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Abstract: In the last few decades tremendous progress has been made in the use of catchment models
for the analysis and understanding of hydrologic systems. A common application involves the use
of these models to predict flows at catchment outputs. However, the outputs predicted by these
models are often deterministic because they focused only on the most probable forecast without an
explicit estimate of the associated uncertainty. This paper uses Bayesian and Generalized Likelihood
Uncertainty Estimation (GLUE) approaches to estimate uncertainty in catchment modelling parameter
values and uncertainty in design flow estimates. Testing of join probability of both these estimates has
been conducted for a monsoon catchment in Vietnam. The paper focuses on computational efficiency
and the differences in results, regardless of the philosophies and mathematical rigor of both methods.
It was found that the application of GLUE and Bayesian techniques resulted in parameter values
that were statistically different. The design flood quantiles estimated by the GLUE method were
less scattered than those resulting from the Bayesian approach when using a closer threshold value
(1 standard deviation departed from the mean). More studies are required to evaluate the impact of
threshold in GLUE on design flood estimation.

Keywords: design flood quantiles; hydrology; flood frequency analysis; continuous simulation;
Bayesian approach; GLUE approach; catchment modelling

1. Introduction

Design flood estimation is an essential component in engineering planning and management
of catchments. The design flood flows can be estimated from observed flows or by implementing
the catchment modelling approach. In both cases, the uncertainty in flood quantiles is an important
issue which has been addressed in a number of analyses. In the catchment modelling approach,
this uncertainty may arise from different errors, which have been classified as three main sources of
errors: catchment input error, catchment response error (output error), and model error (parameter
uncertainty) (e.g., [1–3]). A framework for catchment modelling system sources of uncertainty was
developed by Kuczera [1], called The Bayesian Total Error Analysis (BATEA) framework. The system
consists of three main errors: input, model, and response errors. The following sections will address
some issues of these type of errors.

Input error: The input uncertainty estimation was reported in only a few studies in which the
inputs or the key variables of input were simulated as random processes. For example, Kuczera [1]
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applied the Bayesian inference to estimate rainfall uncertainty characterized by two parameters k and
rMult for Abercrombie River’s daily flow. Rainfall flood events were simulated as random processes
(e.g., [1,4–9]). The model parameter error and output error, in this case, were combined into a single
random process.

Model error: The model error is estimated mainly by analysis of model parameter uncertainty.
A well-known approach in uncertainty analysis of model parameters is the behavioral approach [10,11].
Examples of this approach are as follows: Generalized Likelihood Uncertainty Estimation (GLUE)
method [12–14]; Bayesian method using Metropolis-Hasting algorithm and Adaptive Metropolis
(AM) algorithm [1,15,16]; and Markov chain Monte Carlo [17–19]. In this approach, the input and
output errors are ignored and the threshold of objective functions for selecting parameter values
were determined.

Using the threshold to select parameter values was developed in the GLUE method, firstly
introduced by Beven and Binley [12]. This procedure recognizes the equifinality of different sets of
parameters in the generation of acceptable catchment response. The parameters producing acceptable
responses are assigned “behavioural” and will be accepted [12]. Identifying the threshold in the GLUE
method is based on an acceptable range of performance measures such as Nash–Sutcliffe Efficiency
(E), Root Mean Square Errors, percent bias, and correlation coefficient (e.g., [20,21]. For example,
in the hydrograph measure of fit using Nash-Sutcliffe Efficiency (E), the range of E was established.
Cameron [21] and Zhao [20] selected threshold of 0.7, Shen [22] accepted the threshold of 0.5. In design
flood quantile estimation, Annual Maximum Series (AMS) was employed as an objective function in
some studies (e.g., [4,21,23,24]). The calibrated frequency curves were compared with the observed
frequency curve [21,23] by combining values of three statistics of AMS with the threshold obtained
from χ2 distribution at three degrees of freedom and a probability level of 0.9 [4].

Combination of input errors and model errors has been developed in several studies (e.g., [1,25,26]).
Precipitation events and model parameters have been treated as stochastic components together with
application of fuzzy rules in evaluating model runs. This yields a combined likelihood measure that is
used to weight the flood predictions for selection of a behavioural parameter set based on the GLUE
approach [25] or is used to calibrate daily distribution of runoff by visual comparison [26].

