have been found.
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Table 2 shows that the fastest code is Iber+ running on the Nvidia GTX 1080 GPU. It runs 16 times
faster than Iber. When running on a GTX 480, a similar GPU to those used by InfoWorks and JFlow+,
Iber+ is also faster than those codes. Respecting the execution on the CPU, Iber+ runs five times faster
than Iber running both on a single thread (see Figure 5b), and 8.8 times faster using four threads.
Note that in this test with 16 threads, Iber+ becomes slower compared to using just four threads.
Creating a thread is a time-consuming process. Assigning a big workload to each thread will mitigate
the overhead of creating the threads because the time needed to process the workload is much larger
than the time used to create the threads. On the other hand, the less workload each thread has, the more
significant the overhead in the overall run time. In this case, the mesh has only 700 elements, so if there
are many threads involved, each thread has a very small workload. As shown in Figure 5b, there is
almost no benefit in using four versus two threads. Moreover, using eight threads is slower than using
two, and using 16 threads is even slower than a single thread.

Table 2. Performance measurements obtained for Test 1. Total run time of the simulation in seconds,
average processing time per time step in milliseconds and the achieved speedups compared with Iber
running in a single thread.

Model Hardware Configuration Run Time (s) Time per Step (ms) Speedup vs. Iber 1
Thread

InfoWorks ICM GPU 9 - 7.7

JFlow+ GPU 28 - 2.5

TUFLOW FV 12 Threads 4.4 - 15.7

Iber
1 Thread 69.2 0.77 1.0
4 Threads 48.7 0.49 1.4
16 Threads 43.5 0.42 1.6

Iber+

1 Thread 13.8 0.18 5.0
4 Threads 7.9 0.10 8.8
16 Threads 16.1 0.20 4.3

GPU (GTX 480) 6.6 0.08 10.4
GPU (GTX 1080) 4.3 0.05 16.0
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This specific case will be studied in detail to show that the benefits of using parallel executions
increases as the mesh size gets bigger. This case was simulated using mesh with different characteristic
lengths. As we reduce the element size in the mesh, the Courant [27] increases so the number of steps
needed to complete the simulation increases as well. Therefore, the total run-time is not an appropriate
metric to analyze the effect of the mesh size on the advantages of parallelization. An alternative metric
to analyze this effect is the average execution time per step, defined as the total run-time over the total
number of time steps. As shown in Figure 5a, the use of more threads in CPU computations or GPU
computing improves the runtime when the number of nodes (elements) increases, since the overhead
due to parallelism becomes less significant.

The overhead produced by using parallelism can be measured with the method proposed in [28].
Therefore, the overhead of a parallel region of the code could be defined as Tn − Ts/n, where Tn is
the execution time using n processors and Ts is the execution time of the sequential version of the
code. For the case with a mesh of 700 elements, the overhead using four threads represents 52% of
the total run time, while using 16 threads, it represents 92% of the total run time. On the other hand,
in the case with a mesh of 100,000 elements, the overhead using four and 16 threads supposes 13%
and, respectively, 37% of the total run time.

3.2. Test 2: Filling of Floodplain Depressions

3.2.1. Case Description

The second test evaluates how the models reproduce the flooding of several depressions that
are interconnected. The final distribution of the water is essential to predict the extension of a flood.
The topography is a 2000 m × 2000 m domain with a grid of 4 × 4 ground depressions and a slight
descending slope in the down-right direction as shown in Figure 6a. The domain is discretized using
a structured grid with an element size of 20 m, which gives a numerical grid of 10,000 elements.
The Manning’s coefficient is constant and equal to 0.03 s/m1/3 in the entire domain. The initial
condition is a completely dry bed. The inlet boundary (red line in Figure 6a) is defined at the top left
corner of the domain. The inlet hydrograph is shown in Figure 6b. The total physical time is 48 h.
The model outputs to be evaluated are the time series of the water level at the four control points
shown in Figure 6a.
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Figure 6. Setup of Test 2. (a) Shows the simulated domain. White areas represent higher elevations.
The inlet boundary condition is marked in red. The measurements were performed in the points shown
above; (b) Hydrograph used for the inlet boundary condition.

