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Abstract: In developing regions missing data are prevalent in historical hydrological datasets, owing to
financial, institutional, operational and technical challenges. If not tackled, these data shortfalls
result in uncertainty in flood frequency estimates and consequently flawed catchment management
interventions that could exacerbate the impacts of floods. This study presents a comparative analysis
of two approaches for infilling missing data in historical annual peak river discharge timeseries
required for flood frequency estimation: (i) satellite radar altimetry (RA) and (ii) multiple imputation
(MI). These techniques were applied at five gauging stations along the floodprone Niger and
Benue rivers within the Niger River Basin. RA and MI enabled the infilling of missing data for
conditions where altimetry virtual stations were available and unavailable, respectively. The impact
of these approaches on derived flood estimates was assessed, and the return period of a previously
unquantified devastating flood event in Nigeria in 2012 was ascertained. This study revealed that
the use of RA resulted in reduced uncertainty when compared to MI for data infilling, especially for
widely gapped timeseries (>3 years). The two techniques did not differ significantly for data sets with
gaps of 1–3 years, hence, both RA and MI can be used interchangeably in such situations. The use
of the original in situ data with gaps resulted in higher flood estimates when compared to datasets
infilled using RA and MI, and this can be attributed to extrapolation uncertainty. The 2012 flood in
Nigeria was quantified as a 1-in-100-year event at the Umaisha gauging station on the Benue River
and a 1-in-50-year event at Baro on the Niger River. This suggests that the higher levels of flooding
likely emanated from the Kiri and Lagdo dams in Nigeria and Cameroon, respectively, as previously
speculated by the media and recent studies. This study demonstrates the potential of RA and MI
for providing information to support flood management in developing regions where in situ data
is sparse.

Keywords: hydrology; missing data; radar altimetry; multiple imputation; flood frequency analysis;
Niger River Basin; Ungaged River Basin

1. Introduction

As floods become increasingly more frequent, intense and devastating due to changing climatic
conditions and anthropogenic factors [1], reliable hydrological information is required by flood risk
managers and stakeholders alike to inform the deployment of interventions to mitigate flood impact [2].
Typically, networks of river gauging stations are established across several locations of interest to collect
the necessary data over a given period [3]. However, operating such observatory systems—especially
in developing regions—is often problematic due to financial (underfunding of data collection agencies),
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institutional (lack of technical capacity and commitment), operational (inaccessibility to remote gauge
stations due to logistical and security challenges), and technical (equipment malfunction, replacement,
damage, modification, discontinuity and manual data entry procedures prone to errors) factors [4–6].

These factors contribute to hydrological network inadequacy, the decline in functional stations,
and gaps in available historical records, that consequently impact on the outcome of flood modelling
processes required to inform decision making. Even when data is available, in many developing regions,
these records are usually short, and manual river water level measurements and discharge estimation
processes further subject the available hydrological data to aleatory and epistemic uncertainties [7].

Over the past decade, several approaches have been explored to compensate for data deficiencies
to estimate flows for ungauged or sparsely gauged river basins, including remote sensing [8,9],
hydrodynamic modelling [10], combined remote sensing and hydrodynamic models [11,12], catchment
geomorphological and meteorological data integration [13], and hydrological regionalization [14],
resulting in the estimation of river water levels and discharge with reduced levels of uncertainty.
These techniques provide varying merits and demerits and are applicable in different scenarios,
depending on available complementary data. Furthermore, these approaches require some form
of ground data for verification, given that in situ observations provide better insight into local
hydrological processes and catchment responses to changing climatic and landscape conditions [15],
and the output of each technique is strongly dependent on the input data accuracy.

Irrespective of the method adapted for flood magnitude estimation, gaps within the hydrological
time-series increase the uncertainty in flood estimates, resulting in flawed flood management decisions
and interventions [16]. To curtail this deficiency, statistical and empirical methodologies have been
widely deployed [17]. Statistical techniques focus on filling missing data by simulating trends/patterns
within available datasets, using methods such as regression analysis [4,18], interpolation [19,20],
and artificial neural networks [21].

Other traditional missing data infilling approaches generally involve the removal/deletion of
gaps in existing data or application of single data imputation methods such as arithmetic mean or
median imputation, regression, and principal component analysis [22]. Though the deletion method
is usually convenient [23], this approach reduces sample size, thereby introducing statistical bias
and reducing the statistical power and precision of standard statistical procedures [24]. Conversely,
single imputation approaches replace missing data while retaining the original sample size.
Nevertheless, single imputation techniques can lead to distorted parameter estimates, reduced data
variability [24], predictable bias, high variable correlation [25] and dimensional subjectivity [26].

To curtail the limitations of single imputation approaches, multiple imputation (MI) has been
proposed, an approach that replaces missing time series values using two or more plausible values
derived from a distribution of possibilities [27]. MI is widely used in hydrological studies [27–29] and
provides the unique advantages of accounting for missing data uncertainty and does not overestimate
correlation error [30].