The GLUE method is easy to implement and does not require modifications to the existing
source code of simulation models. On the other hand, it has some drawbacks including, for example,
the thresholds and likelihood measure functions being selected arbitrarily on a case-by-case basis
and there being no explicit explanation of reliability of application. In addition, the assumption of
equability in selecting parameter sets ignores the statistical meaning of random ensembles and the
consistent error model [14,27]. The use of an objective function and calling it a likelihood measure will
not yield validity in statistical probabilities [28]. The method combines catchment modelling system
components (input error; output error; and parameter uncertainty) into the total uncertainty making it
easy to use and understand. However, it is impossible to differentiate what elements for the system
are the most uncertainty [28].

The Bayesian approach in parameter estimation, on the other hand, attempts to make statistical
inferences disentangling the effects of catchment modelling system components [29]. This method
can be considered a general technique for calibration of models that allows the explicit modelling of
uncertainty in the inputs, outputs, and parameter values which are helpful for improving hydrological
understanding of water movement over the catchment [28]. However, it makes statistical inferences
difficult and may not be suitable for multi-objective functions because it is often used to calculate exact
likelihood function.

The uncertainty in model parameters using the Bayesian approach was estimated in limited
studies, where the normal distribution of flow residence errors had been assumed as a likelihood
function [28,30–32]. The approach has been applied for daily and monthly flows. However, there have
not been any studies using the Bayesian approach in parameter uncertainty estimation for design
floods, to the best of the authors’ knowledge.
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Output error: In design flood estimation, output error in flood quantiles is estimated from
observed flow by using Flood Frequency Analysis method (FFA) reported in Kuczera [33]. As a result,
the uncertainty of flood quantiles is estimated.

This paper will address estimation of flood quantiles inclusive of their uncertainty. When the
observed flows are considered, the Bayesian approach of Kuczera [33] is used. This provides the most
likely value plus the uncertainty in that value for the parameters of the statistical model used to define
the flood quantiles. When the model predicted flows are considered, a Bayesian approach was used
to obtain the distribution of potential catchment model parameter values. Using this uncertainty in
parameter values, alternative realizations of statistical model parameters were developed and tested
for statistical similarity with the observed statistical model parameters. In addition, a GLUE approach
was applied also for comparison purposes.

2. Methodology

2.1. Bayesian Inference Background

For the design flood estimation application being considered herein, the goal was to predict flows
that enable reliable estimation of design flood quantiles. A catchment modelling approach is applied in
continuous simulation to predict flows that enabled extraction of AMS. Since changes in the calibration
metric will result in altering the selected parameter values [34], therefore, the AMS statistics (namely
vector β) were used as a likelihood function to minimize the differences between the predicted and
recorded design flood quantiles.

Based on investigation by Kuczera [32] of statistical parameters of AMS, the likelihood function
of vector β. P(β|Q) is estimated by

P(β|Q) =
P(Q|β)P(β)

P(Q)
(1)

where Q is AMS; and vector β is the AMS statistics including the location, scale, shape parameters of
the AMS.

2.2. Bayesian Approach in Parameter Estimation

The contribution of this paper was to apply the Bayesian approach in model parameter estimation
and to join distributions of parameter uncertainty and quantile flow uncertainty.

In Bayesian inference, the catchment modelling parameter vector is considered to be a random
vector, the probability distribution of which describes the true value. Prior distribution P(θ), of θ is
based on historical data or expert knowledge. The Bayesian theorem provides a formal mechanism for
deriving the posterior distribution, P(θ/β), of θ based on the prior distribution P(θ) and likelihood
function P(β/θ). This can be expressed as:

P(θ|β) = P(β|θ)P(θ)
P(β)

(2)

Conceptually, posterior distribution of model parameter is joint distributions of vector θ and
vector β

P(θ|Q) = P(θ|β) ∩ P(β|Q) (3)

The formal likelihood function P(β/Q) is assumed as normal distributed and formulated as

P(β|Q) =
1√

2σ2π
e−

(β−α)2

2σ2 (4)

where: α and σ are the mean and standard deviations, respectively of normal distribution of vector β.
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2.3.GLUE Approach in Parameter Estimation

In the GLUE approach, instead of fitting model parameter values to posterior distribution of
vector β, the two density parameters (α) (σ) were used to identify the threshold values of acceptable
β. This threshold can be expressed as (α ∓ σ). Therefore, the selection of model parameter sets was
based on the ability to produce simulated vector β fitted within these thresholds.