3.2.2. Results

In the original benchmark, the water level evolution was measured at 16 points; for this work
and for the sake of clarity, more representative control points were selected. There are no noticeable
differences between Iber and Iber+ (in both the CPU and the GPU implementations). Regarding the
comparison with other software packages, some differences appear at Point 1 in the arrival time of the
flood wave (Figure 7a). JFlow+ and InfoWorks ICM perform similarly, while TUFLOW FV and Iber+
predict a slightly faster propagation of the flood wave. In any case, the final water levels are almost
the same for all models. At Point 4, all the models predict very similar results, with the exception
of InfoWorks ICM, which shows slightly higher water levels (Figure 7b). At Point 10 (Figure 7c),
the highest differences between the analyzed numerical models are shown. The final water level is
similar but a bit lower in Iber+. The arrival times also differ, with Iber+ being faster but similar to
TUFLOW FV and InfoWorks ICM. Finally, at Point 12 (Figure 7d), small differences in arrival time are
shown, as previously reported for Point 1. In general, the models in which the flood arrives earlier
also show higher final water levels.

Summarizing, in this case all the models produce very similar results. All of them predict the
inundation of 11 out of 16 depressions. Nonetheless, there are some differences on the time of arrival
of the water at some depressions. These differences were also noticed in [21] and were attributed
to the weak flow between depressions. In these situations, the specific numerical schemes used to
discretize the bed slope, the bed friction and the convective flux can have a significant impact on the
model output.
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Figure 7. Water level time series for Test 2 obtained with different numerical models at Point 1 (a);
Point 4 (b); Point 10 (c); Point 12 (d).

Table 3 shows the computational efficiency of the different models in this test case. Iber+ obtains
a speedup of up to 25.7 over the single-threaded Iber. In this case, InfoWorks ICM and JFlow+ are
slightly faster than Iber+. Although this case is more complex than Test 1, Iber+ is not able to get
any improvement when scaling from eight to 16 threads (Figure 8). This means that for this case,
the parallelism overhead is still significant when using 16 threads.

Table 3. Performance measurements for Test 2. Total run time of the simulation in seconds, average
processing time per time step in milliseconds and the achieved speedups compared with Iber running
in a single thread.

Model Hardware Configuration Run Time (s) Time per Step (ms) Speedup vs. Iber 1
Thread

InfoWorks ICM GPU 11 - 26.6

JFlow+ GPU 10 - 29.2

TUFLOW FV 12 Threads 26 - 11.2

Iber
1 Thread 292.1 1.61 1.0
4 Threads 188.6 1.01 1.5
16 Threads 170.6 0.90 1.7

Iber+

1 Thread 137.0 0.79 2.1
4 Threads 50.8 0.29 5.7
16 Threads 60.7 0.33 4.8

GPU (GTX 480) 22.8 0.13 12.8
GPU (GTX 1080) 11.4 0.06 25.7
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Test 2.

3.3. Test 5: Valley Flooding

3.3.1. Case Description

Test 5 consists of a dam break flow that originates a violent flood propagating through a river
valley. This case is designed to check the capacity of the models to simulate large inundations.
The spatial extension of this case is approximately 0.8 km × 17 km, as shown in Figure 9a. The spatial
domain is discretized with an unstructured grid with a characteristic length of approximately 50 m,
and a total number of mesh elements of 7753. The Manning’s coefficient is set to 0.04 s/m1/3. The initial
condition is a fully dry bed. The inlet boundary condition is marked with a red line in Figure 9a,
while the inlet hydrograph is shown in Figure 9b. The physical time in this case is 30 h. The time series
of the water levels and velocities at the four control points shown in Figure 9a are used to evaluate and
compare the different models.
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Figure 9. Setup of Test 5. (a) Shows the simulated domain. White areas represent higher elevations and
black areas represent lower elevations. Light green lines are level curves. The inlet boundary condition
is marked in red. The measurements were performed at the points shown above; (b) Hydrograph used
as the upstream inlet boundary condition.
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3.3.2. Results

