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Abstract: Groundwater is a critical water resource for human survival and economic development
in arid and semi-arid areas. It is crucial to understand the groundwater circulation and
hydrochemical evolution for sustainable management and utilization of groundwater resources
in those areas. To this end, an investigation of the hydrochemical characteristics of surface water and
groundwater was conducted in Nomhon, an arid area located in the Qaidam Basin, northwest China,
by using hydrochemical (major and trace elements) and stable isotopes (δD and δ18O) approaches.
Stable isotopes and ion ratios were analyzed to determine the recharge sources, hydrochemistry
characteristics, and major hydrogeochemical processes. Meanwhile, inverse geochemistry modeling
was applied to quantitatively determine the mass transfer of hydrogeochemical processes. The results
showed that groundwater in the study area is mainly recharged by atmospheric precipitation in
mountainous areas, and the groundwater in the center of basin might originate from ancient water in
cold and humid environments. Along the groundwater flow path, the TDS of groundwater increased
gradually from fresh to salty (ranging from 462.50 to 19,604.40 mg/L), and the hydrochemical type
changed from Cl·HCO3–Na·Mg·Ca to Cl–Na. Groundwater chemical composition and mass balance
modeling results indicated that from alluvial fan to lacustrine plain, the main hydrogeochemical
processes changed from the dissolution of halite and albite and the precipitation of dolomite and
kaolinite to the dissolution of halite and gypsum, precipitation of calcite, redox (SO4

2− reduction),
and cation exchange. This study would be helpful for water resources management in this area and
other similar areas.

Keywords: groundwater evolution; water–rock interaction; hydrogeochemical modeling;
stable isotope

1. Introduction

Groundwater is an important water resource to agricultural irrigation, industry, and domestic
water supplies in arid and semi-arid areas. Understanding the origin, conversion, and evolution
of groundwater is critical to ensure sustainable use of this valuable water resource. It is of great
significance to investigate the geochemistry evolution of groundwater in order to help understand the
hydrogeology conditions and support groundwater sustainability. Hydrogeochemical processes
(mineral dissolution or precipitation, ion exchange, and redox) have important effects on the
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spatiotemporal distribution of groundwater chemistry [1–3], and different hydrogeochemical processes
may occur in different hydrogeologic locations in natural systems [4]. Diversification of groundwater
chemical compositions is mainly induced by the interactions between groundwater and aquifer
minerals [5]. Groundwater chemistry compositions can be applied to infer the main water–rock
interactions in hydrogeochemical evolution [6], which reveal the hydrogeochemical evolution, potential
recharge source, and groundwater cycle [7], in addition to providing better cognition of groundwater
quality and a foundation for the rational development and utilization of water resources [8–12].

Graphic methods and inverse geochemistry modeling are often used to determine geochemical
evolution and hydrogeochemical processes which control groundwater chemistry compositions;
combining the two methods could promote cognition of groundwater chemical evolution and dynamic
changes in hydrogeological systems [13–15]. Inverse geochemical modeling is frequently applied
to establish a hydrogeochemical evolution model for determining chemical reactions controlling
groundwater chemistry and to quantitatively calculate mineral mass transfer from one site to another
site on the same flow path [5,16]. Many studies have constructed inverse geochemical models to
study groundwater chemical characteristics and determine dominant hydrogeochemical reactions that
control groundwater chemical evolution [17–21].

As a closed and arid inland basin with abundant natural resources, Qaidam Basin has the
characteristics of scarce rainfall and strong evaporation, and groundwater is a critical resource for
human survival and economic development. In recent years, due to increased human activities, water
shortage has been becoming an increasing concern for sustainable development in the Qaidam Basin.
Many studies have identified groundwater hydrochemical characteristics, evolution, and groundwater
circulation in the Qaidam area via different technical methods [22–26]. The present study area, the
Nomhon area, is an important agricultural area of the Qaidam Basin. With the coverage of farmland
and woodland being up to 15% of the total area, the region’s groundwater has become the lifeblood of
nature, society, and the economy. In recent years, groundwater chemistry and isotopes (D, 18O, 3H, 14C)
data were used to conduct preliminary research on groundwater recharge sources, hydrochemistry
evolution, and groundwater circulation in the Nomhon area [25–29]. Previous studies emphasized
the basic characteristics of groundwater qualitatively, lacking quantitative descriptions on chemistry
variation and hydrogeochemical reactions along the flow path.

This study combines ion ratio diagrams (major elements, trace elements), hydrogeochemical
diagrams (such as the Piper diagram), mineral mass equilibrium calculations, stable isotopes (D
and 18O), and an inverse geochemical simulation (NETPATH) to achieve the following objectives:
(1) determine the hydrochemical characteristics of the study area; (2) describe the groundwater
chemical evolution along the flow path; and (3) give a quantitative explanation of hydrogeochemical
processes controlling the groundwater chemical evolution.