Empirical methods have also been applied to fill missing hydrological data, and usually require
supplementary data from upstream or downstream gauging stations close to the location of interest,
as well as other datasets such as digital elevation models [31]), bathymetry [32], satellite imagery [8,9,33]
and radar altimetry [34]. Of all empirical approaches listed, only radar altimetry (RA) provides direct
water level estimates that can be seamlessly integrated into existing hydrological time series without
complex computation and models [35,36] that are rarely available nor applied in developing regions
due to lack of capacity and high computational cost [37]. Also, given that altimetry virtual station
networks are globally distributed [38], developing regions stand to benefit, especially in locations
where manual observations are disrupted and measurement equipment destroyed by high magnitude
flows during by peak flood seasons. Furthermore, the recent launch of Jason-3 [39] and Sentinel-3 [40] in
early 2016, and the proposed Surface Water and Ocean Topography (SWOT) in 2020 [41] are expected to
enhance continuous, long-term, and sustainable RA data collection. Notwithstanding, the applications
of RA can be limited by factors including the state of atmosphere during data acquisition, satellite
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sensor properties, temporal resolution, water surface characteristics, and altimetry ground footprint,
which can contribute to measurement variability and uncertainties [12,42].

In this context, the aim of this study was to identify and apply suitable techniques for resolving
the problems of missing hydrological data which are common in developing regions. The objectives
were to:

1. Determine the effectiveness of RA and MI approaches for filling missing data in
hydrological timeseries.

2. Assess the impact of both approaches on flood frequency that is estimated given varying
quantities of missing data.

3. Quantify the magnitude of the devastating 2012 flood in Nigeria (the study region for this
research), after identifying the optimal infilling approach.

2. Study Region

The study region, the Niger-South Hydrological Area (HA) 5 (Figure 1A), encircles a population of
22,170,300 within a 54,000 km2 area. The hydrology of the region is defined by inflow from the Niger
River Basin through Niger and Benue rivers (Figure 1B) travelling downstream to the Atlantic Ocean
through the Nun and Forcados distributaries in the Niger Delta (Figure 1C), and to the Anambra-Imo
river basin through the Anambra river. The annual rainfall varies from 1100 to 1400 mm, while the land
cover along the Niger and Benue river floodplains is comprised of built-up areas (0.68%), cultivated
land (31.42%), plantations (0.04%) wetlands (9.70%), mixed land use (36.85%), grasslands (6.17%),
water bodies (14.83%), and bare surfaces (0.31%) [43]. The average annual discharge into the Niger-South
river basin form the Niger and Benue river catchment areas is 5381 m3/s [44], and has an average river
with of 742 m [10].

In 2012, the Nigerian states within HA-5 (i.e., Kogi, Anambra, Imo, Delta Bayelsa and Rivers)
were heavily impacted during a flood event that resulted in the disruption of socio-economic activities,
damage to properties and infrastructure and fatalities [45,46]. The 2012 flood event was reported to
have caused the greatest impact/damage in 40 years [47,48] including: (i) economic and infrastructure
loss worth 16.9 billion US Dollars, (ii) displacement of 3.8 million people, and (iii) loss of 363 lives [45].
This event was reportedly triggered by torrential rains which resulted in the release of excess water
from dams in Nigeria (Kainji, Shiroro, and Kiri) and Cameroon (Lagdo), with the impact exacerbated
by poor planning due to insufficient data availability and poor communication between Cameroon
and Nigeria [45,47,49]. Recurring flooding is currently occurring in 2018, emanating from upstream
water release from river Nigeria [50].

HA-5 faces the challenge of severe data sparsity and the availability of RA virtual stations along its
constituent rivers (Niger and Benue) provides a valuable opportunity to curb this challenge, while MI
presents an alternative approach for infilling missing hydrological data where RA is unavailable.
Figure 1 shows in situ gauging stations in relation to radar altimetry tracks and virtual stations (Jason
1/2, Envisat and Topex/Poseidon) along the Niger and Benue rivers and Niger-South river basin.
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Figure 1. (A) Map of Nigeria showing in situ gauging stations, altimetry virtual stations and tracks along
Niger and Benue Rivers. (B) Map of Africa showing Niger Basin imprint on Nigeria. (C) Niger South
hydrological area showing tributaries (Niger and Anambra) and distributaries (Nun and Forcados).

3. Materials and Methods

3.1. In Situ Hydrological Data

The hydrological data (discharge, water levels, and rating curves) for the five in situ gauging
stations (Table 1) were acquired from the Nigerian Hydrological Service Agency (NIHSA), National
Inland Waterways Authority (NIWA) and Niger Basin Authority (NBA) (Table 1). Daily water levels data
are manually collected using staff gauges and automatic telemetry gauging stations daily, then converted
to discharge using pre-defined and up-to-date rating curves (i.e., the relationship between in situ
discharge and water levels). Only post-dam construction datasets were used for this study, to curb data
heterogeneity caused by changes in hydrological regime due to dam construction [51].
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Table 1. In situ gauge station characteristics.

Station Name Date
Established River Lat. (◦) Long. (◦) Area (km2)

Period of Record
Used (years) GBM (m) River Width

(km)
Missing Annual

Peak Discharge Data Data Source

Baro 1915 Niger 8.6066 6.4170 730,000 1985–2012 57.22 0.64 12 NIHSA
Lokoja 1915 Niger 7.8167 6.7333 752,000 1989–2015 45.77 1.65 6 NIHSA

Umaisha 1980 Benue 8.0000 7.2333 335,000 1985–2012 18.87 0.61 19 NIHSA
Onitsha 1955 Niger 6.1667 6.7500 1,100,000 1989–2014 24.14 1.03 16 NIWA
Taoussa 1954 Niger 16.9500 −0.5800 340,000 1985–2015 N/A 0.47 0 NBA

GBM: gauge benchmark above mean sea level, N/A: not applicable (Source: NISHA, NIWA, and NBA).
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3.2. Radar Altimetry Hydrological Data

