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Abstract: The availability of very high spatial resolution (VHR) remote sensing imagery provides
unique opportunities to exploit meaningful change information in detail with object-oriented
image analysis. This study investigated land cover (LC) changes in Shahu Lake of Wuhan
using multi-temporal VHR aerial images in the years 1978, 1981, 1989, 1995, 2003, and 2011.
A multi-resolution segmentation algorithm and CART (classification and regression trees)
classifier were employed to perform highly accurate LC classification of the individual images,
while a post-classification comparison method was used to detect changes. The experiments
demonstrated that significant changes in LC occurred along with the rapid urbanization during
1978–2011. The dominant changes that took place in the study area were lake and vegetation shrinking,
replaced by high density buildings and roads. The total area of Shahu Lake decreased from ~7.64 km2

to ~3.60 km2 during the past 33 years, where 52.91% of its original area was lost. The presented
results also indicated that urban expansion and inadequate legislative protection are the main factors
in Shahu Lake’s shrinking. The object-oriented change detection schema presented in this manuscript
enables us to better understand the specific spatial changes of Shahu Lake, which can be used to
make reasonable decisions for lake protection and urban development.
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1. Introduction

Urban lakes provide precious water to residents, fish and waterfowl, as well as regulate the urban
environment, i.e., humidity, temperature, flood storage [1–4]. With the growing of human activity and
rapid urbanization, many urban lakes in China have shrunk significantly or disappeared in recent years.
Remote sensing, as an advanced technology for Earth observation and an important tool for providing
spatially consistent image information, has been widely used in various applications, such as land
use/land cover (LULC) change [5,6], disaster monitoring [7], urban sprawl [8], and hydrology [3,9,10].
Especially remote sensing plays an important role in water body monitoring.

In recent years, change detection is an intensive research topic, and remotely-sensed images are
increasingly used as primary data sources to characterize environmental change at a variety of spatial
and temporal scales [11]. In particular, since the Landsat archive was opened to the public by the
U.S. Geological Survey (USGS) in 2008 [12], Many studies have focused on water change detection,
lake monitoring and lakefront land use classification using multi-temporal Landsat images [1,3,4,10,13].
For example, Michishita et al. [14] examined the two decades of urbanization in the Poyang Lake area
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in China using a time-series Landsat-5 TM dataset, and performed a quantification and visualization
of the changes in time-series urban land cover fractions through spectral unmixing. Song et al. [15]
estimated the water storage changes in the lakes of the Tibetan Plateau by combining time-series water
level and area data derived from optical satellite images over a long time scale, and analyzed the
changes therein. W. Zhu et al. [3] monitored the fluctuation of Qinghai Lake by estimating the variations
of water volume based on MODIS (moderate resolution imaging spectroradiometer) and Landsat
Thematic Mapper (TM)/Enhanced Thematic Mapper Plus (ETM+) images from 1999–2009. J. Zhu [1]
quantitatively analyzed the impacts of lakefront land use changes on lake areas in Wuhan, based on two
Landsat TM/ETM+ images taken in 1991 and 2005. Taravat et al. [4] detected spatiotemporal changes
of Lake Urmia (located in the northwest of Iran) during the period 1975–2015 using multi-temporal
satellite altimetry and Landsat images, and several water classifiers were investigated for the extraction
of surface water from Landsat data, e.g., the Normalized Difference Water Index-Principal Components
Index (NDWI-PCs) [10], Normalized Difference Water Index (NDWI) [16], and the Automated Water
Extraction Index (AWEI) [17].

All the aforementioned studies demonstrated that remote-sensing techniques play a crucial role in
the monitoring of water ecosystems. However, only two dates of moderate spatial resolution satellite
images were used in most change detection algorithms [18], and the detection of detailed change
and the qualitative analysis of the temporal effects of the phenomenon are limited. Additionally,
pixel-based change detection techniques were utilized in most of them. With the development of space
information technology, the availability of high spatial resolution imagery from satellite and airborne
platforms presents great challenges to these traditional change detection approaches as well [19].

