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Abstract: The Coupled Model Intercomparison Project Phase 5 (CMIP5) provides data, which is
widely used to assess global and regional climate change. In this study, we evaluated the ability
of 37 global climate models (GCMs) of CMIP5 to simulate historical precipitation in Central Asia
(CA). The relative root mean square error (RRMSE), spatial correlation coefficient, and Kling-Gupta
efficiency (KGE) were used as criteria for evaluation. The precipitation simulation results of GCMs
were compared with the Climatic Research Unit (CRU) precipitation in 1986–2005. Most models
show a variety of precipitation simulation capabilities both spatially and temporally, whereas the
top six models were identified as having good performance in CA, including HadCM3, MIROC5,
MPI-ESM-LR, MPI-ESM-P, CMCC-CM, and CMCC-CMS. As the GCMs have large uncertainties in the
prediction of future precipitation, it is difficult to find the best model to predict future precipitation
in CA. Multi-Model Ensemble (MME) results can give a good simulation of precipitation, and are
superior to individual models.
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1. Introduction

Climate change presents a range of challenges for agriculture, forest, and water management
practices [1]. A large number of studies have shown that climate change can also significantly affect the
distribution of water resources. Therefore, governments should also make corresponding adjustments
in the planning and management policies of water resources [2,3]. Climate change has a significant
impact on the distribution of water resources in space and time, which will make a great difference
in precipitation in different seasons and regions, and also affect the amount of water resources. As a
key climate variable, precipitation plays a crucial role in the water cycle [4]. Therefore, current and
future water-related issues are major national and international relations issues, which means that it is
especially important to evaluate the magnitude and change in precipitation [5].

In the past several decades, there have been a variety of studies using global climate models to
explore climate change in different areas and aspects. Most models overestimate precipitation in Africa
and Asia, but in Europe, these show low biases. However, the ability of the climate models to simulate
precipitation in Central Asia (CA) is still unknown. Assessing and quantifying future precipitation
changes is one of the fundamentals for developing future water management and planning strategies
in CA; thus, it is critical to use some metrics to perform the evaluation of climate models. As reported
by Gleckler et al. [6], the assessment of the performance of climate models should not only focus on
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the average state; it is necessary to evaluate the performance of climate models more comprehensively.
Later, some new climate model metrics were proposed by Moise [7].

Chen and Frauenfeld [8], using three future emission scenarios: Representative Concentration
Pathway (RCP) 8.5, RCP 4.5, RCP 2.6 to estimate the spatial pattern of precipitation over China during
the 20th century, found that Coupled Model Intercomparison Project Phase 5 (CMIP5) is better than
CMIP3 at simulating the spatial and temporal distribution of precipitation in China [8]. For the
continental areas between the latitudes 60 degrees north and 60 degrees south, the models captured
the characteristics of the temperature better than precipitation during 1930–2004 [9]. Twenty-five
CMIP5 global climate models (GCMs) were chosen to evaluate and compare the simulation of climate
models for precipitation and temperature over central Africa and found that most CMIP5 models are
better at simulating temperature than precipitation [10]. Huang et al. assessed the CMIP5 summer
precipitation and found that the multi-model ensemble can reproduce summer precipitation over
eastern China [11]. As shown by the study in East Asia, the characteristics of summer rainfall have
been reproduced by CMIP5 [12]. Comparing the CMIP3 and CMIP5 simulation of the Asian monsoon,
CMIP5 reasonably captures the characteristics of the Asian monsoon in winter [13]. So far, global
climate models are the most reliable way to predict future climate change, and there are also differences
between models [14,15].

CA (Figure 1) is usually specified as five central Asian countries, namely Kazakhstan,
Turkmenistan, Uzbekistan, Tajikistan, and Kyrgyzstan. CA covers an area of about 4 million square
kilometers, and the population is about 60 million [16]. CA has arid and semi-arid regions. Its climate
is a typical temperate continental climate, where the precipitation is scarce, sunlight sufficient,
the temperature changes violently, and the ecology and environment are fragile and sensitive to climate
change [17]. Its water resources are irreplaceable strategic resources, which restrict the production of
industry and agriculture and affect the relationship between the five countries. With continued global
warming, there is a lack of systematic research on the future trends of climate change and their spatial
and temporal distribution of characteristics in CA. Therefore, studying the climate characteristics of
CA in the future is of great significance for understanding climate change in CA and making the
corresponding decisions in response to climate change.Water 2018, 10, x 3 of 14 

 

 
Figure 1. Topography and administrative map of Central Asia. 