2. Materials and Methods

2.1. Outline of Study Area

The study area (Nomhon area) is situated in southeastern Qaidam Basin and north of the Kunlun
Mountains (36.04–36.90◦ N, 96.26–96.75◦ E) (Figure 1). The main river in this area is Nomhon River,
the sixth largest river in Qaidam Basin, which is a principal source for domestic water and agricultural
irrigation. It originates from the southern Burhanbukda Mountain and flows from south to north, then
turns to west at the north of Nomhon Farm, and finally discharges into Huobuxun Terminal Lake.
In the basin center are Qaidam River and Suringol River. Numerous streams intersect each other and
form a petal-like watershed (Figure 1).



Water 2018, 10, 1667 3 of 18

Water 2018, 10, x FOR PEER REVIEW  3 of 18 

 

 

Figure 1. Map of study area and sampling locations. 

The study area belongs to an extremely arid climate in the middle temperate zone of the 
plateau, and the annual average air temperature is 4.8 °C with a gradual increase from the southern 
mountains to the northern basin center. Precipitation is scarce, and there is strong evaporation. The 
annual average evaporation is 1468.04 mm·y−1, and the annual average precipitation is only about 
40.0 mm·y−1. However, the average annual precipitation in Burhanbuda Mountain reaches more than 
300 mm. 

2.2. Geological and Hydrogeological Settings 

In the study area, the Quaternary strata are continuous and characterized by wide distribution 
area, large thickness, and complex genesis. From bottom to top, the strata are in the following order: 
Early Pleistocene (Qp1), Middle Pleistocene (Qp2), Late Pleistocene (Qp3), and Holocene (Qh). All of 
these are exposed in the research region. The topography of the research area is from piedmont 
alluvial fan through alluvial–lacustrine plain to lacustrine plain. In the study area, there are two 
faults and an arc-shaped uplift structure (Figure 2). The upper part of the southern arc-shaped uplift 
structure is alluvial–pluvial sediment of the upper Pleistocene with coarse grains, large thickness, 
loose structure, and rich water yield property; the lower part is the mid-Pleistocene ice-water 
stratum with high mud content and low water yield property. The stratum of the northern 
arc-shaped uplift structure is the alluvial–lacustrine sediment of Holocene to Middle Pleistocene, 
and the lithology is dominated by slit with a clay interlayer; the water yield property is poor. The 
arc-shaped uplift structure is a water-blocking structure composed of alluvial–lacustrine strata of the 
Lower Pleistocene, and the lithology primarily comprises cohesive soil, fine sand, and medium 
coarse sand. 

Figure 1. Map of study area and sampling locations.

The study area belongs to an extremely arid climate in the middle temperate zone of the plateau,
and the annual average air temperature is 4.8 ◦C with a gradual increase from the southern mountains
to the northern basin center. Precipitation is scarce, and there is strong evaporation. The annual average
evaporation is 1468.04 mm·y−1, and the annual average precipitation is only about 40.0 mm·y−1.
However, the average annual precipitation in Burhanbuda Mountain reaches more than 300 mm.

2.2. Geological and Hydrogeological Settings

In the study area, the Quaternary strata are continuous and characterized by wide distribution
area, large thickness, and complex genesis. From bottom to top, the strata are in the following order:
Early Pleistocene (Qp

1), Middle Pleistocene (Qp
2), Late Pleistocene (Qp

3), and Holocene (Qh). All of
these are exposed in the research region. The topography of the research area is from piedmont alluvial
fan through alluvial–lacustrine plain to lacustrine plain. In the study area, there are two faults and an
arc-shaped uplift structure (Figure 2). The upper part of the southern arc-shaped uplift structure is
alluvial–pluvial sediment of the upper Pleistocene with coarse grains, large thickness, loose structure,
and rich water yield property; the lower part is the mid-Pleistocene ice-water stratum with high mud
content and low water yield property. The stratum of the northern arc-shaped uplift structure is
the alluvial–lacustrine sediment of Holocene to Middle Pleistocene, and the lithology is dominated
by slit with a clay interlayer; the water yield property is poor. The arc-shaped uplift structure is a
water-blocking structure composed of alluvial–lacustrine strata of the Lower Pleistocene, and the
lithology primarily comprises cohesive soil, fine sand, and medium coarse sand.
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Figure 2. Geological cross section (A–A’ in Figure 1).

In the piedmont alluvial–pluvial plain, a single large-thickness phreatic aquifer formed with a
thickness of more than 100 m with rich groundwater, and the groundwater flow velocity is relatively
high. The hydraulic gradient is about 5–10h. The type of aquifer in the alluvial–lacustrine plain was
changed from a single thick-layer aquifer to a multilayer aquifer with a 1–2h hydraulic gradient,
and the water yield property and permeability became poor. The groundwater flow velocity is low
and the water level rises relatively as shallow groundwater flows out of ground surface in the form
of groups of springs. In the salt marsh area, the aquifers are multilayer confined ones and contain
high-salinity groundwater. The thickness of a single layer varies from 2–3 m to tens of meters. In the
study area, the groundwater is mainly recharged by precipitation and melted water from the southern
mountain area and discharged by human pumping, evaporation, springs, and recharging rivers and
lakes. The groundwater flows north at first, then turns to west in the basin center, and is finally
discharged into Huobuxun Terminal Lake.