In this paper, using multi-temporal high spatial resolution remote sensing images, we performed
a case study for lake change detection in an urban area of Wuhan, China. As is known, most urban
areas are developed and expanded through the alteration of other land types, including forests,
lakes, bare soils, and agricultural fields. Thus there is an increasing necessity to understand
urbanization’s dynamics, not only temporally but also spatially for the improvement of urban
environments. The main objective of this study are as follows: (1) a quantitative change analysis
of the shrinking of Shahu Lake and the impact of the factors over the past few decades using
multi-temporal remote sensing images; (2) to demonstrate the variations in lake extent in response to
human activities and rapid urbanization. To achieve the object, we applied object-oriented land-cover
classification schemes to very high resolution (VHR) aerial images from 1978–2011, which offer us a
new opportunity for advancing the performance of land-use classification and observing a greater
range of objects and spatial patterns. The classification results are also analyzed by combining the
collected corresponding policy.

This paper starts with a description of our study area and the collected datasets in Section 2.
Section 3 describes our approaches to land cover classification around Shahu Lake using multi-temporal
images. The classification results from the remote sensing images are presented and compared in
Section 4, and a detailed change analysis and the impact of factors of this study area based on the
experiment results are discussed in Section 5. Section 6 summarizes and concludes the results of
this study.

2. Study Area and Data

2.1. Study Area

The study focuses on the main extent of Shahu Lake, located in the central Yangtze River basin
and the urban district of Wuhan, China (30◦33′36”–30◦34′32” N, 114◦18′30”–114◦20′42” E, Figure 1,
sources: [20] for the left map, and [21] for the right map), and covers 3.331 km2. Wuhan has a subtropical
monsoon climate with abundant rainfall. One particular feature of Wuhan is the significant number
of lakes inside the urban area and surroundings, such as the famous East Lake (the largest urban
lake in China). Shahu Lake is the second largest urban lake in Wuhan, and it is the only lake within
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Wuhan’s inner ring road, with a strong storage capacity of surface water. Annual rainfall in the study
area is 1150–1450 mm and is concentrated from late June to early August; Average temperature is
approximately 16.5 ◦C.
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Figure 1. The geographical location of Shahu Lake in Wuhan, China.

Shahu Lake was once part of a larger water system connected to the East Lake and the Yangtze.
The Guangzhou–Wuhan railway, which was constructed in late Qing Dynasty (early 1900s), travels
across the lake and physically divides it into two parts, namely the inner Shahu Lake (located in the
south, 0.134 km2) and outer Shahu Lake (located in the north, 3.197 km2). The railway line still exists as
part of the Beijing–Guangzhou railway, which can be seen from Figure 1 (left map). Therefore, the two
parts of the original lake are managed by the local government as individual lakes with different water
qualities. Only small rivers and an underground drainage pipe network hydrologically connect them
for urban lake ecology.

Shahu Lake is a microcosm of the regional condition, and its centrality within the city of Wuhan
brings about a particular set of problems, namely, the lake is perceived as an obstacle for communication
and transit as well as an impediment for much needed city expansion. As a consequence, Shahu Lake
has experienced continuous shrinking during the past three decades. In particular, the inner Shahu
Lake has almost entirely vanished; its surface area is only 0.134 km2 currently. Besides the lake infill,
water pollution was serious due to urban waste disposal and domestic sewage discharge. The natural
ecology of Shahu Lake was seriously damaged during this period. Not only did many rare birds leave
in the past, but also a lot of fish in the lake were killed by the polluted water. According to the statistics
from local environmental protection departments in 2006, the water quality of Shahu Lake had the
worst grade (class V) of environmental quality standard for surface water (GB3838-2002).