The water levels given by all the models at Points 1, 3 and 7 are very similar (Figure 10). However,
some differences can be found at the end of the valley (Point 5), with a delay in the order of 30 min
on the time of arrival computed with the different models. Regarding the final water level at Point 5,
Iber and Iber+ show values higher than the rest of the models, while InfoWorks ICM and JFlow+ show
lower values than TUFLOW FV.
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Figure 10. Time series of water level for Test 5 obtained with different numerical models at Point 1 (a);
Point 3 (b); Point 5 (c); and Point 7 (d).

Figure 11 shows the velocity time series at three control points. Iber+ behaves very similar to
TUFLOW FV, while InfoWorks ICM and JFlow+ show delays in the arrival times with respect to
TUFLOW FV and Iber+ at Point 1 and Point 3.
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Point 3 (b); and Point 7 (c).

Table 4 shows the computational efficiency of the analyzed models in this case. Iber+ reaches a
speedup of 39.1 compared with Iber running in a single thread. In this case, Iber+ runs faster than
InfoWorks ICM and JFlow+ using the GTX 1080, but is slower than InfoWorks ICM using the older
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GTX 480 card. Figure 12 shows a similar behavior as previously observed in Figure 8. Using 16 threads
results in worse run times than using just eight threads. This is due to the low number of elements in
Test 2 and Test 5.

Table 4. Performance measurements for Test 5. Total run time of the simulation in seconds, average
processing time per time step in milliseconds and the achieved speedups compared with Iber running
in a single thread.

Model Hardware Configuration Run Time (s) Time per Step (ms) Speedup vs. Iber 1
Thread

InfoWorks ICM GPU 9 - 37.9

JFlow+ GPU 22 - 15.5

TUFLOW FV 12 Threads 67 - 5.1

Iber
1 Thread 340.8 3.02 1.0
4 Threads 265.3 2.35 1.3
16 Threads 243.5 2.16 1.4

Iber+

1 Thread 86.9 0.77 3.9
4 Threads 37.4 0.33 6.4
16 Threads 42.6 0.38 8.0

GPU (GTX 480) 15.6 0.14 21.9
GPU (GTX 1080) 8.7 0.08 39.1
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3.4. Test 8A: Urban Flood

3.4.1. Case Description

Test 8A simulates an inundation in an urban area of approximately 400 m × 960 m (Figure 13).
The topography is defined from a DTM (digital terrain model) with a spatial resolution of 0.5 m.
Buildings and vegetation are not included in the DTM and are ignored in the simulation. In this case,
the flooding originates from two water sources. A short and intense rainfall event, with intensities up
to 400 mm/h, is first defined for the entire domain, and followed by a point inflow hydrograph (blue
dot in Figure 13). The hyetograph and the inlet hydrograph are shown in Figure 14a,b. The physical
time of the simulation is 3 h. In order to compare the numerical models, the time series of the water
levels are extracted at the four control points shown in Figure 13. The time series of velocity at Points 2
and 6 are also analyzed. In this case, the spatial domain is discretized with a structured mesh with a
grid resolution of 2 m, which gives a mesh of 96,400 quadrilateral elements.
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Figure 14. Water sources for Test 8A. (a) Hyetograph of the rain event in the simulation; (b) Hydrograph
of the point inflow.