2. Data 

Thirty-seven global climate models were selected in this study. Table 1 lists information about 
climate models, including the name of the modeling center, its institute ID, and its horizontal 
resolution. The monthly mean precipitation data in the historical experiment was selected for 
research. The duration of historical experiment data is from 1850 to 2005, but we followed the 
Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report and selected the 
reference period from 1986 to 2005 (from http://cmip-pcmdi.llnl.gov/cmip5/index.html). 

Table 1. Description of Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate 
models (GCMs) used in our study and their spatial resolution. 

Model Modeling Center Horizontal Resolution (Lat × Lon) 
ACCESS 1.0 CSIRO-BOM, Australia 1.875° × 1.25° 
ACCESS 1.3 CSIRO-BOM, Australia 1.875° × 1.25° 
BCC-CSM1.1 BCC, China 2.8125° × 2.8125° 

BCC-CSM1.1 (m) BCC, China 1.125° × 1.125° 
BNU-ESM GCESS, China 2.8125° × 2.8125° 
CanCM4 CCCMA, Canada 2.8125° × 2.8125° 
CanESM2 CCCMA, Canada 2.8125° × 2.8125° 
CCSM4 NCAR, USA 1.25° × 1° 

CMCC-CESM CMCC, Italy 3.75° × 3.75° 
CMCC-CM CMCC, Italy 0.75° × 0.75° 

CMCC-CMS CMCC, Italy 1.875° × 1.875° 
CNRM-CM5 CNRM-CERFACS, France ~1.4° × 1.4° 

CNRM-CM5-2 CNRM-CERFACS, France ~1.4° × 1.4° 
CSIRO-Mk3-6-0 CSIRO-QCCCE, Australia 1.875° × 1.875° 

GISS-E2-H NASA GISS, USA 2.5° × 2.5° 
GISS-E2-R NASA GISS, USA 2.5° × 2.5° 

GISS-E2-H-CC NASA GISS, USA 2.5° × 2.5° 
GISS-E2-R-CC NASA GISS, USA 2.5° × 2.5° 

HadCM3 MOHC, UK ~3.75° × 2.5° 
HadGEM2-AO NIMR/KMA, Korea/UK 1.875° × 1.25° 

INMCM4 UNM, Russia 2° × 1.5° 
HadGEM2-ES MOHC, UK 1.875° × 1.25° 
HadGEM2-CC MOHC, UK 1.875° × 1.25° 
IPSL-CM5A-LR IPSL, France 3.75° × 1.875° 
IPSL-CM5A-MR IPSL, France 2.5° × 1.25° 

Figure 1. Topography and administrative map of Central Asia.

The spatial correlation coefficient was generally used to compare the major Empirical Orthogonal
Functions (EOFs), which are derived from GCMs data and observation [18–21]. Kioutsioukis et al.
applied the root mean square error (RMSE) to compare the differences between models and
observation [22]. The Kling–Gupta efficiency (KGE) has been demonstrated to be superior the
Nash–Sutcliffe efficiency [23]. In this study, we investigated precipitation simulations over the CA
regions with relative root mean square error (RRMSE) and the spatial correlation coefficient, based on
the 37 GCMs from CMIP5 models in the historical experiment (years 1986–2005). Our research focuses
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on the following questions: (1) Can GCMs reproduce the characteristics of precipitation in Central
Asia? (2) Which models can better simulate precipitation in CA and can be used to predict future
precipitation variation in CA? Additionally, the assessment of precipitation simulations from CMIP5
models in CA can provide better corresponding measures for future water resource management and
planning strategies.

2. Data

Thirty-seven global climate models were selected in this study. Table 1 lists information about
climate models, including the name of the modeling center, its institute ID, and its horizontal
resolution. The monthly mean precipitation data in the historical experiment was selected for research.
The duration of historical experiment data is from 1850 to 2005, but we followed the Intergovernmental
Panel on Climate Change (IPCC) 5th Assessment Report and selected the reference period from 1986
to 2005 (from http://cmip-pcmdi.llnl.gov/cmip5/index.html).

Table 1. Description of Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models
(GCMs) used in our study and their spatial resolution.

Model Modeling Center Horizontal Resolution (Lat × Lon)