Pre-processed data from Topex/Poseidon (T/P), Envisat, Jason-1, and Jason-2 altimetry missions
(Table 2) were downloaded from the data repository of the Centre for Topological studies of the
Ocean and Hydrosphere [38] for this study. The pre-processing accounts for uncertainties due to the
ionosphere, humid and dry atmospheric conditions, polar tide and solid earth tide [52]. RA data is
acquired via a process that measures the distance between the orbiting satellite and water surface
in relation to a reference datum (such as the Earth Gravitational Model (EGM) 2008). RA satellites
use sensor echo pulse return intervals from when emitted by the satellite to when received upon
reflection by the water surface to estimate river water levels [53]. Altimetry water levels are measured
at virtual stations located intermittently where altimetry satellite tracks cross path with rivers [54].
The vertical datum for altimetry datasets (EGM 2008) was converted to mean sea level (MSL) to
correspond with the in situ gauging station data datum using the geoid calculator GeoiedEval (http:
//geographiclib.sourceforge.net/cgi-bin/GeoidEval).

Table 2. Radar altimetry mission and characteristics.

S/N Mission Ground
Footprint (m)

Return Period
(Days)

Operation
Timeline

Vertical
Accuracy (m) References

1 T/P ~600 9.9 1993–2003 0.35 [55]
2 Envisat ~400 35 2002–2012 0.28 [55]
3 Jason-1 ~300 10 2002–2009 1.07 [56]

4 Jason-2 ~300 10 2008–Till
date 0.28 [56]

T/P = Topex/Poseidon.

3.3. Missing Data Imputation, Pre-Processing, and Flood Frequency Analysis

3.3.1. Radar Altimetry Data Processing

The approach adopted establishes a relationship between upstream or downstream RA virtual
station datasets and a nearby in situ gauging station datasets when water level data exist at both stations
on the same date. The established correlation equation was then applied to estimate missing in situ data
when only RA data is available, which is then converted to discharge using an up-to-date rating curve.
At locations where in situ and/or RA data is not available for the same dates to establish an empirical
relationship, a previously established relationship from a nearby RA station was adopted, provided no
tributary or distributary exists between both virtual stations, the change in river width is minimal,
and no hydraulic structure or tributary exists between both virtual stations [35,57]. This approach
is consistent with previous studies [57,58], where the rating curve for a nearby gauging station was
adopted for another station where data was unavailable. In this study, this altimetry/in situ relation
transfer approach was adapted for Umaisha station and Virtual station Env_158_01 (Table 3), where the
relationship established from Jason 2 data was applied to Envisat data. The framework presented in
Figure 2 describes the methodology for infilling missing data using RA, while the characteristics of RA
virtual stations and the derived regression relationships are presented in Table 3.

http://geographiclib.sourceforge.net/cgi-bin/GeoidEval
http://geographiclib.sourceforge.net/cgi-bin/GeoidEval
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Table 3. Characteristics of the altimetry virtual stations within the study area.

Virtual Station
Name Mission River Temporal

Coverage Lat. Long. Distance from in
situ Gauge (km)

River Width
(km)

Available Data Points
(Alt vs. in situ) Regression Equation R2

Env_702_01 Envisat Niger 2002–2010 6.6500 6.6500 115.4 (Lokoja)-DS 0.49 10 in situ = 0.8807(RA) + 29.821 0.876
Env_029_01 Envisat Niger 2002–2010 5.9900 6.7200 23.7 (Onitsha)-DS 0.89 9 in situ = 1.1004(RA) + 33.829 0.95
Env_158_01 Envisat Benue 2002–2010 8.0200 7.6700 54.3 (Umaisha)-US 1.71 15! in situ = 0.9409 (RA) − 19.621 0.947!

tp198_4_moy T/P Nun 1993–2002 6.0981 4.7563 234.7 (Onitsha)-DS 0.47 88 in situ = 2.6861(RA) + 80.029 0.659
j2_020_1 Jason-2 Benue 2002–2011 8.0082 7.7540 62.9 (Umaisha)-US 2.37 15 in situ = 0.9409 (RA) − 19.621 0.947
j2_211_3 Jason-2 Niger 2002–2011 8.3675 6.5570 33.8 (Baro)-US 0.72 20 in situ = 0.9248(RA) + 3.9594 0.937
j2_161_1 Jason 2 Niger 2002–2015 17.0107 −1.5247 112.5 (Taoussa)-US 0.57 14 in situ = 0.9226(RA) − 180.48 0.924

DS = Downstream of in situ gauge, US = Upstream of in situ gauge, R2 = coefficient of determination, (!) denotes that the correlation relationship at the J2_020_1 virtual station was
adapted for Env_158_01 due to the absence of in situ measurements near that virtual station. The distance between the two virtual stations is 9.3 Km.
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Figure 2. Methodology for estimating missing discharge data using radar altimetry, in situ water level,
and rating curve/equation.

3.3.2. Multiple Imputation of Missing Data

MI allows for the infilling of missing data in situations where altimetry virtual stations are
unavailable and has been widely applied in hydrological studies [27,59]. MI has also been found to
outperform traditional techniques such as mean imputation, missing indicator, and complete case
analysis [60,61], hence its selection for this research. MI fills data gaps by simulating the plausible
number of values after fitting the existing data to a distribution based on the statistical parameters such
as mean and standard deviation of the dataset while accounting for uncertainty about the supposed
true value [62,63]. The term “multiple imputation” implies the missing data is simulated multiple
times, in this case, five times using XLSTAT software, which is considered sufficient from previous
studies [64]. Markov chain Monte Carlo approach is applied to estimate missing values by randomly
sampling from a distribution of plausible values derived from multiple simulations undertaken using
mean and standard error parameters similar to that of the original dataset under the assumption
of normal distribution [65]. This approach quantifies the uncertainty in the simulation process and
reduces false precision attainable with single imputation [62]. A major limitation of this approach is
that a small sample size may constrain the generalization potential of the imputation method proposed,
thus resulting in uncertain missing data estimates [66].