2.2. Data

In order to interpret the Shahu Lake surface extent and land-cover change for this study area,
35 scenes of archived high resolution aerial images covering the study area in different periods were
collected from the surveying and mapping department of Hubei province in China, these images were
acquired for six separate years from 1978 to 2011, and all of them are cloud free. The characteristics of
these images are provided in Table 1.
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Table 1. Characteristics of different aerial images.

Name Taken Year Spatial Resolution(m) Band Count Mosaic Images

img1 1978 0.29 1 10
img2 1981 0.23 3 16
img3 1989 0.25 1 1
img4 1995 0.87 1 1
img5 2003 0.60 1 5
img6 2011 0.64 3 2

The digital aerial photos from 1978 to 2003 were produced from their original aerial film by means
of scanning with a high-precision photogrammetric scanner. The last image was generated from
digital aerial photography. The img1 was taken in June, while the other five images were acquired
in September. According to the accumulated precipitation data from the National Climate Center of
China, there was a similar rainfall condition in the study area, without flood and drought in the six
years. Therefore, the impacts from climate change on the lake area could be largely ignored.

2.3. Data Pre-Processing

As an essential pre-processing task for image classification and change detection, geometric
correction, mosaicking, co-registration, resample and image subsetting were applied to the collected
aerial datasets.

Precise geometric registration to a common map reference and co-registration between
individual images are crucial for ensuring the reliable detection of temporal changes of land-cover.
Initially, all aerial images were geometrically corrected to the universal transverse mercator (UTM)
map projection (UTM zone 49 N, WGS-84 geodetic datum). A corrected WorldView-3 satellite imagery
with three visible bands (red-green-blue, RGB) at 0.3 m spatial resolution was obtained (taken in
October, 2015) and then used as a reference for the image-to-image registration of all aerial images.
The registration was done using selected ground control points (GCPs) for each image, and the GCPs
were well dispersed throughout the whole study area and yielded root mean square errors (RMSE) of
less than 0.8 pixels.

Secondly, all the geo-referenced small aerial images covering the study area of each separate year
were mosaicked. In this process, a unifier ray and color of the mosaicked image for each separate
year was also done, which plays an important role for further image classification. Thirdly, all the
mosaicked images were resampled to the same spatial resolution (1 m). Finally, the resampled six
images were then clipped by using the same area of interest (AOI) to cover the whole study area.

The processing of image correction, co-registration, mosaicking, resample and clipping were
performed using ERDAS IMAGINE software package (Hexagon Geospatial, Madision, WI, USA).
The processed images for each separate year are shown in Figure 2. It can be seen that the study area is
characterized by classes of water bodies, built-up area, road, and vegetation (i.e., blocks of farmland
on the north side of the lake in Figure 2a–e, scattered trees). There are some yellow bare lands around
the lake in Figure 2f.
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3. Methodology

The methodology of this investigation is summarized and represented in Figure 3.
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The entire workflow includes three major stages: image segmentation, classification, and change
detection based on post-classification. Each major stage is subdivided into distinct processing steps,
such as building training set, generating decision tree (DT), validating the classification on independent
samples, etc.

In this research, object-based image analysis (OBIA) was employed for VHR aerial image
classification and change detection due to its advantages over the pixel-based approach, such as adding
object shape and context to spectral and textural information, avoiding a “salt-and-pepper” pattern in
pixel-based classification [9,22,23]. In the following we summarize the approaches step-by-step for
land cover classification and change detection of Shahu Lake with OBIA.

3.1. Multi-Resolution Segmentation

Multi-scale image segmentation is the foundational procedure of OBIA in which the digital
image is transformed from discrete pixels into spectrally homogeneous, contiguous image object
primitives [24]. Various segmentation techniques have been developed with different results, and the
selection of the image segmentation technique may lead to different classification accuracies in
OBIA [25]. In this research, all images are partitioned into homogeneous objects through the
multi-resolution segmentation algorithm (MRS) within eCognition Developer® software (Trimble,
Sunnyvale, CA, USA).