ACCESS 1.0 CSIRO-BOM, Australia 1.875◦ × 1.25◦

ACCESS 1.3 CSIRO-BOM, Australia 1.875◦ × 1.25◦

BCC-CSM1.1 BCC, China 2.8125◦ × 2.8125◦

BCC-CSM1.1 (m) BCC, China 1.125◦ × 1.125◦

BNU-ESM GCESS, China 2.8125◦ × 2.8125◦

CanCM4 CCCMA, Canada 2.8125◦ × 2.8125◦

CanESM2 CCCMA, Canada 2.8125◦ × 2.8125◦

CCSM4 NCAR, USA 1.25◦ × 1◦

CMCC-CESM CMCC, Italy 3.75◦ × 3.75◦

CMCC-CM CMCC, Italy 0.75◦ × 0.75◦

CMCC-CMS CMCC, Italy 1.875◦ × 1.875◦

CNRM-CM5 CNRM-CERFACS, France ~1.4◦ × 1.4◦

CNRM-CM5-2 CNRM-CERFACS, France ~1.4◦ × 1.4◦

CSIRO-Mk3-6-0 CSIRO-QCCCE, Australia 1.875◦ × 1.875◦

GISS-E2-H NASA GISS, USA 2.5◦ × 2.5◦

GISS-E2-R NASA GISS, USA 2.5◦ × 2.5◦

GISS-E2-H-CC NASA GISS, USA 2.5◦ × 2.5◦

GISS-E2-R-CC NASA GISS, USA 2.5◦ × 2.5◦

HadCM3 MOHC, UK ~3.75◦ × 2.5◦

HadGEM2-AO NIMR/KMA, Korea/UK 1.875◦ × 1.25◦

INMCM4 UNM, Russia 2◦ × 1.5◦

HadGEM2-ES MOHC, UK 1.875◦ × 1.25◦

HadGEM2-CC MOHC, UK 1.875◦ × 1.25◦

IPSL-CM5A-LR IPSL, France 3.75◦ × 1.875◦

IPSL-CM5A-MR IPSL, France 2.5◦ × 1.25◦

IPSL-CM5B-LR IPSL, France 3.75◦ × 1.875◦

MIROC4h MIROC, Japan 0.5625◦ × 0.5625◦

MIROC5 MIROC, Japan ~1.4◦ × 1.4◦

MIROCESM-CHEM MIROC, Japan 2.8125◦ × 2.8125◦

MIROC-ESM MIROC, Japan 2.8125◦ × 2.8125◦

MPI-ESM-LR MPI-M, Germany 1.875◦ × 1.875◦

MPI-ESM-MR MPI-M, Germany 1.875◦ × 1.875◦

MPI-ESM-P MPI-M, Germany 1.875◦ × 1.875◦

MRI-CGCM3 MRI, Japan 1.125◦ × 1.125◦

MRI-ESM1 MRI, Japan 1.125◦ × 1.125◦

NorESM1-M NCC, Norway 2.5◦ × 1.875◦

NorESM1-ME NCC, Norway 2.5◦ × 1.875◦

http://cmip-pcmdi.llnl.gov/cmip5/index.html
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This work also uses Climatic Research Unit (CRU) time-series (TS) v4.01 precipitation data as
observation data. This dataset has a spatial resolution of 0.5◦ × 0.5◦. The CRU dataset was updated
earlier by Mitchell and Jones, and their purpose was to construct a database of monthly climate
observations from meteorological stations [24]. The CRU dataset was widely used to assess model
skill in simulation [25–28]. The CRU datasets have a high reliability, especially after 1930 in CA [29].
The dataset is available from http://www.cru.uea.ac.uk.

3. Methods

For ease of comparison, the CMIP5 model data and CRU TS v4.01 were remapped to a 0.5◦ × 0.5◦

grid by using bilinear interpolation [30]. The correlation coefficient was used between the observation
and the simulation [31–33]. In order to compare the simulation capability of the precipitation
interannual variability, the standard deviation was calculated between the simulation and observation.
The root mean square error (RMSE) was calculated to quantify the accuracy of the CMIP5 model
simulation [34–37]. The mean differences between the simulated and observed climate variable, can be
described by RMSE. RMSE can be calculated as follows:

RMSE =

√
∑n

i=1(Omi − Smi)
2

n
(1)

where Omi and Smi denote the observed and simulated precipitation, and n is the number of pairs in
the analysis.

The relative root mean square error (RRMSE) was calculated to measure a model’s performance
relative to the other models, with respect to the observation.

RRMSE =
RMSE − RMSEmedian

RMSEmedian
(2)

where RMSEmedian is the median of RMSE for all individual models. The index RRMSE may vary from
−1 to positive infinity. The smaller the RRMSE, the better the simulation effect. A negative RRMSE
indicates that the corresponding model performs better than the majority (50%) of models [38].

If the correlation coefficient between the simulation and observation is higher than 0.75, we
consider that the model simulates well [39].

The projected precipitation changes, both monthly and seasonal are summarized using
box-and-whisker plots. These plots consist of the multi-model median, the interquartile model
spread (the range between the 25th and 75th quantiles, box), and the full inter-model range (whiskers).
The multi-model median is taken to be the projected change, while the interquartile model spread and
inter-model range visualize uncertainties in the projection and can also indicate model agreement or
disagreement on the direction of the projected change.