3. Test Catchment

Details of the test catchment considered herein have been reported previously in Cu [34].
Nonetheless descriptions of the catchment are repeated here for clarity.

3.1. Catchment Location and Climate Description

The Ba River is located in south central Vietnam. The headwaters for the system are found in the
Ngoc Ro Mountains (Truong Son ridges) in Kon Tum province. The study reported herein used an
unregulated 1350 km2 area of the catchment upstream of An Khe gauge. This portion of the catchment
comprises high to moderate mountainous areas, and is located mostly in the eastern part of the central
highlands of Vietnam [35].

The Ba River catchment is located in a tropical monsoon climate environment. The main features
of this climate are extraordinarily rainy wet seasons and pronounced dry seasons. The wet season lasts
for 5–6 months from May to October or November with about 90% of the total annual rainfall occurring
in this period. The average number of wet days in this season is 22–24 days/month. Foehn winds
and tropical cyclones strongly affect the area during the wet season. A distinct cyclone season occurs
later in the summer period from September to December, sharply peaking in October [36]. During a
thunderstorm the 24-h rainfall can be as high as 228 mm (19 November 1987) at Pleiku station.

3.2. Rainfall and Flow Data

Daily rainfall data are available at 12 stations both within and near the catchment (Figure 1).
Rainfall records at almost all of these stations are available for more than 30 years covering the period
1980–2011. However, there are only four rainfall stations recording hourly rainfall with documented
periods ranging from 14 to 33 years (from 1976 to 2011). Flow data are observed at An Khe station.
These data are available in hourly and six-hourly intervals from 1980 to 2011.
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Figure 1. Distribution of meteorological stations across Ba River catchment.

4. Model Implementation

4.1. Software

Flows in the river basin were simulated using HEC-HMS which is described by US Army Corps
of Engineers (2010) as being a physically based, semi-distributed parameter model. Application of this
software used gridded rainfall with a 2000 m resolution while the SCS curve number method served
as the loss model. For the rainfall to runoff transformation, a kinematic wave approach was applied
with flood wave translation along channel reaches simulated using a Muskingum-Cunge technique.

4.2. Rainfall Model

The system applied gridded rainfall over the catchment as inputs of the model. This grid rainfall
data were generated using the Inverse Distance Weight. Among 12 stations throughout the catchment,
rainfall data at only nine stations were selected. More details of this are presented in Ball [36]. As noted
previously, there were only four continuous rain gauges across the catchment; this is insufficient to
reliably develop the rainfall grids. To generate additional data, the Method of Fragments was used to
predict sub-daily data (1 h increments were used in this study) at the daily rainfall gauges [36].

4.3. Model Parameters—Vector θ

For this study, the catchment was divided into 16 subcatchments as shown in Figure 2 based on
DEM with a horizontal resolution of 90 m. Shown in Table 1 are the primary parameters for each
subcatchment. As can be seen from that table, each subcatchment requires 10 parameter categories to
be estimated. A total of model parameters considered is 16 × 10 = 160 which are from 10 categories.
To reduce number of parameter needed to be considered, two coefficients, namely, mean coefficient
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(K1) and variation coefficient (K2), were introduced for each category. The mean coefficient represents
the average value of the 16 parameters over the catchment, while the variation coefficient represents
the variation of these values across the catchment.
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Sensitivity analyses of HEC-HMS model parameters have been reported (e.g., [37–40]). From
analysis of these studies, it has been found that there are five parameter categories including curve
number, representative slope, typical length, roughness, and manning coefficient, that are sensitive
and need to be considered during the calibration process.