The MRS in eCognition is a widely accepted tool for image segmentation, yet the size
of segmented objects is controlled by user-defined scale parameters [26], which means that
the selection of segmentation scale parameters is often dependent on subjective trial-and-error
methods [27]. As a result, the most typical errors resulting from the segmentation step are under- and
over-segmentation [28].

In order to automatically identify the optimal segmentation parameters, the estimation of scale
parameter (ESP) tool developed by Drăguţ et al. is introduced [29], which is based on the idea that
the local variance (LV) of object heterogeneity within a scene can indicate the appropriate scale level.
The ESP tool iteratively generates image-objects at multiple scale levels in a bottom-up approach and
calculates the LV for each scale. Then, variation in heterogeneity was explored by evaluating LV plotted
against the corresponding scale. Finally, the thresholds in rates of change of LV (ROC-LV) indicate the
scale levels at which the image can be segmented in the most appropriate manner. Moreover, the ESP
tool can be integrated with eCognition software suite.

3.2. CART Classification

Over the years, a variety of methods for object-based classification have been developed.
Classification and regression trees (CART), introduced by Breiman et al. [30], have become known as
the fastest and most versatile predictive modeling algorithm available for analysis and classification.
Therefore, this research focuses on a CART-based approach.

CART provides a foundation for important algorithms such as bagged decision trees, random
forest and boosted decision trees. The method inherits all the advantages of general decision trees,
and can be used to generate accurate and reliable predictive models for a broad range of applications
such as image classification [31]. CART trees deliberately restrict themselves to two-way splits of the
data, intentionally avoiding the multi-way splits common in other methods. These binary decision
trees divide the data into small segments at a slower rate than multi-way splits and thus detect more
structure before too few data are left for analysis. Since the method is essentially non-parametric,
it has the additional advantage of no necessity in assuming the functional form of the statistical
distribution of data.

The representation for the CART model is a binary tree, and each node of the decision tree
structure makes a binary decision that separates either one class or some of the classes from the
remaining classes. Creating a CART model involves selecting input variables and split points on those
variables until a suitable tree is constructed. The selection of which input variable to use and the specific
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split or cut-point is chosen using a greedy algorithm to minimize the cost function. This is a numerical
procedure where all the values are lined up and different split points are tried and tested using a cost
function. Tree construction ends up with a predefined stopping criterion, such as a minimum number
of training instances assigned to each leaf node of the tree.

Object-based classification in our study is performed with the CART algorithm. Salford Systems’
CART was chosen to generate rule sets for decision tree classification, as it is a robust decision tree
tool for data mining, predictive modeling, and data preprocessing. This tool is able to provide reliable
performance and accurate results, since there are many advantages for its methodology, such as
a powerful binary-split search approach, effective pruning strategy, automatic self-test procedures,
cross validation, adjustable misclassification penalties, which help to avoid the most costly errors, etc.

This procedure of CART classifiers requires a set of class-specific training objects from which the
distribution of object-level features are obtained to evaluate membership functions of each class. The set
of rules defined by the object attributes and their respective thresholds was identified automatically
in the SPM® (Salford Predictive Modeler, Salford Systems, San Diego, CA, USA) software suite 8.2,
and these rules constitute the DT. The hierarchic classification was then performed according to the
DT’s set of rules inside the computational environment of the eCognition software, and a thematic
map with different classes of interest was finally produced.

3.3. Change Detection

Once a DT is built it can be used to classify the unknown cases. Change vs. no-change
can be treated as a binary-classification problem or a post-classification comparison can be
performed to measure the changes. It is perhaps the most commonly used object-based change
detection methodology that allows the creation of a change matrix indicating the “from–to”
changes. Thus, object-based change detection (OBCD) based on post-classification comparison [32]
was employed in this procedure. The classified multi-temporal map objects were compared for
a detailed change analysis based on both the geometry and the class membership.