For higher-level comparison, empirical orthogonal function (EOF) analysis is applied to
investigate the spatial variations of precipitation. Over the past few decades, many studies have
applied EOF analysis to derive the principle components of climate variability [40–43]. EOF analysis is
a technique that is used to identify optimal representation of patterns (main signals). EOF analyses
the precipitation data and reduces it to spatial patterns by its own EOFs, which explains most of the
variance in precipitation. Moreover, EOF analysis produces a new set of orthogonal functions; this
helps us to simplify the relevant factors efficiently [44]. In this study, the first two EOFs of thirty-seven
models were retained and these share 90% of the total variance of the each model. The EOF analysis
can be expressed simply as

xij =
m

∑
k=1

VkiZkj (3)

where i = 1, . . . , m; j = 1, . . . , n; m is the number of grids; n is the time series length; xij are
ith components of the jth random vector for the normalized data; Vki are the components of the

http://www.cru.uea.ac.uk


Water 2018, 10, 1516 5 of 14

eigenvectors of the correlation matrix; Zkj are the principal components. The first several leading
EOFs can best represent the variance of precipitation. The EOFs can be understood as spatial standing
waves. In the process of evolution, the precipitation at each grid increases or decreases but the spatial
position remains the same. Besides, EOFs are arranged in descending order of variance, and they can
capture the main information and exclude redundant information of the original data. The variance
contribution rate is used to describe the percentage variance captured by each of EOFs. We use the
following formula to calculate the variance contribution rate:

pi =
λi

∑n
1 λ

(4)

where p is the variance contribution rate, λ is the eigenvalue of covariance matrix, i is the number of
eigenvalues, i = 1, . . . , n.

Statistical analysis of the comparison of models and observations is necessary. RRMSE, correlation
coefficient, and Nash-Sutcliffe model efficiency were widely used to evaluate the goodness of fit
between simulations and observations. However, their suitability as metrics has been questioned.
The KGE considered the correlation coefficient, bias, and variability between simulations and
observations, and the method proved to be more efficient than the commonly used Nash-Sutcliffe
efficiency, while clearly time-sensitive. In addition, KGE solves the problems caused by the interactions
between these components, such as the fact that variability is underestimated. In a perfect model with
no data errors, the KGE value is equal to 1. Therefore, for better comparison between the CRU and
CMIP5 models, we applied the Kling-Gupta efficiency (KGE) approach to our research. The KGE was
proposed by Gupta et al. [45]. The KGE can be described by

KGE = 1 −
√
(r − 1)2 + (α− 1)2 + (β− 1)2 (5)

α = σs/σo (6)

β = µs/µo (7)

where r is the linear correlation in the simulated and observed values, α is the ratio of standard
deviation of observed and simulated value, and β is the ratio of mean values of simulations and
observations, s represents the simulations and o represents the observations.

The most widely used metrics for model evaluation are correlation coefficients, the mean squared
error (MSE), root mean squared error (RMSE), and Nash-Sutcliffe efficiency (NSE). We added KGE
into the metrics, which is a supplement to the correlation coefficient and RRMSE as the metrics.
It is expected that the best climate model for precipitation simulation can be selected. In addition,
KGE has been demonstrated to be more appropriate than NSE as metrics for model evaluation.
Therefore, we consider that correlation coefficient, RMSE, and KGE are sufficient as metrics to select
the optimal model.

In this study, the CRU data were collected for the period of 1986 to 2005, for comparison with the
GCMs data. The monthly precipitation data were also accumulated to create the annual data. Besides,
as we know, different models have different horizontal resolutions, which is troublesome. This makes
it important to unify the horizontal resolution among different models. Kim et al. show that the
details in the Climate model simulations of the monsoon demarcation were improved as the resolution
increases [46]. The high-resolution simulations do obtain realistic distributions of precipitation; the
position and amount of precipitation simulated by the higher resolution climate models are more
consistent with observations than low-resolution simulations. The CMIP5 dataset is useful and widely
relied on for assessing the future precipitation. However, CMIP5 projections conducted at a low
horizontal resolution are difficult to use for determining crucial topographic effects and small-scale
processes. This is why we chose the higher horizontal resolution grid. Thus, in order to facilitate the
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comparison with CRU, the monthly CMIP5 models precipitation were remapped to a resolution of
0.5◦, identical with that of CRU.