At locations where RA data was not available for certain years to reflect peak floods, MI was
applied to infill the remaining gaps. For instance, Baro (11 missing: 1 filled with RA, 10 filled with
MI), Lokoja (6 Missing: 6 filled with RA), Umaisha (19 missing: 14 filled with RA, 5 filled with MI),
and Onitsha (16 missing: 9 filled with RA, 7 with MI).

3.3.3. Hydrological Data Pre-Processing

Preliminary analysis is a prerequisite for most flood frequency analyses studies, to assess the likely
factors that contribute to flood estimate uncertainties [67–69]. These analyses generally include tests
for outliers, trends, homogeneity, serial correlation, and rating curve extrapolation effects. The five
tests undertaken in this study include:

1. Grubbs and Becks [70] and Multiple Grubbs and Becks outlier test [71]: to identify Potentially
Influential Low Floods (PILFs);

2. Mann–Kendall test [72,73]: to assess trends in the time-series;
3. Pettitt’s test [74]: to assess historical data homogeneity;
4. One-unit lag correlation coefficient statistics [75]: to test the serial correlation between the

independent observations of a time-series,
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5. Ratings Ratio [76]: to assesses possible rating curve extrapolation effects by dividing the
maximum discharge for each year by the maximum measured discharge applied in the ratings
curve development.

All data pre-processing, except the multiple Grubbs and Becks test (mGBt), was undertaken
using XLSTAT software, while mGBt was performed in Flike flood frequency analysis software [67,77].
A vast body of literature is available on fundamental theories and methodologies of this preliminary
analysis for further perusal; hence is not discussed in detail here.

3.3.4. Flood Frequency Estimation

Flood frequency analysis (FFA) was undertaken in Flike software [77] by fitting a pre-defined
probability distribution (generalized extreme value (GEV)) to both gap-filled and unfilled historic
annual maximum series (AMS) data derived from the RA and MI approaches, to determine flood return
period, i.e., the likelihood of a flood of specific magnitude being met or exceeded at any given point in
time [78]. Different probability distributions including generalized extreme value (GEV), generalized
logistic (GLO), extreme value (type 1–3), generalized Pareto (GPA), and log Pearson type 3 (LP3) have
been widely applied for FFA, and provide varying flood estimates, even for the same dataset [79].
Hence, suitability analysis is typically undertaken to access the best probability distribution [80].
Nonetheless, GEV is adopted for FFA in this study, due to its robustness, flexibility [81,82] and for
consistency with previous studies in our area of interest [83,84]. The GEV formula is expressed as

F (x|τ,α, k) =

 1
α exp

{
−
[
1− k(x−τ)

α

] 1
k
} [

1− k(x−τ)
α

] 1
k−1

; when k > 0, x < τ+ α
k ; when k < 0, x > τ+ α

k

1
α exp

[
1− (x−τ)

α

]
exp

{
exp

[
− (x−τ)

α

]}
; if k = 0

(1)

where, τ, α, and k represents location, scale and shape parameters of the distribution function.
GEV like other probability distributions is affected by short hydrological time series, which results

in uncertain flood estimates [85], therefore the availability of more historical data enables improved
flood estimation. The 5T rule of thumb suggested by Reed [78] for the length of data required for flood
frequency estimation is adopted for this study, i.e., the historical data should be at least five times
the target return periods (i.e., 20 years of historical data is required for a 1-in-100-year estimation,
for reasonable levels of uncertainty).

3.3.5. Assessment of Missing Data Imputation Method Impact on Flood Frequency Estimates

Permutation and Kolmogorov–Simonov tests were undertaken in R software to assess the effect
of the various missing data imputation approaches on the flood estimates, as well as the respective
quantile distributions. The permutation test is the non-parametric alternative to the parametric t-test,
used in evaluating the difference between two treatments [86], in this case, RA and MI, while the
Kolmogorov–Simonov test assesses if two distributions are similar or if a distribution differs from a
reference distribution [87].

3.3.6. Missing Data Imputation Methodology Outcome Evaluation

To further evaluate the effect of the infilling approaches on flood estimates, complete hydrological
time series available at Taoussa gauging station in Mali, West Africa (location map in Supplementary
Figure S1) was acquired from the Niger Basin Authority data repository via the web link: http://
nigerhycos.abn.ne/user-anon/htm/, due to the absence of gap-free data in Nigeria. Historical water
levels were converted to discharge using a ratings curve. Known data points were deliberately removed
to reflect missing data patterns evident in existing Nigerian datasets, i.e., consecutive (≤3 years) and
inconsecutive (>3 years), then filled with the MI and RA approaches, and applied for flood frequency
estimation. The discordancy between flood estimates derived from the filled and original complete
datasets was then evaluated using Permutation and Kolmogorov–Simonov tests.

http://nigerhycos.abn.ne/user-anon/htm/
http://nigerhycos.abn.ne/user-anon/htm/
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4. Results and Discussion