4. Experiment

In order to detect the land use changes at Shahu Lake in the period 1978–2011, a set of experiments
on multi-temporary images were carried out using eCognition Developer 9.0 software, including
image segmentation, sample selection, classification based on CART, accuracy assessment and
change detection.

4.1. Image Segmentation

The optimal segment parameters of scale are defined with the help of the ESP tool. After defining
the starting scale parameter as 10, and the step size of the increasing scale parameter as five, the
ESP tool iteratively performs multi-scale segmentations of an image with fixed increments of the
scale parameter for 200 loops. The results are then exported and analyzed in a LV and ROC-LV
graph, which depicts changes in LV (solid red) and ROC (solid blue) with increasing scale parameters
(see Figure 4). Finally, a threshold was defined as the first break in the ROC-LV curve after continuous
and abrupt decay, i.e., 60 in Figure 4. Drăguţ et al. [29] had proved that the peaks in an ROC-LV
curve indicate the object levels at which the segments delineate their correspondents in the real world,
and they tested the ESP tool on a variety of sites. By integrating the ESP tool with the eCognition
software, the selection of scale parameters was performed for each scene, and we further confirmed
that the selected scale parameters are appropriate by visual comparison and the assessment of different
segmentation results. During the identification of suitable scale parameters in the ESP tool, the other
parameters shape and compactness were set as 0.3 and 0.5 respectively according to the description
in [33] and the suggestion in [29].
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Once the proper scale parameter for each image had been identified, the multi-resolution
segmentation tool was applied to segment the six images into meaningful objects for the classification
procedure. These segmentation parameters for the six images are presented in Table 2. The scale of the
first image was greater than the others, mainly because there were many large homogenous areas in
this image, and a high scale parameter would benefit the extraction of large features and the creation
of meaningful objects for classifying specific features.

Table 2. The optimal segment parameters used for each aerial image.

Image Scale Shape Compactness

1978 350 0.3 0.5
1981 60 0.3 0.5
1989 70 0.3 0.5
1995 60 0.3 0.5
2003 60 0.3 0.5
2011 60 0.3 0.5

4.2. Sample Selection

To generate the independent set of training and testing samples and to ensure representative
sampling coverage of the entire study area, a skilled expert classified more than 7500 samples (objects)
through the visual interpretation of a temporal series of aerial images that were selected. There were
a total of 2719 training samples and 5205 testing samples, including five land cover types: water
(lake and river), vegetation (tree, grass and farm land), bare land, building, and road. There were fewer
training objects so as to avoid redundant training samples.

The training and testing sample count of each class for these images are reported respectively in
Tables 3 and 4.



Water 2018, 10, 1 9 of 16

Table 3. The training samples used for each aerial image.

Image Water Vegetation Bare Land Building Road Total Objects

1978 45 62 26 65 31 229
1981 56 163 25 570 42 856
1989 45 73 30 82 22 252
1995 47 71 14 102 41 275
2003 47 151 35 187 91 511
2011 64 59 77 281 61 596

Table 4. The testing samples used for each aerial image.

Image Water Vegetation Bare Land Building Road Total Objects

1978 147 216 97 199 42 701
1981 350 213 101 542 88 1294
1989 136 225 75 159 39 634
1995 146 148 36 191 39 560
2003 174 208 89 315 106 892
2011 100 202 121 486 86 1124

4.3. CART Classification

During the classification processing, firstly the selected training samples were exported in vector
format with features in an attribute table. Then, these features were used to train the CART model to
identify patterns. Figure 5 illustrates an example of the binary decision tree generated by SPM CART
modelling on the training set.
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Since features extracted from the image objects are often of high dimension and highly correlated,
the classification algorithms frequently used in OBIA do not perform well if all object features are
used in the classification. Therefore, feature selection is also important for classification. We can
see that only seven dimensions of the feature space are identified to separate different classes in
Figure 5, which are spectral features (mean, standard deviation), shape features (length, length/width,
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shape index, rectangular fit), and texture features (gray-level co-occurrence matrix (GLCM) contrast
(all directions)).