4. Results

4.1. The Comparison of Observation and Simulation Using Conventional Statistics

We first tested whether the CMIP5 models can reproduce the spatial distribution characteristics of
precipitation based on the Multi-Model Ensemble (MME). Thus, we compared the spatial pattern of
the observations and simulations from 1986 to 2005. Figure 2a shows the spatial distribution of mean
annual precipitation in 1986–2005 from CRU and the MME (Figure 2b) from CMIP5. There is good
agreement between the observation and simulation. The highest precipitation occurs over southeastern
CA. The lowest precipitation is observed over southwestern CA, especially in Turkmenistan and
Uzbekistan. In general, CMIP5 MME can reproduce the spatial distribution of annual precipitation
reasonably in CA. However, compared with CRU, CMIP5 MME slightly overestimates the precipitation
magnitude in many regions of CA (Figure 2a,b).
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Figure 2. Spatial distribution characteristics of precipitation in 1986–2005. (a) Precipitation from
Climate Research Unit (CRU); (b) precipitation from Coupled Model Intercomparison Project Phase 5
(CMIP5) Multi-Model Ensemble (MME); (c) root mean square error (RMSE) between CMIP5 MME and
CRU in Central Asia from 1986 to 2005; (d) the differences of standard deviation between CMIP5 MME
and CRU in Central Asia from 1986 to 2005 (MME minus CRU).

Figure 2c shows the RMSE of annual mean precipitation in 1986–2005 from the CMIP5 MME
and CRU. As can be seen from Figure 2c, the RMSE of Uzbekistan and Turkmenistan is less than
0.02 mm/day, which shows that the CMIP5 MME can simulate the annual average precipitation in
this area well. The RMSE of the eastern part of Kazakhstan is also below 0.02 mm/day. The RMSE
of the northwestern part of Kazakhstan is about 0.06 mm/day, indicating that the climate model has
slightly overestimated precipitation in this region. In Tajikistan and eastern Kyrgyzstan, the RMSE is
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about 0.1 mm/day. Especially in the Pamir area, the RMSE reaches the maximum of 0.17 mm/day,
indicating that the CMIP5 MME also overestimated precipitation in this region. However, the RMSE in
most of CA is below 0.04, indicating that CMIP5 MME can better simulate the historical precipitation
characteristics of CA in 1986–2005. In order to assess the simulation capacity of CMIP5 MME on the
interannual variability of precipitation, we calculated the difference of the standard deviation between
CMIP5 MME and observation (MME minus CRU). As shown in Figure 2d, the high value center of
precipitation interannual variability appears in eastern Kyrgyzstan and eastern Tajikistan. In contrast
to Figure 2c, the interannual precipitation variation of the high value center and the RMSE of the high
value area are basically consistent. In areas with a large precipitation, the interannual variability of
precipitation is large.

Figure 3 shows the box-and-whisker plot of the monthly average precipitation in CA from 1986 to
2005. The red diamond represents the mean values of MME, and the blue circle represents the mean
values of observation. The blue box represents the maximum, upper quartile, median, lower quartile,
and minimum of the precipitation simulated by MME.

It can be seen from Figure 3 that the MME can simulate the monthly variation characteristics
of precipitation well. The simulated values of MME show the same variation characteristics as the
observation. However, the monthly precipitation of the CA region simulated by the MME is slightly
higher than the observation. Especially in February, MME overestimated the average precipitation and
the difference between the MME and observation is 13.2 mm/month. The best simulation months of
MME run from May to September, and the difference between the simulated value and the observed
value is below 4.21 mm/month. Among them, the best simulation month is August, wherein the
simulated value and the observed value are basically equivalent, the difference being 0.1 mm/month.
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In order to assess the ability of each CMIP5 model in reproducing the observed climatological
monthly and seasonal precipitation variations, we calculated the area-averaged monthly and seasonal
RRMSE of precipitation from 1986 to 2005. It can be clearly seen from Figure 4 that the RRMSE is
less than 0 (blue), which means that the simulation effect of this model is better than the median
level of all models, and the RRMSE is greater than 0 (red), indicating that the simulation effect of this
model is lower than the median. The simulation effect of precipitation at each time scale of CCSM4,
GISS-E2-H, GISS-E2-H-CC, and GISS-E2-R is not good, indicating that the four CMIP5 models lack
a basic simulation capability of precipitation over CA. The models with good simulation ability are
BNU-ESM, CanCM4, CMCC-CESM, CMCC-CM, CMCC-CMS, and CSIRO-Mk3-6-0 and so on.
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Figure 4. Area-averaged monthly and seasonal relative root mean square error (RRMSE) of precipitation
relative to the observation for each CMIP5 model in Central Asia from 1986 to 2005.