3.4.2. Results

The time series of the water level at Points 1, 2, 3 and 6 are shown in Figure 15. No significant
differences were found between Iber and Iber+ CPU/GPU. At Point 1 (Figure 15a) and Point 2
(Figure 15b), the results obtained with Iber+ are very similar to those given by the rest of the models.
However, the first peak, caused by the precipitation event, is more pronounced in Iber+ than in the
rest of the numerical models. At Point 3 (Figure 15c), Iber+ provides similar results to TUFLOW FV.
InfoWorks ICM and JFlow+ produce water levels slightly lower than those obtained using Iber+. At the
last point (Point 6 in Figure 15d), Iber+ shows water levels between those provided by TUFLOW FV
and InfoWorks ICM.
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Table 5 shows the computational efficiency of the different models in this test case. Since this 
case is more complex and has many more elements than the previous ones, it has a higher benefit 
from GPU implementation, running up to 94 times faster than Iber on a single CPU (Figure 17). 
Compared with other models from [21], in this case, the Iber+ GPU is slightly faster than InfoWorks 
and JFlow+ using a GPU with similar specifications (GTX 480). 
  

Figure 15. Time series of the water level for Test 8A obtained with different numerical models.
Measurements for Point 1 (a); Point 2 (b); Point 3 (c); and Point 6 (d).

The velocity time series at Points 2 and 6 are shown in Figure 16. Velocities measured at Point 2
are similar for all the models, and the differences are in concordance with the differences seen in the
water levels and arrival times for that point. However, at Point 2, with lower water depths, there are
more differences among models.
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Figure 16. Time series of the velocities for Test 8A obtained with different numerical models.
Measurements for Point 2 (a); and Point 6 (b).

Table 5 shows the computational efficiency of the different models in this test case. Since this case
is more complex and has many more elements than the previous ones, it has a higher benefit from
GPU implementation, running up to 94 times faster than Iber on a single CPU (Figure 17). Compared
with other models from [21], in this case, the Iber+ GPU is slightly faster than InfoWorks and JFlow+
using a GPU with similar specifications (GTX 480).
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Table 5. Performance measurements for Test 8A. Total run time of the simulation in seconds, average
processing time per time step in milliseconds and the achieved speedups compared with Iber running
in a single thread.

Model Hardware Configuration Run Time (s) Time per Step (ms) Speedup vs. Iber 1
Thread

InfoWorks ICM GPU 66 - 35.1

JFlow+ GPU 66 - 35.1

TUFLOW FV 12 Threads 410 - 5.7

Iber
1 Thread 2317.4 28.18 1.0
4 Threads 1615.8 19.62 1.4
16 Threads 1360.6 16.51 1.7

Iber+

1 Thread 850.1 10.40 2.7
4 Threads 313.8 3.80 7.4
16 Threads 150.9 2.01 15.4

GPU (GTX 480) 51.1 0.61 45.4
GPU (GTX 1080) 24.6 0.28 94.3
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4. Application Case: Surface Runoff Generation in a Mountain Basin during a Storm Event

In this section, a real fast flood event due to heavy precipitation in a mountain basin was used to
verify the computational performance of Iber+ in large scale simulations. The discharge computed
with Iber+ is compared with observed data registered during the real event at a gauging station located
at the basin outlet. The run times of Iber and Iber+ are also compared. The simulations were run with
a CPU Intel Core i7-920 and with a GPU NVIDIA GeForce GTX 1080.

4.1. Case Description

On 19–21 October 2012, an extreme rainfall event was observed in the central western Pyrenees,
affecting mainly the headwater catchments of the Aragón river [29,30]. This basin is located in
north-eastern Spain, near the Mediterranean Sea and in the Pyrenees mountain range, and is prone
to flooding during autumn. Precipitation events of more than 200 mm in just a few hours have
been reported by various authors in that area [18,19]. Figure 18 shows the location of the Upper
Aragón basin, which has an area of around 240 km2 and altitudes ranging from approximately 600 m
to 3000 m. Figure 18 also shows the location of five rain gauges (Candanchu, Hecho, Formigal,
Canfranc and Albarun) operated by the Ebro River Basin Authority (CHEbro), and the hyetographs
recorded by these gauges on 19–21 October 2012. Three of these rain gauges (Candanchu, Canfranc
and Albarun) are located inside the study catchment. The observed hyetographs show peak values
close to 25 mm/h on 19 October. The rain gauges at Hecho and Canfranc registered peak values of
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more than 30 mm/h during the first hours of 19 October. The rain gauge at Formigal, which is the
eastern-most gauge, recorded peak values smaller than 20 mm/h. The accumulated precipitation of
the rain gauges ranged from 200 mm at Formigal to near 250 mm at Candanchu. These values are
more than three times higher than the monthly averaged accumulated precipitation of October over
the period of 1981–2010 (60 mm) registered at the AEMET (Agencia Estatal de Meteorología) rain
gauge located at Huesca airport (available online at http://www.aemet.es/es/serviciosclimaticos/
datosclimatologicos/). The discharge of the Aragón river registered at the town of Jaca was used for
comparison with the numerical results.
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Figure 18. Location of the upper basin of the Aragon river (enclosed by a black dashed line) in the
Iberian Peninsula. Blue diamonds represent the location of the available rain gauges. The blue square
represents the gauging station at Jaca. The hyetographs (bar graphs) and the accumulated precipitations
(blue dashed lines) recorded during the event are also shown.