It can be seen that the water class can be firstly distinguished by its spectral behavior (mean,
standard deviation). Bare land could be identified by four attributes: mean, length, length/width,
and rectangular fit. The classification of buildings and vegetation is difficult because they are
represented by various features, so more indices such as GLCM contrast are introduced to separate
them from other classes.

Different decision trees with individual sets of rules were built so as to facilitate the best
discrimination of classes based on the training samples from each separate image. Then, these decision
trees generated in SPM were implemented in eCognition Developer, by converting the decision rules
into thresholds for various attributes. Each separate image was then classified into water, vegetation,
bare land, farmland, building and road using the CART classifier. The final classification results of
these images are shown in Figure 6. For the 2011 image, there were seven classes, including building
shadow, which was presented in black color.
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Figure 6. The classification results based on CART (classification and regression trees): (a) 1978; (b) 1981;
(c) 1989; (d) 1995; (e) 2003 and (f) 2011.

4.4. Accuracy Assessment

In order to evaluate the classification accuracy in a more objective manner, an accuracy assessment
was carried out. The accuracy of these images was estimated based on testing samples carefully
selected from each individual image. The validation samples were partitioned to 10 × 10 pixels size
with a chessboard segmentation algorithm, these small objects were then applied to calculate the
confusion matrix.

The classification result of each separate image was quantitatively assessed through the overall
accuracy and Kappa coefficients, both extracted from the confusion matrix. The quantitative statistic
was reported in Table 5, and it can be seen that an average of 92.07% overall accuracy was achieved,
and the mean Kappa coefficient was 0.8909.
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Table 5. Overall accuracy for each aerial image.

Image Overall Accuracy (%) Kappa Coefficient

1978 87.54 0.8107
1981 96.35 0.9438
1989 94.50 0.9233
1995 95.20 0.9360
2003 92.55 0.9019
2011 86.29 0.8295

Average 92.07 0.8909

4.5. Change Detection

The six independently classified images were then run for post classification comparison in order
to produce a change detection analysis, which was conducted using ArcGIS 10.3. The outputs of the
decision tree classifier were overlaid to produce the land use changes in a time-series starting from 1978
to 2011. The surface area change of Shahu Lake between different periods is reported in Table 6, and the
last column indicates the change in total area with respect to the previous year. Since there is a bridge
across the lake in the last image, the portion of the bridge over the lake was considered as water while
computing the lake area. The results show that the total area of Shahu Lake has been reduced from
~7.64 km2 to ~3.60 km2 over the past 33 years, which indicates that this lake had experienced rapid
shrinking during this period. The most intense changes in Shahu Lake were detected between 1995
and 2003, during which the lake lost ~34.83% of its surface area in comparison with the year 1978
and 33.40% of its surface area in comparison with the year 1995. From 2003 to 2011, the shrinking
of this lake can also not be ignored, as there was more than 1.38 km2 of lake area lost in this period.
The outer lake lost 49.17% (3.4186 km2) of its original surface extent from 1978 to 2011, whereas 90.81%
(0.6219 km2) of the inner lake surface was damaged during these years, and it has almost disappeared.

Table 6. The area statistics of Shahu Lake.