4.2. The Simulation of Historical Precipitation from 1986 to 2005 in Central Asia

Based on the monthly precipitation data of CRU from 1986 to 2005, EOFs were calculated, which
represent the modes of interannual precipitation variability, and the eigenvectors and eigenvalues of
the annual precipitation series were obtained. The variance contribute rate of the first two EOFs of CRU
is 87.88%. In order to investigate whether two EOFs are independent of each other, this study used
the North et al. equation 24 to evaluate if eigenvalues are significantly separated [47]. Among them,
the variance contribution rate of EOF1 is 74.09% and EOF2 is 13.79%, both passing the significance
test. The main characteristic of EOF1 is that all the Central Asian regions show positive signals
(Figure 5a). The high-value center is located in Tajikistan and the low-value center is located in
northern Turkmenistan and western Uzbekistan.
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The EOF analysis was also performed on the annual precipitation from 1986 to 2005 for the CMIP5
multi-model ensemble (Figure 5b), and the significance of the eigenvalues was also tested by the
North test. EOF1 passed the significance test with a variance contribution rate of 91.99%, which better
characterizes the interannual precipitation in CA. The EOF2 failed the significance test; the analysis
was not performed for this case.

The spatial distribution characteristics of the first EOF in the CMIP5 MME and CRU were
compared and analyzed. The first EOF can reflect the spatial variability of precipitation. If the value of
a certain region is large, it means that the precipitation variability is large. Similarly, the first EOF can
represent the average precipitation characteristics of Central Asia in the past 20 years. It was found
that the similarity of EOF1 between CMIP5 MME (Figure 5a) and CRU precipitation data (Figure 5b)
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was very high, with a spatial correlation coefficient of 0.89. The EOF1 can reflect the characteristics
of consistent change of precipitation in CA well, and the observation and simulation have a close
correlation. Therefore, the CMIP5 MME can reproduce the main mode of CRU very well.

As shown in Table 2, the variance contribution rate of EOFs, the spatial correlation coefficient and
relative root mean square error between CMIP5 models and CRU was calculated. The purpose of this
was to assess the simulation results for each CMIP5 model for the reproduction of the precipitation
in CA from 1986 to 2005. The first two EOFs of 37 models can explain more than 80% of the total
variance. It is indicated that the first two EOFs of the 37 climate models can well represent the spatial
characteristics of precipitation in Central Asia. Besides this, the variance contribution rate of simulation
is in good agreement with the observation. GISS-E2-H, GISS-E2-R, and GISS-E2-H-CC have a good
simulation effect on the first two EOFs, but it can be seen from Figure 4 that they have a poor simulation
capability of multi-time scale precipitation. This suggests that the assessment of climate models should
take into account both time and space scales, rather than a one-sided conclusion.

Most climate models have high spatial correlation coefficients with CRU, and the maximum
value of the spatial correlation coefficient is 0.89 (HadGEM2-AO). The spatial correlation coefficient
between the simulation and observation of the climate model is higher than 0.75, which is defined
as a good model for precipitation simulation [39]. There are 21 CMIP5 models that meet this
criterion: ACCESS 1.0, ACCESS 1.3, CMCC-CM, CMCC-CMS, CNRM-CM5, HadCM3, HadGEM2-AO,
INMCM4, HadGEM2-ES, IPSL-CM5A-LR, IPSL-CM5B-LR, MIROC4h, MIROC5, MIROCESM-CHEM,
MIROC-ESM, MPI-ESM-LR, MPI-ESM-MR, MPI-ESM-P, MRI-ESM1 etc. The spatial correlation
coefficient of the other 18 models was lower than 0.75, and some models had negative correlation
coefficients, indicating that these models are relatively bad at simulating precipitation in Central Asia.

RRMSE provides a metric to measure a model’s performance between the simulations and
observation. When the RRMSE is less than 10%, the simulation effect of the model is considered
excellent. If the RRMSE is between 10% and 20%, it is considered good. If the RRMSE is between 20%
and 30%, the model is acceptable. If RRMSE is greater than 30%, the simulation effect of the model is
considered poor [48]. It can be seen from Table 2, the RRMSE value ranged from −16.81% to 70.30%.
There are 29 models with the RRMSE value less than 10%, which is the excellent level. The model with
the smallest value of RRMSE is MIROC5. There are four models that did not reach the desired level.
They are GISS-E2-H, GISS-E2-R, GISS-E2-H-CC, GISS-E2-R-CC.

Moreover, according to the KGE values we selected the best model, which has the optimal
simulation capability. When the KGE value is closer to 1, this indicates the simulation effect of this
model is better. In Table 2, we chose the model with the maximum value of KGE as the “optimal”
model. According to this metric, the KGE value of HadCM3 is 0.79, which is the best model for
precipitation simulation in CA, followed by MIROC5, MPI-ESM-LR, MPI-ESM-P, CMCC-CM, and
CMCC-CMS. Therefore, as seen in Table 2, the top six models were selected from 37 CMIP5 models,
which have good simulation of precipitation in CA, for which the spatial correlation coefficient (EOF1)
is greater than 0.8, the RRMSE is less 10%, and the KGE larger than 0.7. According to the above criteria,
the top six models are HadCM3, MIROC5, MPI-ESM-LR, MPI-ESM-P, CMCC-CM, and CMCC-CMS.