4.1. Missing Data Infilling with Radar Altimetry and Multiple Imputation

The coefficients of determination (R2) for the relationship between RA and in situ water level
data points presented in Table 3 were higher at gauging stations where the distances between virtual
and in situ gauge stations was minimal, as well as where the influence of tributaries discharging into
the main rivers is reduced and river width is considerable. These are evident at j2_020_1 (R2 = 0.947)
and tp198_4_moy (R2 = 0.659) virtual stations for Lokoja and Onitsha, respectively. The Jason Virtual
station (j2_020_1) is located 115.4 Km upstream from Lokoja along the Niger river stretch, with no
tributary influence and at a river cross-sectional width of 2.37 Km, while the Topex/Poseidon Virtual
station (tp198_4_moy) is located 234.7 Km downstream of Onitsha, influenced by Nun and Anambra
river tributaries, and at a river cross-sectional width of 0.47 Km. These findings are consistent with
studies at Brahmaputra River [88], Lake Argyle [34], Lake Victoria [34,38,88], and Benue River [35],
where the distance between in situ and RA virtual stations, existence of tributaries between the stations,
and river width impacted the correlation between datasets.

Figure 3a–d shows the annual maximum timeseries data for the four gauging stations in Nigeria
for gapped and infilled datasets. Triangular markers depict point where historical in situ data exist,
while MI and RA derived estimates are depicted as diamond-like and square markers, respectively.
The RA derived missing peak discharge values were consistently higher than MI estimates at Umaisha,
especially for inconsecutive gaps likely caused by restricted access to gauging stations and equipment
damage during peak flood periods. The consistently low peak flood estimates displayed for MI derived
estimates at Umaisha reveal the deficiency of MI, especially when estimating missing data for time
series with wide gaps greater than three years [29]. At Baro, Lokoja, and Onitsha gauging stations,
RA peak flood estimates were generally lower than those estimated by MI, and higher only in 1993
and 2008 at Onitsha. The peak flood values estimated using MI remained relatively steady over time,
while RA exhibited high levels of variability expected for natural flood hydrographs, especially for
datasets with wide gaps greater than three years as seen at Umaisha. Figure 3e–f shows the timeseries
for the Taoussa reference station in Mali, used to validate the methods applied to fill consecutively and
inconsecutively gapped historical time-series. Both figures reveal that estimated peak discharge was
discordant from the real discharge values, but RA estimates were closer to the actual measurements in
comparison to MI estimates for both consecutively and inconsecutively gapped datasets.
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Figure 3. (a) Baro station in situ and MI and RA infilled time series. (b) Lokoja station in situ and MI
and RA infilled time series. (c) Umaisha station in situ and MI and RA Infilled time series. (d) Onitsha
station in situ and MI and RA infilled time series. (e) Taoussa original complete time series and time
series with consecutive missing data filled using MI and RA. (f) Taoussa original complete time series
and time series with inconsecutive missing data filled using MI and RA.

4.2. Preliminary Data Analysis

Results of the preliminary analysis are presented in Table 4 and show the statistical parameters
that define outliers, trends, homogeneity, and serial correlation of the hydrological datasets for each
gauging station. Table 4 reveals (i) the Grubbs and Becks, and Multiple Grubbs and Becks outlier
test disclosed the absence of significant potentially influential low flow outliers within the dataset
(p > 0.05), inferring that low flows are also drawn from the same sample population. Also, high flows
are consistent with years of recorded flood events, hence did not emanate from equipment failure
or documentation error; (ii) the Mann–Kendall trend test demonstrated the absence trends for all
gauging stations at a significance level (α) greater than 5%; (iii) the homogeneity (Pettitt) test suggests
stationarity due to the absence of significant breakpoints within the historical data for each site; and (v)
serial (1-unit lag) correlation between peak floods for each site varied from −0.044 to 0.519, suggesting
the absence of statistically significant correlation. Positive 1-unit lag correlation infers persistent trends,
i.e., high values tend to follow high values and low values tend to follow low values, and negative
one-unit lag correlation depicts the reverse [89]. These findings portray the long-term consistency
of hydro-physical conditions for the investigated catchment over the period of data collection along
Niger and Benue rivers [51,90]. The Ratings Ration (RR) analysis for peak flood data derived from
the two infilling approaches (MI and RA) suggests the absence significant rating curve extrapolation
uncertainty, as all RR values were not much greater than (>>) 1 as stipulated by Haque et al. [69].
The maximum RR values observed at each gauging station varied from 1.0172 (Baro), 0.8779 (Lokoja),
0.760 (Umaisha), 0.9817 (Onitsha), to 1.045 (Taoussa), which are not much greater than 1.
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Table 4. Preliminary analysis results (mean, homogeneity, trend, outlier, serial correlation).

Station
Mean Homo. (p-Value) Trend (p-Value [+/−]) Outlier LO-UO (p-Value) One-Unit Lag

Correlation

MI RA MI RA MI RA MI RA MI RA

Baro 5414 5283 0.568 0.567 0.680 (+) 0.967 (+) 1806–8680 (0.149) 1806–8680 (0.664) −0.044 −0.021
Lokoja 18,912 17,806 0.663 0.142 0.433 (+) 0.228 (+) 13,846–23,798 (0.415) 10,753–23,798 (0.364) 0.26 0.291

Umaisha 11,838 12,416 0.887 0.525 0.869 (−) 0.680 (+) 8775–15,319 (0.209) 10,138–13,408 (0.893) 0.05 0.519
Onitsha 16,742 15,457 0.963 0.29 0.917 (−) 0.403 (−) 15,162–19,820 (0.063) 10,451–19,830 (0.286) −0.103 0.119