Year Outer lake Area (km2) Inner Lake Area (km2) Total Area (km2) Change in Total Area (km2)

1978 6.9522 0.6848 7.6370 0
1981 6.8946 0.7852 7.6798 0.0428
1989 6.7784 0.7443 7.5227 −0.1571
1995 6.8943 0.5787 7.4730 −0.0497
2003 4.8858 0.0916 4.9774 −2.4956
2011 3.5336 0.0629 3.5965 −1.3809

In order to investigate what led to the intense shrink of Shahu Lake between 1995 and 2003,
a “from–to” change map was obtained based on the two classification results, which is shown in
Figure 7a. The post-classification comparison showed that the lost lake surface area has been replaced
by a large number of buildings, bare lands, vegetation, and roads. Similarly, another land cover change
map of the Shahu Lake surface from 1978 to 2011 is presented in Figure 7b, which indicates that the
built-up area, including buildings and roads, had the maximum impact on the losses of lake areas
during this period.
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The area coverage and changes of the LC categories are summarized in Table 7, which represents
the large increment in the coverage of roads and building areas, in particular the area with buildings
has increased by more than two times. The lake and vegetation lost over 40 percent of their original
areas. The significant decline in the lake coverage between 1978 and 2011 is clearly the result of
the rise of mass construction. Therefore, it is some of the best evidence of lake shrinking due to
rapid urbanization.

Table 7. The area coverage and changes of the land cover categories between 1978 and 2011.

Class Name 1978 Area (km2) 2011 Area (km2) Change in Area (km2) Change % from Original Area

lake 7.2519 4.2505 −3.0014 −41.39%
bareland 2.1945 1.6529 −0.5416 −24.68%

vegetation 5.6682 3.1601 −2.5081 −44.25%
road 0.7791 1.2856 0.5066 65.02%

building 2.0367 6.9669 4.9302 242.07%

5. Discussion

The generated classification and statistics results revealed a significant change in the surface area
of Shahu Lake over its history, and these changes confirm different human-made external driving
forces in the watershed area. The total area of this lake increased a little between 1978 and 1981 due to
the fact that some farmland was flooded, since the 1981 image was captured after rainfall. The rapid
urbanization since the 1980s has completely encapsulated the lake with high-rise buildings, hiding the
lake behind a forest of concrete slabs. Shahu Lake changed little before 1995, since the urbanization
was still in the initial stages during these 17 years. In the 1990s, some roads around Shahu Lake were
built or widened at the cost of filling part of this lake, since the famous Second Wuhan Yangtze River
Bridge was built. Meanwhile, as urbanization intensified, the lake continues to be devoured by real
estate development and other damages, especially during the period from 1995 to 2011. During the
17 years from 1995 to 2011, the local government attached great importance to economic and urban
development, as a result, more than half of Shahu Lake’s surface area was filled with dirt to make land,
which can be seen in Table 6. Moreover, due to great quantities of wastewater from factories and the
construction industry being discharged into the lake, the pollution of the lake was also becoming more
and more serious, which led to the prohibition of fish farming in Shahu Lake since 2007.

Shahu Lake has shrunk a great deal over the past few decades, due to rapid urbanization and to
imperfect legislation for the protection of the lake. To strengthen the protection of lakes in Wuhan,
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and to prevent the occupation of and damage to the existing lakes, the Lake Protection Regulations
of Wuhan were promulgated by local government on 1 March 2002. Since then, the occupation of
Shahu Lake has been reduced a lot, and the lost area of this lake during the period from 2003 to
2011 was less than the previous eight years. However, Shahu Lake was still shrinking due to rapid
urbanization, which indicates that the legislation for the protection of these lakes was not perfect.
Thus, the governments of Wuhan began to take more stringent measures to strengthen the protection
and management of urban lakes. In December 2012, a lake protection plan of “three lines and one
way” in the center city of Wuhan was made by Wuhan Land Resource and Planning Bureau. The three
lines are the lake water protection line (blue line), the lake green control line (green line), and the
waterfront construction control line (gray line). “One way” stands for the road around the lake,
including a car path and walking path around the lake. The three lines of the Outer Shahu Lake
protection plan are shown in Figure 8. The blue line indicates the surface extent of the Shahu Lake
watershed, and it is the boundary of the lake water ecological protection. The green line identifies
the transition between the water ecosystem and urban terrestrial ecosystem, while the gray line is the
boundary of the construction control area for the protection of the sharing and heterogeneity of the
water environment.Water 2018, 10, x FOR PEER REVIEW  13 of 16 
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Figure 8. The three lines of Outer Shahu Lake protection plan.