On the basis of terrain, sediment characteristics, and groundwater flow, the study region can
be divided into four zones (Figure 1). Zone 1 is the Gobi Belt, where a single phreatic aquifer was
distributed with relatively high permeability and deep water–level. Zone 2 is the fine soil plain
area, which is the transitional area from a single aquifer to a multilayer aquifer, and the depth of the
groundwater level becomes small; Zone 3 is a slightly inclined fine soil plain, and shallow groundwater
overflows onto the surface; Zone 4 is a salt marsh area where multilayer aquifers are confined with
saline groundwater.

2.3. Sampling and Analytical Method

For this research, 12 samples (3 river samples and 9 groundwater samples) were collected in
August and September 2017 (Figure 1). The river samples mainly came from the Nomhon River, and
the groundwater samples were taken in wells from the piedmont alluvial fan to the lacustrine plain.
All water samples were collected after the field parameters were stable to eliminate the influence of
stagnant water, and were filtered with a 0.45 µm polyethylene membrane filter after rinsing the sample
bottles 3–4 times. Water samples for cations were acidified with concentrated nitric acid to make the
pH < 2 and reserved in 500 mL polyethylene bottles. The samples were reserved in 500 mL bottles
for anion analysis and in 50 mL bottles for stable isotope (δ18O and δD) analysis. All water samples
were marked, sealed, and stored, and then sent to the laboratory for analysis as soon as possible
after collection.
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The hydrochemical data are listed in Table 1. The relative hydrochemical and isotopic
compositions of all samples were measured (Na+, K+, Ca2+, Mg2+, Cl−, HCO3

−, SO4
2−, Br−, Sr2+,

Si, Al3+, δ18O, and δD) using standard methods at the Water Environment Monitoring Experiment
Center of Hebei Province. Some parameters (pH, temperature, EC, TDS) were tested in situ using a
portable multiparameter instrument (Manta 2) adjusted with a standard solution. Major elements (Na+,
K+, Ca2+, Mg2+, Sr2+, Si, and Al3+) were measured by ICP–OES, major anions (Cl−, SO4

2−, and Br−)
were tested for using ion chromatography (ICS-1100), and CO3

2− and HCO3
− were tested for using

acid–base titration. The test accuracy for cations and anions (except HCO3
−) was 0.01 mg/L, and the

accuracy of HCO3
− was 0.60 mg/L. The charge balance errors of all samples were less than 5%.

Table 1. Hydrochemical data from the study area.

Site No. NR1 NR2 NR3 NG1 NG2 NG3

Type 1 R R R GW GW GW

Temperature (◦C) 14.21 13.30 22.53 19.58 9.00 9.60
pH 8.01 8.42 8.16 7.92 7.65 7.90

EC (us/cm)2 921.50 n.a. 3 1028.00 833.80 995.50 958.60
TDS (mg/L) 579.84 596.34 637.51 552.65 620.96 628.44
K+ (mg/L) 3.50 3.50 3.80 10.50 10.00 11.00

Na+ (mg/L) 80.00 81.80 94.40 71.80 79.60 79.40
Ca2+ (mg/L) 65.09 60.12 66.69 42.00 51.78 51.94
Mg2+ (mg/L) 26.74 27.22 29.56 33.15 37.53 33.64

HCO3
− (mg/L) 146.44 152.54 140.34 152.54 170.85 195.25

Cl− (mg/L) 140.11 142.66 159.11 138.41 161.38 141.25
SO4

2− (mg/L) 100.20 108.50 123.40 80.80 91.90 94.50
Al (mg/L) 0.048 0.043 0.045 0.024 0.029 0.028
Si (mg/L) 7.94 7.18 8.20 10.13 11.37 11.45

Br− (mg/L) 0.20 <0.10 0.15 0.21 0.10 0.11
Sr2+ (mg/L) 0.65 0.64 0.69 0.73 0.88 1.04

δD (h) −73.95 −73.57 −70.55 −75.85 −77.67 −73.91
δ18O (h) −10.87 −10.89 −10.73 −11.33 −11.62 −10.87

Site No. NG4 NG5 NG6 NG7 NG8 NG9

Type 1 GW GW GW GW GW GW

Temperature (◦C) 11.03 9.41 11.71 n.a. 3 12.94 13.67
pH 8.31 7.90 8.03 8.35 7.82 7.21

EC (us/cm) 883.90 748.80 700.60 795.00 11,310.00 31,620.00
TDS (mg/L) 598.41 491.65 462.50 622.10 6515.20 19,604.40
K+ (mg/L) 6.00 5.00 4.10 2.40 7.80 8.60

Na+ (mg/L) 86.90 62.50 81.10 164.20 1779.30 5449.10
Ca2+ (mg/L) 46.65 42.97 29.82 12.87 355.27 1068.69
Mg2+ (mg/L) 31.11 24.69 17.69 7.00 164.21 522.56