Taoussa 1 1759 1698 0.208 0.284 0.256 (−) 0.132 (−) 1542–1984 (0.208) 1287–1984 (0.352) 0.060 −0.113
Taoussa 2 1774 1653 0.129 0.052 0.791 (+) 0.170 (−) 1537–1985 (0.980) 1044–1985 (0.054) −0.072 0.191

MI = multiple imputation, RA = altimetry, LO = lower outlier, UO = upper outlier, (−) = negative trend, (+) = positive trend, Taoussa1 = consecutively gapped,
Taoussa 2 = inconsecutively gapped.
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4.3. Flood Frequency Estimation, Uncertainties, and Application

Flood estimates with upper and lower uncertainty bounds based on a 90% confidence interval
(pre-defined in the Flike Software used) for five return periods are presented in Tables 5–8 and the
flood frequency plots are presented as supplementary information. Results from Lokoja and Umaisha
present interesting cases for evaluation, given that for Lokoja an equal number of missing data were
filled with RA and MI approaches, hence there is an equal base for comparison, while Umaisha has the
most missing data (gaps).

The difference between flood estimates derived from in situ datasets with gaps and those filled
with MI and RA tend to increase with increasing return periods, and these differences are more
pronounced for inconsecutively gapped historic timeseries such as Umaisha (Table 7). At Umaisha,
the MI approach resulted in much lower flood estimates than RA, which is consistent with the
acknowledged deficiency of MI for estimating missing data for widely gapped datasets [29]. Flood
frequency estimated derived from in situ data resulted in higher discharge estimates compared to
RA and MI, likely caused by high extrapolation error [91]. At Lokoja where an equal number of data
gaps were filled with both MI and RA, the results presented in Table 6 reveal that discharge estimates
derived from RA were lower than MI and in situ estimates for the low return periods, and greater than
MI for return periods from 1-in-20 to 100-year estimates but remained less than in situ data estimates.
Similar trends were observed at Onitsha (Table 8), where out of the 16 missing data points, 9 was
available for infilling using RA. At Baro (Table 5), most of the missing datasets were filled with MI
due to the absence of continuous RA data, therefore the difference between MI RA, and in situ data
flood estimates did not differ significantly. These outcomes infer that both methods can be applied
interchangeably for consecutively gapped time-series (≤3 years), and RA and MI can be integrated to
improve flood estimates for data-sparse regions.

Table 5. Baro flood quantile estimates and uncertainty boundaries for in situ, MI, and RA filled datasets.

Return Period
(One-in-Year)

Expected Quantile
(m3/s)

Lower Uncertainty Limit
(m3/s)

Upper Uncertainty Limit
(m3/s)

RA MI in situ RA MI in situ RA MI in situ

2 5485 5525 5482 4965 5004 4947 6031 6076 6044
5 6886 6930 6909 6318 6369 6326 7556 7601 7604
20 8222 8255 8267 7537 7584 7557 9421 9411 9492
50 8858 8876 8910 8055 8082 8082 10,547 10,564 10,729

100 9250 9257 9306 8335 8350 8366 11,383 11,422 11,603

Table 6. Lokoja flood quantile estimates and uncertainty boundaries for in situ, MI, and RA
filled datasets.

Return Period
(One-in-Year)

Expected Quantile
(m3/s)

Lower Uncertainty Limit
(m3/s)

Upper Uncertainty Limit
(m3/s)

RA MI in situ RA MI in situ RA MI in situ

2 18,126 19,011 19,133 16,821 18,041 17,877 19,543 20,082 20,567
5 22,059 22,111 22,739 20,329 20,715 20,880 24,320 23,962 25,591
20 26,876 26,309 27,829 24,164 23,879 24,433 31,761 30,722 35,669
50 29,770 29,075 31,316 26,190 25,696 26,450 37,513 36,559 45,597

100 31,861 31,205 34,071 27,521 26,959 27,826 42,335 41,720 55,481



Water 2018, 10, 1483 15 of 22

Table 7. Umaisha flood quantile estimates and uncertainty boundaries for in situ, MI and RA
filled datasets.

Return Period
(One-in-Year)

Expected quantile
(m3/s)

Lower Uncertainty Limit
(m3/s)

Upper Uncertainty Limit
(m3/s)

RA MI in situ RA MI in situ RA MI in situ

2 12,320 11,875 6943 11,652 11,551 160 13,065 12,242 10,520
5 14,368 13,009 12,118 13,453 12,495 3778 15,604 13,730 16,583
20 16,953 14,706 18,083 15,449 13,723 15,796 20,003 16,507 143,517
50 18,550 15,932 21,471 16,488 14,491 17,324 23,786 18,965 1,421,543

100 19,727 16,936 23,828 17,163 15,070 18,055 26,960 21,324 7,922,767

Table 8. Onitsha flood quantile estimates and uncertainty boundaries for in situ, MI, and RA
filled datasets.

