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Abstract: The implementation of floating structures has increased with the construction of new
sluices for flood control. The overturning moment of floating structure and its influencing factors
are the important parameters that determine the structural safety. It is essential to understand the
overturning characteristics of these structures in currents. Based on hydrodynamic theory and
equilibrium analysis, the hydraulic characteristics of a floating structure are discussed by means of
theoretical analysis and experiments. A formula for the overturning moment is developed in terms
of the time-averaged pressure on the structure. The corresponding parametric study aims to assess
the effects of flow velocities, vertical positions, shape ratios and water levels on the overturning
moment. The experimental results show that hydrodynamic factors have a significant influence on
the overturning of the structure. Furthermore, a relationship is obtained between the overturning
moment and the contributing parameters according to dimensional analysis and the linear fitting
method of multidimensional ordinary least squares (OLS). The results predicted by the formula agree
with the experimental results, demonstrating the potential for general applicability.

Keywords: floating structures; current water; hydrodynamic factors; overturning moment;
OLS method

1. Introduction

The construction of water conservancy project is used to solve the problems of water resources,
while it also produces the pollution of river, disaster of flood and the damage of natural environment
and groundwater [1–4]. It is necessary to establish a water conservancy project that has little impact
on the environment. Floating structures are widely used in new types of sluices in flood control,
tidal power stations, pumping stations, and oil production platforms, and they have begun to play an
important role as environmentally friendly facilities [5–7]. The stability of the structure is an issue of
concern because such stability affects both construction and operation.

Research in recent years has focused on the stability of floating structures and the interaction
between water and floating structures in infinite water, still water, and water under the action of wave
motions. Roy and Ghosh [8] proposed a simple model to estimate the horizontal force and moment of
a floating plate against waves at different depths and found that the force and moment converged with
increasing wave period and depth. Hayatdavoodi and Seiffert [9–12] conducted laboratory experiments
and numerical simulations of conidial waves propagating over a submerged floating plate. The vertical
force acting on the submerged floating plate appeared to scale linearly with the wave height, while the
horizontal force varied nonlinearly with wavelength. They noted that the water depth and the wave
submergence depth had an effect on the safety and that the interaction between a wave and a floating
bridge contributed significantly to the force magnitude. Lee and Hong [13] adopted experimental
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tests and the Marker and Cell numerical method to verify the nonlinear wave effect on a large
floating structure. The test configuration reduced the wave force and improved the stability with the
installation of baffles. Belibassakis and Athanassoulis [14] analyzed the hydrodynamic characteristics
of the floating structure by hybrid technology in any water depths. The seabed model with different
slopes and curvatures was shown to have an influence on the hydrodynamic characteristics and the
response of floating structures under the action of waves. Liu et al. [15] predicted the wave force and
the momentum of the structure for infinite water and finite water depths using the three-dimensional
time-domain Green’s function method. In addition, they investigated the motion response under the
action of waves by means of numerical simulations [16,17], concluding that the water depth had an
effect on the overturning phenomenon.