The correlation coefficients between the first two principal components (PCs) of the six top
models and the two major large scale climate indices North Atlantic Oscillation (NAO) and Pacific
Decadal Oscillation (PDO) are given in Table 3. The PC1 is significantly correlated with NAO (p < 0.05).
This shows that there is very close relationship between the EOF1 and NAO. The PC2 is significantly
correlated with NAO and PDO (p < 0.05), which indicates EOF2 are closely related to the NAO
and PDO.
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Table 2. Statistical summary of the comparisons between the 37 GCM simulations and observations
over Central Asia for the period 1986–2005. KGE: Kling–Gupta efficiency.

Model Name
Variance

Contribution
Rate (EOF1)

Variance
Contribution
Rate (EOF2)

Correlation
Coefficient

(EOF1)

Correlation
Coefficient

(EOF2)
RRMSE KGE

ACCESS 1.0 76.93% 9.13% 0.86 −0.73 5.51% 0.56
ACCESS 1.3 75.08% 9.68% 0.81 0.81 6.35% 0.57
BCC-CSM1.1 84.92% 5.17% 0.55 0.11 3.22% 0.53

BCC-CSM1.1 (m) 83.59% 4.78% 0.69 0.84 2.98% 0.55
BNU-ESM 87.83% 5.34% 0.69 0.92 48.04% 0.11
CanCM4 78.94% 8.75% 0.67 −0.92 −13.71% 0.68
CanESM2 78.59% 7.97% 0.63 −0.9 −14.87% 0.62
CCSM4 79.38% 7.65% 0.58 −0.9 0.59% 0.61

CMCC-CESM 76.36% 12.77% 0.63 0.93 −10.39% 0.63
CMCC-CM 74.20% 9.57% 0.85 −0.93 −0.24% 0.71

CMCC-CMS 74.56% 11.27% 0.87 0.96 −5.56% 0.7
CNRM-CM5 74.11% 8.79% 0.76 −0.77 −6.29% 0.66

CNRM-CM5-2 74.09% 8.70% −0.78 0.71 −7.94% 0.68
CSIRO-Mk3-6-0 75.76% 8.75% 0.67 0.02 −10.19% 0.66

GISS-E2-H 84.02% 5.37% 0.75 0.61 48.50% 0.13
GISS-E2-R 86.47% 4.38% 0.69 −0.85 65.84% −0.06

GISS-E2-H-CC 85.42% 4.76% 0.72 −0.07 53.76% 0.09
GISS-E2-R-CC 85.90% 4.80% 0.71 −0.85 70.30% −0.12

HadCM3 80.32% 9.43% 0.84 0.95 −15.64% 0.79
HadGEM2-AO 75.24% 9.29% 0.89 −0.81 8.24% 0.52

INMCM4 80.64% 6.75% 0.67 0.9 −5.36% 0.64
HadGEM2-ES 75.21% 8.72% 0.88 −0.75 1.48% 0.61
HadGEM2-CC 74.00% 9.79% 0.87 −0.69 −1.11% 0.64
IPSL-CM5A-LR 78.79% 8.92% 0.78 0.9 0.24% 0.65
IPSL-CM5A-MR 79.71% 8.96% 0.7 0.9 10.94% 0.59
IPSL-CM5B-LR 75.72% 10.41% 0.79 −0.86 8.96% 0.63

MIROC4h 78.79% 7.01% 0.82 −0.82 6.84% 0.56
MIROC5 77.98% 10.65% 0.83 0.93 −16.81% 0.75

MIROC-ESM-CHEM 82.99% 7.30% 0.83 0.96 18.89% 0.38
MIROC-ESM 77.98% 10.65% 0.79 0.93 12.24% 0.45
MPI-ESM-LR 75.06% 11.38% 0.85 −0.94 −8.77% 0.74
MPI-ESM-MR 74.85% 11.16% 0.84 0.94 −1.05% 0.69

MPI-ESM-P 72.81% 12.15% 0.8 −0.92 −11.14% 0.73
MRI-CGCM3 77.22% 7.92% −0.82 −0.18 −3.16% 0.69

MRI-ESM1 75.98% 8.12% 0.84 −0.04 0.64% 0.65
NorESM1-M 81.34% 7.66% 0.85 −0.94 −0.87% 0.64

NorESM1-ME 80.24% 8.25% 0.54 0.91 −11.57% 0.66

Table 3. The Correlation coefficients between the climate indices and the first two principal components
(PCs) of the six top models in Central Asia.