Return Period
(1-in-Year)

Expected Quantile
(m3/s)

Lower Uncertainty Limit
(m3/s)

Upper Uncertainty Limit
(m3/s)

RA MI in situ RA MI in situ RA MI in situ

2 15,566 16,526 16,263 14,778 16,053 15,494 16,373 17,038 17,085
5 17,500 17,794 17,908 16,736 17,268 17,035 18,391 18,452 19,107
20 19,131 19,057 19,598 18,328 18,387 18,437 20,540 20,213 22,591
50 19,819 19,684 20,460 18,947 18,887 19,044 21,697 21,376 25,132

100 20,211 20,081 21,017 19,269 19,182 19,374 22,446 22,240 27,444

4.4. Assessment of the Effects of Data Infilling Methods on Flood Quantile Estimates

The results of the Permutation and Kolmogorov–Simonov (K–S) tests presented in Tables 9
and 10 respectively, assess the statistical significance of the effect of data gaps and the different data
infilling approaches on flood frequency estimates. For permutation, the null hypothesis is that there
is no difference between the flood frequency estimates derived from data filled using the different
approaches, while the alternative hypothesis suggests the contrary. Hence, if the p-value is greater
than 0.05, the null hypothesis is confirmed; otherwise, the alternative hypothesis is acceptable [86].
Permutation test results in Table 9 show that p-values for all sites were greater than the significance level
of 0.05, confirming the null hypothesis that suggests that the difference between flood estimates derived
from data filled using the different approaches, as well the in situ data, did not differ significantly.

Nevertheless, further analysis of the mean difference in water levels (converted from discharge
using rating equations) between flood estimates derived from data with gaps filled using RA and MI
showed reduce discordancy when compared to RA vs. in situ and MI vs. in situ outcomes, especially
for gauging stations with inconsecutively gapped historical data. For instance, at Lokoja where the
6-missing data were equally filled using both RA and MI, the mean difference in discharge resulted
in a water level difference of 1.78 m for RA vs. MI, and the deletion of missing data points resulted
in increased water level difference of 4.22 m for RA vs. in situ and 3.56 m for MI vs. in situ data sets.
At Umaisha, RA derived flood estimates differed from MI and in situ estimates by 4.66 m and 5.21 m
respectively. The differences in mean difference in water level for RA vs. MI is seen to be consistent
with the gaps in the historical hydrological data used to derive flood frequency estimates, larger with
wider inconsecutive gaps >3 years and vice versa. Differences in mean difference in water levels for RI
vs. in situ and MI vs. in situ were also large for both consecutively and inconsecutively gapped data,
suggesting that use of historical data without gaps being filled will result in discordant flood estimates
due to increased extrapolation uncertainty [92].
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Table 9. Permutation test results including the mean difference in water level between the two techniques.

Stations

RA vs. MI
Mean

Discharge
Difference-m3/s

(p-value)

Mean
Difference in
Water Level

(m)

RA vs. in situ
Mean

Discharge
Difference-m3/s

(p-value)

Mean
Difference in
Water Level

(m)

MI vs. in situ
Mean

Discharge
Difference-m3/s

(p-value)

Mean
Difference in
Water Level

(m)

Lokoja 1257.34 (0.743) 1.78 5187.91 (0.269) 4.22 3930.57 (0.419) 3.56
Umaisha 1018.14 (0.65) 4.66 1981.86 (0.557) 5.21 3124.97 (0.341) 5.84

Baro 9.76 (0.994) 1.26 27.32 (0.978) 1.28 37.08 (0.965) 1.29
Onitsha 643.24 (0.496) 1.85 1281.52 (0.236) 2.68 638.28 (0.505) 1.84

The K–S test null hypothesis suggests that the two samples were drawn from the same distribution
or do not differ from a reference distribution, and the alternative hypothesis dictates otherwise. If the
p-value is greater than α = 0.05, the null hypothesis is confirmed; otherwise, the alternative hypothesis
is accepted. The D statistic is the absolute maximum distance between the cumulative distribution
functions of the two samples. The closer this number is to 0 the more likely it is that the two samples
were drawn from the same distribution [87]. Results from Table 10 reveals that probability distribution
was not statistically different (p > 0.05), and hence it does not differ from the pre-selected reference
GEV distribution.

Table 10. Kolmogorov–Simonov (K–S) test results.

Stations.
RA vs. MI RA vs. in situ MI vs. in situ

Dks p-Value Dks p-Value Dks p-Value

Lokoja 0.09 1.00 0.24 0.60 0.19 0.85
Umaisha 0.15 0.98 0.35 0.17 0.30 0.34

Baro 0.09 1.00 0.05 1.00 0.09 1.00
Onitsha 0.19 0.85 0.38 0.09 0.38 0.09

4.5. Assessment of Radar Altimetry and Multiple Imputation Infilling at Taoussa, Mali

Flood frequency estimates and the upper and lower uncertainty bounds for 1-in-2 to 1-in-100-year
flood events are presented in Table 11 to capture varying scenarios of gaps (consecutive and
inconsecutive) filled using RA and MI. The results show that flood estimates for both infilling
approaches are within the 90% confidence interval bounds of flood estimates derived from the
original complete data for all return periods, except for the 1-in-2-year flood estimates derived from
consecutively and inconsecutively gapped data filled with RA. Permutation and Kolmogorov–Simonov
test results (Table 12) further revealed that although discharge estimates did not significantly differ
(Pperm > 0.05), the difference between water levels derived from RA and MI infilled datasets was up
to 2 m for both consecutively and inconsecutively gapped datasets. Also, the Dks and Pks-Values
for the RA-infilled estimates for both consecutive and inconsecutively gapped time series showed
significant differences in distribution when compared to the original complete data. The observed
difference in distribution suggests that the complete and RA-infilled flood estimates are not drawn
from the same distribution despite not being significantly different [93]. Therefore, an assessment
of the optimal probability distribution for fitting the data from the varying infilling approaches is
recommended, rather than using a predefined distribution such as GEV as was the case in this study,
given that different probability distributions can result in very different flood estimates, even for the
same dataset [79].
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Table 11. Taoussa flood quantile estimates (m3/s) and uncertainty boundaries for complete historical
data and consecutively and inconsecutively gapped data filled using the MI and RA approaches.