Table 1. Model parameter categories and their available ranges [40].

Models Parameter Categories Range

Loss models Curve Number 20–90

Kinematic wave
(Overland flow planes)

Typical length
Representative slope 0.0001–1

Overland-flow roughness coefficient 0.35–0.8
Area represented by plane

Muskingum-Cunge
routing

(The main channel)

Main channel length
Description of main channel shape Rectangular

Channel slope 0.0001–1
Channel width

Representative Manning’s Roughness coefficient 0.035–0.08

Further analysis of parameter refining reported in Cu [41] shows application of a variation
coefficient (K2) for all the parameter categories results in noise or accumulation of parameter adjusted
values. Therefore, selection of one representative variation coefficient for each rainfall-runoff process
was preferred. As a result, the variation coefficient was applied to only three parameter categories:
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Curve Number, Subcatchment Roughness, and Channel Manning. The system, therefore, decreased
to eight parameters, namely vector θ. This included K1 for Curve Number (K1—CN); K2 for Curve
Number (K2—CN); K1 for Subcatchment Slope (K1—Slope); K1 for Subcatchment Length (K1—length);
K1 for Subcatchment Roughness (K1—Catchment Roughness); K2 for Subcatchment Roughness
(K2—Catchment Roughness); K1 for Channel Manning (K1—Channel Manning); and K2 for Channel
Manning (K2—Channel Manning).

4.4. Uncertainty in Design Flood Flows—FFA Method

Design flood flows at An Khe station were estimated from the historical data using flood frequency
analysis (FFA). Flood quantiles were estimated using FLIKE software [33] with an LP-III distribution
and Bayesian parameter estimation. In general, use of the LP-III distribution produced consistent
results with, in the majority of cases, the observed data within the confidence limits as shown in
Figure 3. Vector β, therefore, consists of the location, scale, and shape parameters of LP-III distribution
parameters. The most probable value of the location parameter (mean of log flow) is 7.0422, while a
standard deviation is 0.09018. In a similar manner, the most probable value of the scale parameter (loge

[standard deviation (loge flow)]) is −0.74320 and the standard deviation of scale parameter is 0.15064.
Finally, the most probable value of the shape parameter (skewness) is −0.56875 and the standard
deviation is 0.45883 (Table 2).
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Figure 3. Flood frequency curve at An Khe gauge [34].

Table 2. Parameter values of LP-III distribution (vector β) and ranges of acceptable LP-III parameters
at An Khe gauge.

N Parameters Most Probable
Value (α)

Standard
Deviation (σ) Maximum Minimum

1 Mean (loge flow) 7.042 0.090 7.132 6.952
2 Loge (Std dev (loge flow)) −0.743 0.151 −0.593 −0.894
3 Skew (loge flow) −0.569 0.459 −0.110 −1.028

4.5. Likelihood Function

The objective used in the calibration process was vector β estimated by FLIKE as mentioned above.
In the Bayesian method, the likelihood function was normal distribution of location parameter of

vector β with most probable values of 7.042 and standard deviation of 0.090 (Table 2).
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When applying the GLUE method, the likelihood function used was thresholds of vector β. These
thresholds were identified by the values that were one standard deviation away from the mean. Hence,
the maximum and minimum of acceptable ranges of β are shown in Table 2.

4.6. Calibration Process

The model was operated at hourly step to predict continuous flow records for the period 1980
to 2011. These generated flow sequences were used to estimate predicted vector βsim. The model
parameter sets that resulted in vector βsim met the objective function were selected.

As the catchment modelling system evaluated the uncertainty based on generating a large
number of simulations, both manual and computerized techniques have been used for conducting
the calibration process. Among the many ways available to assess the uncertainty (e.g., [42–44]),
the approach adopted assumes the model parameters (vector θ) are random variables. A probability
distribution as discussed in the methodology section was done using the monitored procedure as
shown in Figure 4.
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Figure 4. Scheme for the calibration process.

Step 1—Generation of parameter sets followed a uniform distribution.
As the prior distribution of model parameter values was unknown, a uniform distribution was

assumed due to its simplicity. Mersenne-Twister algorithm [45] was used as the random number
generator to generate 600 parameter sets within allowable ranges.