Model Name
PC1 PC2

NAO PDO NAO PDO

CMCC-CESM 0.0678 ** −0.0179 −0.1675 ** −0.0126 **
CMCC-CMS 0.0944 ** −0.0116 0.1905 ** 0.0219 **

HadCM3 0.0358 ** 0.0118 0.1867 ** 0.0153 **
MIROC5 0.1104 ** 0.1189 ** 0.2378 ** 0.0522 **

MPI-ESM-LR 0.5552 ** 0.0075 −0.1667 ** −0.0560 **
MPI-ESM-P −0.0263 ** −0.0774 ** −0.1298 −0.0446

** p values less than 0.05 are significant at 5% level (p < 0.05).

5. Discussion and Conclusions

Whether for scientific research or practical application, it is necessary to estimate and evaluate
precipitation. The precipitation data was released by GCMs including a historical (1850–2005) and a
future period (2006–2100). There is an amount of research showing that GCMs have systematic and
nonstationary biases [49,50], and this makes it particularly important to assess the accuracy of climate
models. The aim of this study was to determine which climate models can simulate the historical
precipitation well relative the CRU. Thus, the results should provide confidence for later research of
climate projection.
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The performances of the 37 GCMs in simulating precipitation for the historical reference period
(1986–2005) over Central Asia were assessed against observations. The EOF analysis was applied
to analyze the spatial distribution of precipitation in Central Asia, and the following conclusions
were obtained:

(1) Most GCMs models can capture the characteristics of annual mean, seasonal, monthly, and spatial
variations of the precipitation in CA. The CMIP5 MME can reproduce the spatial distribution
characteristics, and it has good agreement with observations. However, most of CMIP5 models
have overestimated the interannual variability of precipitation in CA;

(2) The CMIP5 MME has a good ability to simulate the seasonal variation of precipitation from
winter to summer. However, there are some differences between simulation and observation,
especially in February;

(3) Assessing the precipitation of each CMIP5 model in different time scales, there are four models
that lack basic simulation capability for the precipitation in climatological monthly and seasonal
mean, such as CCSM4, GISS-E2-H, GISS-E2-H-CC, and GISS-E2-R;

(4) The GCMs can simulate EOF1 of precipitation in Central Asia well, and have some simulation
capabilities on the EOF2, but lacks simulation capability for EOF3, EOF4. Thirty-seven models
can simulate the first two EOFs of precipitation in CA, but the models with a spatial correlation
coefficient greater than 0.8, an RRMSE less than 0, and a KGE larger than 0.7 are MIROC5,
MPI-ESM-LR, MPI-ESM-P, CMCC-CM, CMCC-CMS.

In this study, we assessed the ability of 37 climate models in reproducing precipitation over
CA from 1986 to 2005. Most models can simulate the spatial and temporal variation of precipitation
in Central Asia, but some models overestimate precipitation. Some models fail to reproduce the
precipitation in CA. We consider that the possible common source to their biases is complex topography
in CA. Giorgi and Marinucci found that the topography dominates the simulation of precipitation,
especially in mountainous areas with more complex topography [51].

Finally, HadCM3, MIROC5, MPI-ESM-LR, MPI-ESM-P, CMCC-CM, and CMCC-CMS were
selected because of their relatively good simulation of precipitation. These top six models have
a strong ability to simulate the interannual variability of precipitation in Central Asia and can be used
to predict the spatial and temporal distribution of precipitation in Central Asia in the future. At the
same time, in order to provide valuable evidence for climate change and impact assessment, multiple
climatic factors need to be evaluated, which will be discussed further in future studies.

The precipitation of the CRU is interpolated by the nearest method to the grid of the same
horizontal resolution as the CMCC-CESM, HadCM3, and IPSL-CM5B-LR, respectively. By comparing
low-resolution data with high-resolution data, it is found that the correlation coefficient of observation
and simulation, KGE value does not increase with the increase of horizontal resolution, and RMSE is
reduced. The MME has made errors in some areas, mainly due to the improper handling of the terrain
by the climate model or the inadequate description of the air-sea interactions. The metrics (correlation
coefficients, RRMSE, and KGE) of the two matrices, the observed value and the simulated value are
calculated, and finally a value is returned. Metrics are not associated with individual grid, and are the
result of two matrices.

It is difficult to find a best model that can reproduce the climate of the past and predict the
climate of the future. The best model can only work in the particular period. The CMIP5 MME
can eliminate the difference of the forecast results between different climate models and make the
forecast more reliable. Are the climate models with good precipitation simulation effect equally good
for temperature simulation in CA? We will answer this question by evaluating the ability of climate
models in reproducing temperature variation in CA in our next work.
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