A series of simulations were carried out with Iber+ in order to compute the discharge at the gauge
station of Jaca during the first 24 h of this extreme event. The numerical domain was discretized using
triangular elements with a characteristic length ranging from 5 m near the riverbed, to 40 m. This led
to a mesh of 459,000 elements. The wet-dry threshold was set equal to 0.001 m. The hydrodynamic
equations were discretized using the DHD scheme [6], which is especially designed for solving the
shallow water equations in rainfall–runoff applications. The physical time of the simulation was 24 h.
The hyetographs registered at the five rain gauges (Figure 18) were spatially interpolated to define
precipitation rasters that were used as the rainfall input in the numerical model.

The Manning coefficient was also provided to Iber+ as a raster file. The raster file of the Manning
coefficients was obtained starting from shape files of land uses of the SIOSE (Sistema de Información
sobre Ocupación del Suelo de España) downloaded from the web of the CNIG (Centro Nacional de
Información Geográfica). These shape files divide the entire area of study into small parcels (j = 1,
. . . , N), each of them with a combined land use, which was labelled according the rules of SIOSE by

http://www.aemet.es/es/serviciosclimaticos/datosclimatologicos/
http://www.aemet.es/es/serviciosclimaticos/datosclimatologicos/
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the type of parcel, individual land uses defined in each parcel and the ratio of area of each individual
land use to the total area of the parcel. Each individual land use is associated to a Manning coefficient
obtained from [6]. The combined Manning coefficient of each parcel j was obtained using:

Cj
comb = ∑

Mj
i=1 Perj

iCi (6)

where Peri
j is the ratio of land use i in parcel j (∈ [0,1]), Ci is the Manning coefficient associated to the

land use i, Mj is the number of land uses in the parcel j. Details of the methodology to compute the
Manning coefficients can be found in [31].

Infiltration losses were defined using the curve number method of the SCS (Soil Conservation
Service). The curve number (CN) was computed with the formulation proposed in [32]. First,
the maximum surface retention (S) was obtained as:

S =
P2

Ru
− P (7)

where Ru is the mean value of surface runoff and P the precipitation depth both provided as raster
files. From the maximum surface retention, the curve number was estimated as:

CN =
25,400

S + 254
(8)

There are multiple sources of uncertainty in numerical models. Apart from the limitations in
the model formulation, especially those related to the mathematical discretization of the equations,
the models are very sensitive to the initial boundary conditions, as well as to the input parameters.
In the particular case of hydraulic models like Iber, the parameterization of the Manning coefficients
and CN are of utmost importance in order to determine the timing and extent of flooding events. In the
present case, the reference simulation described above and a set of 16 additional simulations were
considered. Among them, eight simulations were defined by the reference CN and varying Manning
coefficients (±15%, ±35%, ±55% and ±75%) and eight simulations were defined by the reference
Manning coefficients and varying curve number (±3%, ±6%, ±9% and ±12%).