Step 2—Application of catchment modelling system (CMS) and selection of acceptable vector θ.
Step 3—Fitting distribution (in Bayesian approach)/or selection of values within the acceptable

range (in GLUE) and refining the new ranges of vector θ.
The selected values of vector θ were fitted by a normal distribution. Shapiro-Wilk test [46] was

applied to test the normality of the model coefficient distributions. The distributions were assumed to
be a new range for generating vector θ in the next step.

Step 4—Generation of new vector θ.
The generation of new vector θ for the next calibration step was undertaken using the new fitted

distribution (normal distribution) and the new fitted probability parameters accordingly.
The process of refining the parameter sets was repeated until the distribution of vector θ was

stable or 90% of the generated parameter sets produced acceptable AMSs.

5. Results

The parameter uncertainty and model fitness were tested against 2 criteria: (1) Are these parameter
set values normally distributed? (2) If yes, is there significant difference between two sets of these
data? These criteria were tested using the Shapiro-Wilk test [46] and Welch Two Sample t-test [47].

The Shapiro–Wilk test is a test of normality in frequentist statistics of a data set. The difference
between two normal distributed data sets was tested using Welch Two Sample t-test. Both test
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algorithms use p-value to accept or reject null-hypothesis. If the p-value is less than the chosen
alpha level, then the null hypothesis is rejected and there is evidence that the data tested are not
from a normally distributed population. Commonly, an alpha level value of 0.05 is accepted [47]
which indicates that there are less than five chances out of a hundred that your sample came from
a population where that wasn’t true. Hence, the test includes sample size in p value. A p-value of
more than 0.05 indicates acceptability in the normality of a distribution and the similarity between two
data sets.

5.1. Parameter Uncertainty

For each method, samples of vector θ which consist of eight posterior coefficient distributions were
produced. The Shapiro-Wilk test of normality was used to test normality of the vector θ. All coefficients
possess well-defined normal posterior distributions (Figure 5, Table 3). As can be seen from Table 3,
the p-values in the normality test for all coefficients were more than 0.05 which is accepted as the
standard limit of 95% confidence limits. This indicated that the distributions were considered as being
a normal distribution and the sample size of 600 was acceptable. From the distributions, coefficient
estimates can be unambiguously inferred as most probable values, while the standard deviation of the
distributions indicates the degree of uncertainty of the estimates. With less standard deviation, better
coefficients were identified. Flat distributions indicate more coefficient uncertainty.
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The similarity of estimates for the GLUE and Bayesian methods were tested by Welch Two Sample
t-test. p-values of the testing are reported in Table 3. This indicated that the distribution of most
coefficients for GLUE and Bayesian methods were in fact similar. However, the three most sensitive
coefficients of the modelling system were statistically different. These coefficients included K1—CN;
K2—CN; and K2—Catchment roughness. The differences were indicated by the p value being less than
0.05. The most probable values of K1—CN estimated by the GLUE approach were 1.277, while those
values estimated by Bayesian approach were 1.3881. This explained the 8% difference. The difference
in K2—CN and K2—catchment roughness was 24% and 35%, respectively.
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The posterior distributions obtained by the two methods were somehow similar. This was
indicated by a slight difference between standard deviations obtained by the two methods (Table 3).
Also, the standard deviations obviously vary across coefficients. Overall the posterior distributions
obtained by the Bayesian method were slightly sharper and narrower than those obtained via the
GLUE method. This revealed slightly better identified parameters and less uncertainty in parameters
in the Bayesian approach.

Table 3. Accepted model coefficients.