HCO3
− (mg/L) 195.25 164.75 140.34 244.07 347.80 329.492

Cl− (mg/L) 120.54 99.84 95.58 117.00 3793.47 12,195.83
SO4

2− (mg/L) 84.80 73.10 68.60 61.90 50.10 14.20
Al (mg/L) 0.026 0.027 0.020 0.018 0.170 0.370
Si (mg/L) 11.81 11.41 12.23 9.07 115.00 62.50

Br− (mg/L) 0.19 0.11 0.12 0.10 1.09 4.48
Sr2+ (mg/L) 0.83 0.71 0.71 0.34 17.94 54.19

δD (h) −75.47 −75.5 −80.91 −85.22 −92.00 −92.00
δ18O (h) −11.14 −11.13 −11.70 −12.38 −12.50 −11.90

1 R: river; GW: groundwater. 2 EC: electrical conductivity. 3 n.a.: not analyzed.

The stable isotopes (δ18O and δD) were tested using LGR-LWIA-24d (liquid-water isotope
analyzer). The test data are expressed with respect to standard VSMOW (Vienna Standard Mean
Ocean Water) in permil (h) [30]. The analytical precisions of δD and δ18O were 0.28h and 0.03h,
respectively, and tests were repeated to ensure the accuracy of the data.
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2.4. Inverse Geochemistry Modeling

Inverse geochemical modeling is one of the most popular simulation methods and has been widely
put into use in various groundwater studies, such as establishing hydrogeochemical evolution models
to determine chemical reactions that control groundwater chemistry, and quantitatively calculating
mineral mass transfer from one point to another point on the same flow path [5,16,20]. NETPATH is a
useful inverse geochemistry modeling software product coupling a speciation calculation model with
a geochemical mass balance model to determine possible reactions based on constraints (dissolved
elements) and phases (dissolved/precipitated minerals). The technology builds a geochemical reaction
model to determine the net geochemical mass balance reactions that occur between two points along
the flow direction [31,32]. NETPATH is often used to quantitatively determine hydrogeochemical
evolution [15,33–35].

The mass balance conceptual model can be represented as follows [36]:

n

∑
j=1

aijxj = bj. (1)

Here, aij is the atomic figure of element i in mineral j, xj is the molar figure of minerals or gases
that dissolve or precipitate (degas) in solution, and bj expresses the augment of element i from one site
to another site. If the values are greater than 1, this indicates that minerals or gas dissolve; otherwise,
precipitation or outgassing occurs.

3. Results and Discussion

3.1. Hydrogen and Oxygen Isotopes

For determining groundwater origin, stable isotopes (D, 18O) are very appropriate tracers and are
extensively used to study the circulation of natural water bodies [37]. The d-excess and the relationship
of δD and δ18O are used to obtain the climate and geographical information when the groundwater
was recharged. The d-excess has a negative correlation with humidity, and it can be greater than 10 at
low humidity and less than 10 at high humidity [38,39]. Most water samples were concentrated near
the local meteoric water line (LMWL: δD = 7.862 δ18O + 11.05 [27]) (Figure 3), indicating that most
water in the study area was derived from atmospheric precipitation, which is recharged in southern
mountainous areas (average annual rainfall over 300 mm), rather than by local rainfall (average annual
rainfall <50 mm).
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The δ18O of the river is from −10.89 to −10.73h with a mean of −10.83h, and the δD is from
−73.95 to −70.55h with an average of −72.69h. Along the flow direction, the δD and δ18O of
the groundwater show a decreasing trend. The δ18O of groundwater in Zone 2 is from −11.66 to
−10.62h with an average value of −11.13h, and the δD is from −77.67 to −73.91h with an average
of −75.46h; the d-excess is from 10.94 to 15.29h. The δ18O and δD of the groundwater in middle
Zone 2 are close to that of the surface water in Zone 1 and located at the lower left of the surface water
samples, indicating that the groundwater was likely recharged by lateral runoff and the Nomhon
River. The groundwater samples in Zone 3 are from springs and artesian wells, and they have a δ18O
of −12.38 to −11.7h with an average of −12.04h and a δD of −85.22 to −80.91h with an average of
−83.06h. Compared to Zone 2, the δD and δ18O here are more depleted, and the d-excess is from 12.69
to 13.82h, and the age of the groundwater is about 5–10 ka [40]. This indicates that the groundwater
might originate from high-altitude areas far from the vapor source in a dry and cold climate. The δ18O
and δD of the deep groundwater samples in Zone 4 are the most negative, δ18O is from −12.50 to
−11.90h with an average of −12.20h, and δD is −92.00h. These are located at the lower right of
the global meteoric water line (GMWL). The d-excess is from 3 to 8h and the age of groundwater is
17−28 ka [40], indicating that the groundwater might be recharged by ancient water in cold and moist
paleoclimatic conditions [39], and 18O enrichment occurred due to long-term water–rock interaction in
a closed environment.

3.2. Hydrochemistry Characteristics

In the study area, the pH of groundwater samples is between 7.21 and 8.31 with an average
of 8.00, suggesting that the groundwater is neutral to weakly alkaline. TDS varied from 462.50 to
19,604.40 mg/L with a mean of 3344.03 mg/L, EC varied from 700.60 to 31,620.00 µs/cm with a mean
of 5427.36 µs/cm (Table 1), and the TDS of the groundwater in the arc-shaped uplift structure was
relatively low, probably due to the influence of deep low-salinity groundwater.