4.2. Results

Figure 19 shows the averaged hydrograph computed with Iber+ and the experimental values
observed at Jaca. The shaded area corresponds to the mean value plus/minus two times the standard
deviation of the numerical simulations. The average peak discharge obtained with Iber+ is slightly
higher (~25%) than the experimental one (349.5 m3 s−1 and 279.5 m3 s−1 respectively). The difference
between both values (70.0 m3 s−1) is considerably lower than twice the standard deviation (shaded
area). The timing of the numerical peak (20.0 h) is slightly delayed with respect to the observed data
(19.5 h). The total volume of water also shows slight differences (~2%) between the experimental
(4.6 Hm3) and numerical (4.7 Hm3) results. Therefore, the model reproduces the observed data with
an acceptable accuracy, especially considering the uncertainty inherent to hydrological simulations.
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In addition to the visual comparison derived from Figure 19, three non-dimensional quantitative
statistics and two dimensional techniques have been used to evaluate, in an objective way, the accuracy
of the numerical results compared to the field data. The non-dimensional quantitative statistics used
are the Nash–Sutcliffe efficiency (NSE), percent bias (PBIAS) and the ratio of the root mean square error
to the standard deviation of measured data (RSR). The used dimensional techniques are the correlation
coefficient (r) and the coefficient of determination (R2). The Nash–Shutcliffe coefficient (NSE) [33]
defines the relation of the residual variance to the field data variance. It can range from −∞ to 1 and
its optimal value is 1. NSE was used according to the recommendation of [34] and its widespread use
in the hydrology field [35,36]. Percent bias (PBIAS) [37] measures the tendency of the numerical results
to be larger (PBIAS > 0) or smaller (PBIAS < 0) than the reference data and is expressed as a percentage.
Therefore, the optimal value of this parameter is 0. This parameter is also recommended by [34] and,
according to [37], it can identify numerical models with poor accuracy. The ratio of the root mean
square error to the standard deviation of measured data (RSR) [38] is defined as the ratio of root mean
square error (RMSE) to the standard deviation of the field data. It can range from 1 to a large positive
number. In the former case, the RMSE would be equal to the standard deviation of the field data and
in the latter case, the RMSE would be greater than the standard deviation of the field data.

Following [39], the range of values of the non-dimensional statistics is shown in Table 6. Note that
these values are defined for monthly time steps. Usually as the time step decreases, the ratings are
less stringent.

Table 6. Performance rating for monthly time step. NSE = Nash–Sutcliffe efficiency. PBIAS = percent
bias. RSR = the ratio of the root mean square error to the standard deviation of measured data.

Rating NSE PBIAS (%) RSR

Very good 0.75 < NSE ≤ 1.00 PBIAS < ±10 0.0 ≤ RSR ≤ 0.5
Good 0.65 < NSE ≤ 0.75 ±10 ≤ PBIAS < ±15 0.5 < RSR ≤ 0.6

Satisfactory 0.50 < NSE ≤ 0.65 ±15 ≤ PBIAS < ±25 0.6 < RSR ≤ 0.7
Unsatisfactory NSE ≤ 0.50 ±25 ≤ PBIAS 0.7 < RSR

Table 7 shows the values of the statistics parameters obtained for the case under study. The values
of NSE, PBIAS and RSR clearly indicate, according to the reference values of Table 6, that the accuracy
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of the numerical results is very good. In addition, the values of r and R2 show the high accuracy of the
numerical model.

Table 7. Performance rating calculated for the mean signal shown in Figure 19. r = correlation
coefficient. R2 = coefficient of determination.

NSE PBIAS RSR r R2

0.89 5.72 0.34 1.00 0.90

Apart from the accuracy of the results, this case study highlights the need for computationally
efficient models. The total runtime needed for the 17 numerical simulations was approximately two
hours and twenty minutes (approximately eight minutes per simulation). The time needed to run the
same case with the standard Iber ranged from 14 h 25 min with eight threads and 18 h 9 min with one
thread. We should note that weather forecast systems can predict extreme rain events only a few hours
in advance, which reduces the response time and highlights the need for fast and reliable hydraulic
models to analyze the areas at risk of flooding. Iber+ can then be considered as a suitable tool to
predict these type of extreme events.