Parameters
GLUE Approach Bayesian Approach t-Test

Mean STD p-Value in
Normality Test Mean STD p-Value in

Normality Test
p-Value in

Similarity Test

K1—CN 1.278 0.314 0.111 1.388 0.308 0.691 0.0051
K2—CN 1.038 0.474 0.811 1.369 0.475 0.409 1.422 × 10−7

K1—Slope 0.664 0.125 0.376 0.647 0.189 0.911 0.462
K1—Length 1.812 0.379 0.994 1.785 0.377 0.440 0.567

K1—Catchment Roughness 1.495 0.461 0.045 1.427 0.474 0.181 0.252
K2—Catchment Roughness 1.514 0.506 0.241 1.115 0.155 0.649 2.2 × 10−16

K1—Channel Manning 1.345 0.404 0.550 1.431 0.381 0.226 0.075
K2—Channel Manning 1.435 0.552 0.224 1.539 0.506 0.086 0.109

5.2. Model Goodness of Fit

The goodness of fit was established by two criteria: (1) comparison of fitted vector β (LP-III
distribution parameters) against the observed parameters; and (2) comparison of design flood quantiles
at 3 average recurrence intervals (ARI): 10, 20 and 50 years ARIs.

Bayesian method:
(1) comparison of fitted vector β: As the fitting distribution method was applied for the Bayesian

model, a series of location parameter values obtained from the simulated AMSs was extracted and
fitted by a normal distribution. The Shapiro-Wilk test of normality resulted in a p-value of 0.9158
(Table 4) which indicated that the distribution was considered normal. The mean and standard
deviations of estimated location parameters were 7.042 and 0.086, respectively (Table 4). The t-test
between the observed location parameter and simulated location parameter resulted in similarity, with
p-values estimated to be 0.358. Scale and shape parameter values were not from the same populations
but they were within the thresholds accordingly.

Table 4. Most probable values and p-values of t-test design quantiles using the Bayesian method.

Parameters Most Probable
Values

Standard
Deviation

p-Value in
Normality Test

Observed Most
Probable Values

p-Value in
Similarity Test

Location parameter
LP-III distribution 7.042 0.086 0.916 7.051 0.358

Scale parameter
LP-III distribution −0.762 0.031 0.174 −0.743 1.114 × 10−6

Shape parameter
LP-III distribution

−0.4588
(mean)

−0.409/0.550
(range) 0.0005 −0.569

Q-10 (m3/s) 2036 206.8 0.670 2029 0.774
Q-20 (m3/s) 2323 241.2 0.769 2299 0.379
Q-50 (m3/s) 2668 282.0 0.858 2614 0.092

(2) comparison of design flood quantiles: The simulated AMSs were used to estimate design flow
quantiles. All simulated quantiles possessed well-defined normal distributions with p-values of 0.6697,
0.7692, and 0.8581 for 10-year, 20-year, and 50-year ARI, respectively. The most probable values of
quantiles are reported in Table 4. The testing similarity of flow quantiles with the observed quantiles
resulted in p-values of 0.77, 0.37, and 0.09 for 10-year, 20-year, and 50-year ARI, respectively, which
suggested the similarity of estimated design quantiles and observed quantiles.
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GLUE method:
In the GLUE method, the parameter uncertainty results in 90% of simulations which produced

AMS parameters (vector β) fitted within the thresholds. The analysis of estimated vector β failed to fit
the parameter values with a normal distribution as indicated by p-values of 6.27 × 10−8. The design
flow quantiles of the selected ARI were estimated and shown in Figure 6.
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5.3. Uncertainty in Design Flow Quantiles Due to Parameter Uncertainty

The 95% confidence intervals of most probable values of quantiles due to parameter uncertainty
were estimated. Table 5 and Figure 6 illustrate the uncertainty of the three quantiles, for example.
Compared to the Bayesian method, the flow quantiles estimating the GLUE method were less scattered
and located within the confidence limits of the observed frequency curve. However, flow quantiles
estimated by the Bayesian approach were normally distributed and statistically were similar to the
observed flow quantiles. This was indicated by p-value in t-test equal to 0.09 to 0.77. Meanwhile the
flow quantiles resulted in the GLUE method were performed by random scatter. It was subsequently
unable to identify the most probable values estimated by the GLUE approach or predict the flows with
a given confidence limits. The ranges of quantiles via the GLUE method were estimated (Table 5).

Table 5. Most probable values and confidence limits of flood flows (observed flows versus estimates).