Along the groundwater flow path, a suite of water–rock interactions could take place in the
aquifers. Groundwater hydrochemical trends provide important clues for the understanding of
hydrogeochemical processes, and groundwater chemistry types can be indicative of groundwater
hydrochemical evolution [41]. The Piper diagram [42] is often used to determine the main compositions
and hydrochemical types of groundwater (Figure 4).
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For groundwater in Zone 2, the percentages of Na+, Ca2+, Mg2+, Cl− and HCO3
− are greater

than 25%, and the major ions are in the follow order: Na+ > Ca2+ > Mg2+ and Cl− > HCO3
−. In Zone

3, only Na+, Cl−, and HCO3
− are the dominant ions, with average proportions of 63.52%, 37.96%,

and 43.56%, respectively. In Zone 4, Na+ and Cl− are the main ions—about 70.00% and 96.00%,
respectively. From Zone 2 to Zone 4, the hydrochemical type of the groundwater changed from
Cl·HCO3–Na·Mg·Ca through Cl·HCO3–Na and HCO3·Cl–Na to Cl–Na, which is mainly related to the
water–rock interactions, geological structure, and basin sedimentary characteristics.

It is crucial to investigate variations in major components (Figure 5) along the flow direction to
better understand the effect of water–rock interactions. As can be seen from Figure 5, different trends
in ions were observed in different zones along the flow path. In Zone 2, the concentrations of Na+ and
Cl− were relatively stable, Ca2+ and Mg2+ showed a slight decreasing tendency, and HCO3

− increased
at first and then decreased, suggesting that ionic exchange and the dissolution of Na silicates like
albite could occur in the zone. Variation trends changed after entering into Zone 3: Na+, Cl−, and
HCO3

− concentrations show increasing trends, and the increasing rate of Na+ is greater than that of
Cl−; however, both Ca2+ and Mg2+ decline. The possible reasons leading to those variations may be
ionic exchange and the dissolution of halite and Na silicate. From Zone 3 to Zone 4, except for SO4

2−,
major ions increase rapidly. Increasing trends in Na+, Cl−, Ca2+, and Mg2+ are observed when HCO3

−

and SO4
2− decrease in Zone 4 along the flow path. Moreover, the order of ionic rising rates is Cl−

> Na+ > Ca2+ > Mg2+; therefore, it can be inferred that the halite dissolution, cation exchange, the
precipitation of carbonate, and redox are primary water–rock interactions resulting in the variation
of ions.
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3.3. Hydrogeochemical Processes

3.3.1. Thermodynamic Stability

The stability diagrams of silicate minerals contribute to thermodynamic studies and are often
used to determine the equilibrium extent of water–rock interaction [43,44]. The relationships between
Ca2+/H+, Mg2+/H+, Na+/H+, K+/H+, and H4SiO4 (Figure 6) were employed to determine the
equilibrium of groundwater with aluminosilicate minerals in the study area.

As shown in Figure 6, all the water points in Zone 2 and Zone 3 fall in the kaolinite (Figure 6a,c,d)
and Na montmorillonite stable fields (Figure 6b), which suggest that primary silicate minerals like
albite, anorthite, and chlorite should tend to dissolve and convert to secondary minerals in groundwater
flow systems. However, the points (NG8, NG9) in Zone 4 are located in the montmorillonite
(Figure 6c,d) and albite (Figure 6b) areas, indicating that albite should be in equilibrium with
groundwater. The silicate minerals have changed along the flow path of the groundwater, indicating
the degrees of water–rock interactions and residence time. All samples are on the right of the quartz
line, suggesting that the quartz is saturated and in a relatively equilibrium state with the groundwater,
and the SiO2 may be derived from amorphous silica [45]. The results showed that the degree of
water–rock interaction and residence time increased gradually from the Gobi Belt to the basin center.
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3.3.2. Dissolution and Precipitation

The dissolved components in groundwater do not exist independently, their interrelationships can
explain the sources of solutes and the processes controlling groundwater chemical composition [46].
For the purpose of understanding and illustrating the hydrogeochemical processes, different major
ions’ interrelationships were studied (Figure 7).
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Cl− is characterized by high solubility and mobility and was often applied as an indicative
element in water–rock interaction research. The relationship between Na+ and Cl− has been commonly
applied to discern the source of salinity in arid and semi-arid areas. The points will be located on
the line 1:1 due to halite dissolution, whereas if the points are above or below the line 1:1, the most
common explanation is that the Na+ is derived from Na silicate or ionic exchange [47]. As can be seen
from Figure 7a, most points are close to the line 1:1, showing that the Na+ and Cl− in the groundwater
are mainly derived from halite dissolution as expressed by Equation (2). The saturation indices of
halite are much less than 0 (SI = −6.94~−2.95), and it is unsaturated with strong dissolution potential
and easily enters groundwater. The data points in Zone 3 are mainly located below the equivalence
line, especially NG7, so it is considered that the Na+ is released from a Na-silicate dissolution (Equation
(3)) and positive cation exchange reactions (Equation (4)). Moreover, in the southern mountain of the
study area, granite is extensively spread, so the Na+ is in all probability produced by aluminosilicate
dissolution. Nevertheless, the sectional water samples in Zone 2 and Zone 4 lie above the line 1:1,
which is possibly due to reverse cation exchange process (Equation (5)).