The areas controlled by blue line, green line and gray line are 3.078 km2 (307.8 hectare), 0.901 km2,
3.918 km2, respectively. The length index controlled by the blue line is 9.8 km. There is a similar figure
for the protection plan of the inner Shahu Lake, and the area and length controlled by the three lines
for the two lakes are described in Table 8. The surface extent of Outer Shahu Lake will remain at
3.078 km2, while the extent of Inner Shahu Lake will not be less than 0.056 km2.

Table 8. Area and length indices controlled by the three lines of the Shahu Lake protection plan.

Name Area Controlled by
Blue Line (Hectare)

Length Controlled by
Blue Line (km)

Area Controlled by
Green Line (Hectare)

Area Controlled by
Gray Line (Hectare)

Outer Lake 307.8 9.8 90.1 391.8
Inner Lake 5.6 1.1 2 28.4

Beside this protection plan, the local government revised the lake protection regulations on
1 June 2015, so as to prevent further damage to the existing lakes. It can be seen from these policies
that the protection of urban lake resources comes first in the new round of urbanization in Wuhan.
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On the other hand, to improve the water quality of Shahu Lake and the drainage capacity of
this region, the Chu River and Han Street was developed by the end of September 2011, which was
a project of the first phase of the Wuhan Central Cultural Zone. Chu River, as a water channel of 2.2 km
in length, connects the East Lake and the Shahu Lake in Wuhan, and it is the first of the “lake linking
plan” for water network treatment projects approved by the State Council of China. In addition,
the Shahu Bridge across the Shahu Lake was built as one part of this project, which did not damage
the existing water environment of the Outer Lake. Thus, there is a small river that appears in the lower
right corner of the last image, and a long road across the lake area. Shahu Lake is no longer subject
to any damage under these strict measures of protection. In addition, a new open Shahu Park with
the characteristics of historical culture and a wetland landscape has been gradually built since 2009,
and the lake ecosystem has been significantly improved, especially the water quality of the inner lake.

6. Conclusions

Land cover mapping and change detection have increasingly been recognized as one of the most
effective tools for environmental resource management. This study showed the use of multi-temporal
VHR images to perform a detailed change analysis based on OBIA techniques with respect to special
areas of interest. We have demonstrated that significant changes in land-use and land cover have
occurred along with the rapid urbanization during 1978–2011. The dominant changes that took place
in the study area during this period were lake and vegetation shrinking, being replaced by built-up
areas, such as high density buildings and roads.

The utilization of automated segmentation algorithms to delineate polygons, coupled with CART
modelling to develop rules to supervise classification, brought a high accuracy and consistency to the
final product that has not been obtainable using manual image interpretation. These classification
results showed high levels of exactitude, with the average overall accuracy and the Kappa coefficients
reaching 92.07% and 0.89, respectively. It must be pointed out that perfect classification results come
from all classification processing, including not only the classification algorithm, but also image
pre-processing, sample selection and post-processing.

Our study clearly demonstrated the benefits of the rapid and accurate change detection using
VHR images acquired on different dates. Post-classification change detection based on multi-temporal
imagery made a successful change analysis with respect to the landscape of Shahu Lake. It can be
stated that the proposed methodology enables us to better understand the spatial changes of Shahu
Lake in detail on the one hand, and the trends of urban growth on the other hand. Currently, the local
authorities are paying growing attention to the dynamic monitoring of urban lakes based on high
resolution remote sensing images from sensors like WorldView and Gaofen-3, and this technology
has made remarkable achievements in the discovery of illegal urban lake filling. Future studies may
include vector dataset and social economic data in order to perform more detailed change analysis,
and assist the local government in making more scientific and reasonable urban lake protection plans.
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