ARI

Observed Quantiles (m3/s)
Quantiles Estimated by the Bayesian

Approach (m3/s)
Quantiles Estimated by the

GLUE Approach (m3/s)

Most
Probable

Values

Lower
Confidence

Limit

Upper
Confidence

Limit

Most
Probable

Value

Lower
Confidence
Limit (95%)

Upper
Confidence
Limit (95%)

Mean Lower
Threshold

Upper
Threshold

10 2029 1768 2437 2035 1623 2447 2043 1827 2273
20 2299 1978 2920 2322 1840 2804 2333 2075 2607
50 2614 2182 3732 2667 2105 3229 2682 2370 3007

6. Discussion

In this study, a Bayesian approach was applied for parameter estimation with the assumption
that the catchment parameters followed a normal distribution. In other words, each parameter can be
considered as a distribution of possible values. As the catchment consists of a number of parameters,
the study used a joint distribution of these parameters to generate a distribution of model parameter
sets that are tested for acceptability. By application of this approach, the study presented a flexible
selection approach for model parameters with a statistical representation of each parameter value.

For design flood purposes, the flood flow quantiles were selected as an objective of model
calibration. These quantiles can be estimated from the frequency curves. Therefore, three parameters
(vector β) of the frequency curves have been selected as a metric for model calibration. The paper
introduced two objective functions to treat vector β including a normal distribution of vector β, known
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as Bayesian approach, and threshold of vector β (1 standard deviation from the mean), namely a
GLUE approach.

Both GLUE and Bayesian methods resulted in successfully finding a posterior normal distribution
of model parameter values. However, there is a statistical difference in the parameter means estimated
from these two approaches and a slight difference between standard deviations of the posterior
distributions. The posterior distributions obtained by the Bayesian method were slightly sharper and
narrower than those obtained via the GLUE method. This indicated that there were differences in
parameter values estimated from the two approaches. The sharper and narrower distributions in
Bayesian approach revealed less uncertainty in parameters and hence better identified parameters.

Comparing the quantiles estimated from these approaches shows a greater scatter of the quantile
flows for the Bayesian approach than for the GLUE approach. This is due to the assumption of a
distribution for vector β that has two tails while the GLUE approach used a cut-off threshold. However,
the Bayesian method is successful in fitting a normal distribution of the quantiles flow at three testing
probabilities of 10, 20, and 50 year ARIs, and identifies the most probable values.

Both methods can successfully fit the model and identify the model parameter values. Nonetheless,
the Bayesian method has an advantage in terms of statistics representation of both objectives and
model parameters. Hence this method is more reliable, and better fitted to this catchment.

7. Conclusions

The paper showed that both GLUE and Bayesian methods resulted in successfully simulating the
hydrological behavior of the catchment where model parameter sets are accepted as the most probable
value and a distribution (normal distribution). The following conclusions are drawn from the study:

Using AMS statistics as the objective function in the calibration process made it possible to identify
the likelihood function of the Bayesian method and thresholds for selection of acceptably predicted
AMSs in the GLUE method.

The results of calibration revealed there was a statistical difference in several sensitive model
parameters estimated by Bayesian and GLUE methods.

Advantage of Bayesian approach compared with GLUE approach in applying the Mersenne-
Twister algorithm with an assumption of normal distribution of the parameters as presented in this
paper will take into account the impact of low probability parameter values on the generation of
parameter values at each calibration step. This indicates that the Bayesian method is more efficient in
reproduction of quantile flows.

There are some limitations associated with this method. The method requires a long observation
period and rainfall data record for conducting AMS estimation. This case study, Ba River in Vietnam,
used a 31-year simulation period, specifically 1980 to 2010. The AMS, therefore, consisted of only
31 records. Even though the study used statistical tests to evaluation model fitness, which allowed
the inclusion of sample size in uncertainty of the estimates, and there is no independent validation
applied for statistic tests that have been reported before, the small sample size still may result in
larger confidence limits of objectives (vector β), which result in higher uncertainty of predicted
flows. Therefore, further investigation is needed on how the length of the records impacts on the
parameter uncertainty. In addition, as the paper introduced the FFA method in quantile estimation,
any uncertainty in model parameters will result in secondary uncertainty of the quantile flows. This,
however, is beyond the scope of the paper and will require further study.
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