The ions with the second highest concentrations are Ca2+ and Mg2+, which are second only to Na+.
The relationships between (Ca2+ + Mg2+) vs. (SO4

2− + HCO3
−) and (Ca2+ + Mg2+) vs. HCO3

− can
reflect the contribution of dissolution or precipitation of carbonate (calcite, dolomite, etc.) and sulfate
(gypsum, etc.) to groundwater chemical compositions [20,48]. Figure 7b,c show that the carbonate
is the factor controlling Ca2+ and Mg2+ for most points in Zone 2 and Zone 3. Calcite and dolomite
are saturated and tend to precipitate since SIcalcite and SIdolomite are greater than 0. Furthermore,
most data points were distributed along the 1:1 line in Figure 7d, suggesting that gypsum dissolution
(Equation (6)) has a significant influence on groundwater chemicals in this area [41]. However, the
points NG7, NG8, and NG9 are plotted far away from the equivalence line. NG7 falls above the
line, indicating strong positive cation exchange and/or Na silicate dissolution, and NG8 and NG9
fall below the 1:1 line. SO4

2− + HCO3
− show a stable trend, which may result from strong reverse

cation exchange and reduction of SO4
2−. The SO4

2− + HCO3
− of NG8 and NG9 in Zone 4 did not
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significantly change with increasing Ca2+ + Mg2+, and the SO4
2− concentrations of the groundwater

are relatively low (0.53 and 0.15 mmol/L for NG8, NG9, respectively), which may be due to SO4
2−

reduction (Equation (7)). There are generally two causes of sulfate decrease: gypsum precipitation
and sulfate reduction. The saturation index of gypsum is approximately equal to −2, reflecting a
dissolved state. Therefore, the precipitation of gypsum is unlikely to be the reason for the SO4

2−

decrease. The water samples in the basin center (NG8 and NG9) are from deep groundwater, and
the ORP (oxidation reduction potential) values of the groundwater for these samples are −188 and
−106, respectively, indicating that the groundwater is in a reducing environment. The strata contain a
peat layer and humus, and there are continuous bubbles emerging at the sampling site. Therefore, the
reduction of SO4

2− was deduced as the reason for the decrease of SO4
2− in the groundwater. From

what has been discussed above, the dissolution/precipitation of halite, calcite, dolomite, gypsum, and
albite and redox are vital for the formation of groundwater chemical compositions.

NaCl→ Na+ + Cl− (2)

2NaAlSi3O8 + 2CO2 + 11H2O→ Al2Si2O5(OH)4 + 4H4SiO4 + 2Na+ + 2HCO3 (3)

2NaX + Ca2+ (Mg2+)→ CaX2 (MgX2) + 2Na+ (4)

2Na+ + CaX2(MgX2)→ 2NaX + Ca2+ (Mg2+) (5)

CaSO4 → Ca2+ + SO4
2− (6)

SO4
2− + 2C + H2O→ H2S + 2HCO3

− (7)

3.3.3. Cation Exchange

Cation exchange is a vital natural reaction in groundwater hydrochemical evolution [49]. For the
sake of determining the effect of ion exchange in groundwater evolution, two exchange indices named
chloro-alkaline indices were proposed, and the expressions are as follows [50]:

CAI− 1 =
Cl− −

(
Na+ + K+

)
Cl−

(8)

CAI− 2 =
Cl− −

(
Na+ + K+

)
HCO−3 + SO2−

4 + CO2−
3 + NO−3

. (9)

The unit of ion concentrations is meq/L. When both indices are less than 0, positive cation
exchange occurs; if both indices are positive, reverse cation exchange occurs. In addition, the diagram
of (Na+ + K+ − Cl−) vs. [(Ca2+ + Mg2+) − (HCO3

− + SO4
2−)] has also often been used to study cation

exchange [51,52]. If the slope of Na+ + K+ − Cl− vs. (Ca2+ + Mg2+) − (HCO3
− + SO4

2−) is −1, cation
exchange happens [53]. In this study, all water samples were located near the line with a slope of −1,
suggesting that cation exchange extensively occurs in this study area (Figure 8b). The two chlor-alkali
indices (Figure 8a) indicate that there are both positive and reverse cation exchange in the study area.
The aquifer sediments are medium sand, mid-fine sand, and fine sand with an increase of clay mineral
contents along the flow path. The chlor-alkali indices of the groundwater in Zone 4 are far greater than
0, indicating that there is strong reverse cation exchange in this area. The dissolution of halite leads to
an increase in Na+ which could replace Ca2+ and Mg2+ on the surface of aquifer materials. This can
lead to an increase of Ca2+ and Mg2+. This result is consistent with that of Xiao et al. (2017) [26].
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3.3.4. Evaporation