5. Conclusions

We have presented a new parallel implementation of the 2D shallow water model Iber. The new
implementation, named Iber+, takes advantage of different parallelization strategies both on CPUs
and GPUs to speed up the computations, while keeping the same accuracy as the original model.
The computational efficiency of the new code was analysed using four different benchmarks proposed
by the Environmental Agency of the United Kingdom. The results obtained with Iber+ on those
benchmarks was compared to those given by other hydraulic models, showing a similar level
of accuracy.

The main limitation of the standard implementation of Iber is its lack of computational efficiency
in large problems. This limitation is overcome in the new parallel implementation, where a speedup of
two orders of magnitude, compared to the standard version, can be obtained depending on the case
under study. This speedup is especially relevant on the GPU version of the code when modelling cases
with a high workload.

Iber+ was applied to a real case, an extreme flash flood that took place in the Spanish Pyrenees in
October 2012. Iber+ was able to simulate 24 h of physical time in less than 10 min using a numerical
mesh of almost half a million elements. The same case run with the standard version needs more
than 15 h of CPU time. This improvement in computational time is especially important to extend
the potential application of the model to early warning systems, since extreme precipitation events
can only be forecasted a few hours in advance by the meteorological agencies. Thus, the use of fast
and accurate numerical tools such as Iber+ is crucial for a real-time analysis and deployment of flood
protection measures by decision makers.

Although Iber+ offers a huge performance leap compared to the standard version, there is still
room for further speedups by the use of ordering algorithms for data locality, the improvement in the
efficiency to skip dry elements from the computation, or the implementation of asynchronous tasks in
GPU programming.

Author Contributions: O.G.-F., J.G.-C., M.G.-G. and J.M.D. conceived the study; O.G.-F. developed the software;
L.C., J.M.D. and A.F. supervised the code development; O.G.-F. and J.G.-C. performed the experiments; O.G.-F.,
J.G.-C. and M.G.-G. analysed the results; O.G.-F., J.G.-C., L.C., M.G.-G. and A.F. wrote the manuscript.

Funding: This research was partially supported by Water JPI—WaterWorks Programme under project Improving
Drought and Flood Early Warning, Forecasting and Mitigation (IMDROFLOOD) (Code: PCIN-2015-243);
by INTERREG-POCTEP Programme under project RISC_ML (Code: 0034_RISC_ML_6_E); and by Xunta de
Galicia under Project ED431C 2017/64-GRC “Programa de Consolidación e Estruturación de Unidades de
Investigación Competitivas (Grupos de Referencia Competitiva)”. O.G.-F. is supported by Xunta de Galicia grant
ED481A-2017/314. J.M.D. is supported by Xunta de Galicia postdoctoral grant ED481B-2018/020.



Water 2018, 10, 1459 21 of 23

Acknowledgments: We acknowledge CHMS for the availability of the raster files of mean value of surface runoff
and precipitation depth.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study, in the collection, analyses and interpretation of data, in writing of the manuscript and in the decision
to publish the results.

Abbreviations

AEMET Agencia Estatal de Meteorología.
API Application Programming Interface
AVX Advanced Vector Extensions
CHEbro Confederación Hidrográfica del Ebro.
CHMS Confederación Hidrográfica Miño Sil.
CNIG Centro Nacional de Información Geográfica
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
CUB CUDA Unbound
DHD Decoupled Hydrological Discretization
DTM Digital Terrain Model
GPGPU General Processing Graphics Processing Unit
GPU Graphics Processing Unit
I/O Input/Output
MPI Message Passing Interface
OpenMP Open Multi-Processing
PCI Peripheral Component Interconnect
RMSD Root Mean Square Deviation
SCS Soil Conservation Service
SIMD Single Instruction Multiple Data
SIMT Single Instruction Multiple Thread
SIOSE Sistema de Información sobre Ocupación del Suelo de España.
SM Streaming Multiprocessors
SWE Shallow Water Equations
SSE Streaming SIMD Extensions
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