Return
Period

(One-in-Year)

Discharge
Complete

Discharge
(Consecutive)

MI

Discharge
(Consecutive)

RA

Discharge
(Inconsecutive)

MI

Discharge
(Inconsecutive)

RA

Lower
Limit

(Complete)

Upper
Limit

(Complete)

2 1787.79 1760.15 1709.32 1779.18 1669.77 1734.88 1842.2
5 1898.39 1874.26 1861.13 1887.62 1835.12 1850.91 1954.0

20 1983.25 1978.07 1984.19 1976.08 1986.4 1938.07 2087.7
50 2015.89 2025.17 2034.14 2012.2 2055.43 1967.17 2170.6

100 2033.39 2053.36 2061.89 2032.35 2096.89 1978.96 2229.2

Table 12. Kolmogorov–Simonov and permutation test results, Taoussa gauging station, including the
mean difference in water level between the two techniques.

Data Gap Infilling Comparison Permutation Test Kolmogorov–Simonov Test

Mean Discharge
Difference-m3/s (p-Value)

Mean Difference in
Water Level (m)

K–S Statistic
(Dks) pks-Value

Complete vs. Consecutive (MI) 21.12 (0.731) 2.14 0.38 0.095
Complete vs. Consecutive (RA) 12.21 (0.881) 2.12 0.43 0.041
Complete vs. Inconsecutive (MI) 2.15 (0.968) 2.11 0.24 0.603
Complete vs. Inconsecutive (RA) 15.09 (0.841) 2.13 0.48 0.016

4.6. The 2012 Flood Event Return Period Estimations

A retrospective approach was undertaken in this study to characterize the magnitude of the 2012
flood event that resulted in devastating impacts, having filled the data gaps using RA which was
identified as the most appropriate of the techniques compared herein. The results presented Table 13
reveal that the peak values for the gauging stations measuring discharge into the Niger-South river
basin were within the 90% confidence level of the lower uncertainty bounds of a 1-in-50-year flood
for Baro (8533 m3/s) and Lokoja (31,692 m3/s), and a 1-in-100-year flood for Umaisha (18,816 m3/s).
This suggests that higher flood magnitudes emanated from the Benue river, likely from excess water
releases from the Lagdo and Kiri dams in Cameroon and Nigeria, respectively, as previously suspected
to be the cause of the 2012 flood event [47,49]. Nigeria is currently experiencing flooding in 2018, and the
non-release of water from upstream Lagdo dam has proven significant in ensuring current flood levels
along river Benue are less than those experienced in 2012. In a statement released by the Nigerian
Hydrological Service Agency, “The Lagdo Dam in Cameroon is still impounding water and has not
started spilling water into River Benue” [50]. This goes further to show the value of transboundary
flood monitoring and early warning, and its applicability across various transboundary river basins [6].

Table 13. Assessment of flood return period of the 2012 flood event in Nigeria.

Gauging
Station

Return Period
(One-in-Year)

Expected Quantile
(m3/s)

Lower Uncertainty
Limit (m3/s)

Upper Uncertainty Limit
(m3/s)

2012 Flood Magnitude
(m3/s)

Baro 50 8858.22 8055.02 10,547.10 8533.00
Lokoja 50 29,770.27 26,190.00 37,513.20 31,692.00

Umaisha 100 19,727.03 17,163.37 26,960.00 18,816.00

5. Conclusions

Missing data is a recurring challenge for flood management in many developing regions,
where hydrological data is often manually collected and where peak flood events result in restricted
access for data collection and damage to measuring equipment. In other cases, gauging stations are
newly established and have short datasets that cannot be applied for flood frequency estimation.
The results of this study suggest that RA and MI can be used to fill such missing data gaps, depending
on the size of the missing data and the availability of additional information for satellite altimetry.
RA-infilled discharge datasets have higher variability than MI-infilled data and is consistent with
natural flood hydrographs. RA infilling also outperformed MI infilling for consecutively gapped
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datasets with missing data for ≥3 years, and the use of in situ datasets with missing data can result
in higher flood estimates with widened uncertainty margins for high return periods. For MI, a small
sample size may constrain the generalization potential of the imputation method, thus resulting
in uncertain missing data estimates [66]. For consecutively gapped hydrological time series with
missing data for ≤3 years, RA and MI infilling approaches performed similarly and can be applied
interchangeably. The infilled data facilitated the quantification of the magnitude of the 2012 flood
event for the three gauging stations along the Niger and Benue rivers. This revealed that higher
flood magnitudes emanated from the Benue river, likely from excess water release from dams in
Cameroon and Nigeria, suggesting the need for improved upstream dam management, early warning,
and communication systems.

RA showed considerable potential for improving hydrological data collection and modelling in
this study and would also be useful for the reconstruction of historical hydrological data for newly
established gauging stations if virtual station locations are considered during hydrological gauging
station network planning. However, with RA, if a flood event occurs between two satellite passes
the uncertainty of RA data will be high, consequently impacting flood estimates [12]. Nevertheless,
improved RA temporal resolution from missions such as Jason-3, Sentinel-3, and the proposed SWOT
is expected to help curb such deficiencies and increased data availability through enhanced in situ
monitoring networks and historical data reconstruction using RA can help increase the sample size
available to implement MI with reduced uncertainty. Hence, the synergistic use of RA and MI holds
considerable promise for alleviating the problems of hydrological data sparsity in developing regions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/10/10/1483/
s1, Figure S1: Location of in situ Taoussa in relation to Altimetry virtual station.
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