The study area belongs to an arid area, and evaporation has a certain influence on the formation
and evolution of groundwater chemistry. Previous studies concluded that evaporation played an
important role in groundwater chemical compositions in the study area [25,28]. To investigate the high
Cl− concentrations of the groundwater, the diagram of δ18O vs. Cl− was used in the present study
(Figure 9a). Halite dissolution can result in horizontal lines in the diagram and merely increase the
TDS without variation in 18O. It can be inferred from the plot that evaporation may not exist in the flow
path from Zone 3 to Zone 4. Br−/Cl− is an important tracer for determining geochemical processes
and is commonly used to discern the difference between evaporative crystallization and other effects,
such as dissolution of halite, which results in the increase of salinity. Br−/Cl− is of great significance
for identifying the source of salt and will decrease with the increase of Cl− due to the dissolution of
halite [54–56]. The Br−/Cl− of halite is generally between 0.10 and 1.00h [57–59]. The Br−/Cl− value
of groundwater in our study area is 0.11–0.70h (Figure 9b), indicating that the source of Cl− in the
entire study area is primarily halite dissolution without obvious evaporation; this is not completely
consistent with previous results.
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3.3.5. Strontium Signature in Groundwater

Sr2+ is an alkaline element associated with Ca2+ [60], and it can be applied to determine sulfate
sources in groundwater [61]. In order to ascertain the source of SO4

2−, the relationships of Sr2+ vs.
Ca2+ and Sr2+ vs. SO4

2− were used in the study (Figure 10). They show that the correlation between
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Sr2+ and Ca2+ was very good in three zones; however, the correlation between Sr2+ and SO4
2− was

more complex. It seemed to be a good correlation in Zone 2, but a poor correlation in Zone 3 and
Zone 4 (Figure 10b), where the concentration of Sr2+ increased with either increase or decrease of
SO4

2−, indicating that gypsum dissolution and redox of SO4
2− might be the main factors controlling

the SO4
2− concentration. The different hydrochemical characteristics of the groundwater may reflect

the complicated water–rock interactions in the zones of the study region.
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3.4. Hydrogeochemical Modeling

Inverse geochemical modeling can determine the main water–rock interactions in the
hydrogeochemical evolution processes based on variations in groundwater chemical composition;
these, in turn, can explain the hydrogeochemical evolution and reveal potential sources and the cycle
of groundwater [6,7]. NETPATH [31,62] was used to quantitatively simulate the reactions that might
occur during the groundwater chemical evolution in the study area. The simulation route selected was
NG5→ NG7→ NG8→ NG9.

3.4.1. Possible Mineral Phases and Constraints

The selection of possible minerals is a key factor in the accuracy of inverse geochemical simulations
and is mainly based on hydrogeochemical analysis, lithology and mineral constituents, and features of
aquifers [63,64].

Based on the results discussed above, possible mineral phases in the simulation processes were
determined. Possible minerals are halite, gypsum, dolomite, calcite, albite, chlorite, anorthite, kaolinite,
and SiO2. During the hydrochemical evolution process, cation exchange is essential and should be
included in modeling [4]. However, the groundwater system in Zone 2 is an open system, so CO2

was selected (log pCO2 from −2.54 to −3.14). In Zone 4, the groundwater is deep water and shows
a reducing environment, so CH2O and H2S were also selected as possible phases in the simulation.
According to the saturation indices (Table 2), the halite and gypsum are only dissolved, and calcite
and dolomite tend to precipitate. The constraints confine the maximum number and species of phases
contained in mass balance modeling [15]. According to the relevant data of this study, the constraints
were set as Ca, Mg, Na, S, Cl, Si, C, and Al in the simulation.
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Table 2. Mineral saturation index in groundwater.

Site No. NG1 NG2 NG3 NG4 NG5 NG6 NG7 NG8 NG9

SIcalcite 0.22 −0.09 0.20 0.62 0.11 0.06 0.21 0.98 0.64
SIdolomite 0.61 −0.24 0.32 1.20 0.09 0.04 0.30 1.81 1.20
SIgypsum −2.31 −2.28 −2.26 −1.87 −2.4 −2.54 −2.97 −2.24 −2.68
SIhalite −6.57 −6.46 −6.52 −6.54 −6.76 −6.66 −6.28 −3.87 −2.95
SIalbite −1.63 −0.56 −0.68 −0.74 −0.78 −0.86 −0.96 4.16 4.18

SIanorthite −3.07 −2.38 −2.45 −2.58 −2.52 −2.95 −3.67 1.54 2.00
SISiO2 0.29 0.52 0.50 0.48 0.50 0.49 0.37 0.11 1.23

SIkaolinite 2.97 5.30 4.65 3.51 4.57 3.8 2.89 7.75 8.98

3.4.2. Results of Inverse Modeling

The results of the mass balance simulation are listed in Table 3.

Table 3. Mineral transfer amount (unit: mmol/L).

Path NG5–NG7 NG7–NG8 NG8–NG9

NaCl 0.485 104.886 243.195
Calcite – −16.541 −6.745

Dolomite −0.728 – −2.575
Gypsum – 9.540 5.633

Albite 3.894 – –
Anorthite – – 0.004
Chlorite – 1.156 –
Kaolinite −5.853 – –

SiO2 – −3.407 −0.004
CH2O – 19.552 12.014
H2S −0.117 −9.776 −6.007
CO2 2.677 – –

Exchange 0.024 −14.851 −39.662

–: data not available.

From the alluvial fan to the alluvial–lacustrine plain, the dominant reactions causing variation in
groundwater chemical compositions are the dissolution of halite, albite, and CO2; the precipitation of
dolomite and kaolinite; SO4

2− reduction (H2S); and positive cation exchange. Shallow groundwater is
in an open system, so CO2 can be continuously input into the groundwater to result in the dissolution
of albite, which is the major factor controlling Na+. Dissolution of halite also produces Na+ and Cl−

which enter the groundwater continuously. Ca2+ and Mg2+ are dominated by the precipitation of
dolomite. Due to increasing Na+ and Cl− and decreasing Ca2+ and Mg2+, the water type varies from
Cl·HCO3–Na·Ca·Mg to Cl·HCO3–Na.

From the alluvial–lacustrine plain to the lacustrine plain, the groundwater is affected by the
dissolution of halite, gypsum, and chlorite; precipitation of calcite and SiO2; redox (SO4

2− reduction);
and inverse cation exchange. Halite dissolution and inverse cation exchange control Na+, while Ca2+

and Mg2+ are dominated by inverse cation exchange, gypsum dissolution, and calcite precipitation.
Halite dissolution produces Na+ and Cl− which enter the groundwater continuously, and with
increasing Na+, clay minerals adsorb Na+ and release Ca2+ and Mg2+. Therefore, the concentration
of Na+ is lower than that of Cl−, and those of Ca2+ and Mg2+ keep increasing. In addition, as
deep groundwater is in a reduced state, redox occurs and SO4

2− is reduced to H2S. Due to the
hydrogeochemical reactions, the water type changes into Cl–Na. Finally, when the groundwater
migrates to the basin center, the hydrochemistry compositions are controlled by the dissolution of
halite and gypsum, precipitation of calcite and dolomite, redox (SO4

2− reduction), and inverse cation
exchange. The dissolution of halite and inverse cation exchange reactions are enhanced, and others
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become weak. The reactions along the flow path can be represented by the following equations
(unit: mmol/L):

NG5 + 0.485 NaCl + 3.894 albite + 2.677 CO2 + 0.024 exchange − 5.853 kaolinite − 0.728
dolomite − 0.117 H2S = NG7

NG7 + 104.886 NaCl + 9.540 gypsum + 1.156 chlorite + 19.552 CH2O − 16.543 calcite −
9.776 H2S − 3.407 SiO2 − 14.851 exchange = NG8

NG8 + 243.195 NaCl + 1.32917 chlorite + 6.378 gypsum + 12.014 CH2O − 6.745 calcite −
2.575 dolomite − 6.007 H2S − 0.004 SiO2 − 39.662 exchange = NG9.

In summary, different zones have different hydrogeological conditions and different
hydrogeochemical processes which likely dominate the groundwater chemical compositions.
Though the calculations of mineral mass transfer vary with the choice of possible minerals [65],
hydrogeochemical simulations have quantified the degree of influence of each hydrogeochemical
process on the groundwater chemical evolution.

4. Conclusions

This study combined hydrogeochemical methods with geochemical modeling in an attempt to
investigate the hydrogeochemical processes in the Nomhon area, northwest China. The following
main conclusions can be drawn:

Stable isotopes (D and 18O) suggested that the groundwater in the study area originates primarily
from atmospheric precipitation in the south mountainous areas, while the groundwater in the basin
center was likely supplied by ancient water in cold and humid environments. Along the groundwater
flow path, the TDS of the groundwater gradually increased from fresh to salty (462.50−19,604.40 mg/L),
and the groundwater was from neutral to weakly alkaline. The concentrations of most major
ions showed an increasing tendency and reached the maximum amount in the lacustrine plain,
whereas SO4

2− exhibited a decreasing trend because of reduction reactions. On the basis of 18O,
Cl−, and Br−, groundwater chemical variations were due to mineral dissolution/precipitation
rather than evaporation. The hydrochemical type changed from Cl·HCO3–Na·Mg·Ca in the alluvial
fan, to HCO3·Cl–Na and Cl·HCO3–Na in the alluvial–lacustrine plain, and finally to Cl–Na in
the lacustrine plain. Ion relationship analysis suggested that mineral dissolution or precipitation,
cation exchange, and redox are the major factors controlling the hydrochemistry. The mass balance
modeling quantitatively revealed the predominant hydrogeochemical processes. This study enhanced
understanding of the hydrochemical processes in the arid region and could be of use in the sustainable
development and utilization of groundwater resources and could provide a reference for water resource
research in other arid regions.
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