The studies noted above considered the response of floating structures in still water or under
the action of waves in finite water, in which the momentum and its influencing factors were
analyzed. Such structures have similar characteristics to ships, offshore platforms and sluices.
However, the hydrodynamic conditions are different from that of ships in infinite waters and offshore
platforms [18,19]. The force leading to the overturning of structures in currents consists of an inertia
force, hydrodynamic pressure and frictional resistance. Lu [20] analyzed the stability of a floating
bulkhead and its influencing factors in still and flowing water. He also compared the different
characteristics between hydrostatic stability and dynamic stability and discussed improvement
measures of the stability of a floating bulkhead. Based on the principle of force balancing, Fu et al.
examined the actors affecting the overturning of floating bulkheads and developed a stability formula
describing these structures [21]. They found that the inertia force and the hydrodynamic pressure
in currents had an effect on the overturning phenomenon and proposed a method to improve
bulkhead safety. Huang et al. [22] introduced a numerical simulation to study the relationships
among water depths, flow velocities, closing angles and the floating bulkhead. Based on a neural
network, Fan and Suo [23,24] established a database for floating transportation structure technology,
which was used to calculate the stability of tidal power plates in the process of floating and sinking.
This method overcomes the limitations of stability formulas and is easy to use. Johnson et al. [25]
compared three models to calculate the dynamic responses of floating breakwaters under the action
of waves and currents, wave heights, wave lengths and currents. Rey and Touboul [26] devised
experiments of a submerged floating plate related to the currents acting on it. The current had a strong
effect on the reflection coefficient and horizontal force. Karmakar and Guedes Soares [27] analyzed
the bending moment and shear force on a moored finite floating elastic plate under gravity waves in
the case of finite water depth, concluding that the effect of lateral pressure on the plate should not be
neglected. Cui [28,29] adopted numerical simulation and experimental tests to study the force acting
on the floating structures, the sensitivity of influencing factors were analyzed and the force formula
was given. No uniformity of force acting on structures led to the overturning; however, the variation
tendency of overturning and its influencing factors were not studied.

Previous studies have analyzed the influencing factors of the overturning of floating structures in
currents and addressed the relationships between the factors and different positions. The influence
of hydrodynamic pressure on the overturning of a floating structure is the motivation to develop a
method to accurately calculate the overturning moment via hydrodynamic pressure. Based on a large
number of hydraulic model tests, the theory of hydrodynamics and equilibrium analysis are employed
to analyze the hydrodynamic factors acting on the capsized features of a floating structure at different
positions in currents. The micro-integral method is used to calculate the structure’s overturning
moment. The hydraulic parameters, i.e., the floating ratio of the structure, water level, velocity
and vertical position, are investigated to evaluate the stability through a theoretical analysis; also,
the relationship between overturning and parameters is also described. In light of the experimental
results, a formula of overturning moment in terms of the hydrodynamic pressure in currents is given;
the results from the formula are in good agreement with the experimental tests. The findings provide a
useful reference for the stability determination of floating structures.
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2. Experimental Configuration and Design

2.1. Experimental Configuration

The experiments were conducted in a flume at the Hydraulic Laboratory, Hohai University.
The dimensions of the flume were 10.00 m, 0.30 m, and 0.50 m (length, width, and height, respectively)
and the slope of the flume was 0. The device used for the experiment has a self-circulation
system, composed of a water pump, control valve, damping screen, glass flume, tailgate, triangular
sharp-crested weir and tail water; Figure 1a shows the layout of the experimental rig. A damping
screen was installed at the upstream of the flume to calm the flow; the testing area of the floating
structure was in the center of the flume. Experiments were conducted under submerged flow flows.
Floating structures in different positions were fixed with the side walls of flume, with their width
perpendicular to the flume. The water flows through the upper and lower parts of structures into the
downstream and cannot flow around it. The tailgate at the end was used to regulate downstream water
depth. The water supply to the flume was provided through a supply pipe from the pump, with flow
control provided by a valve. A triangular sharp-crested weir at the end of the flume displayed
the discharge. The water depth was measured using a point gauge to an accuracy of ±0.01 cm,
level measurements were taken at a distance of 2 m from the center of the structure, and typical
velocities were obtained by particle image velocimetry (PIV). Flow characteristics around the floating
structure were measured along the longitudinal section. The overturning moment of the structures
caused by the surface hydrodynamic pressure in current was measured and analyzed.
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The coordinate system is Cartesian, with its origin (0, 0, 0) on the flume bottom. The X-axis
is parallel to the flume, positive downstream. The Y-axis is perpendicular with the flume, with its
origin in the middle of the flume. The Z-axis is vertical, positive upwards. The layout of the main
experimental rig is shown in Figure 1b.

2.2. Design of Experimental Parameters and Test Layout

During the operation of floating structures in current, factors affecting overturning moment mainly
include the floating structures’ shape, the vertical position and the hydraulic conditions. According to
the factors affecting the overturning moment in hydraulic engineering, the indoor experiments were
established and the main parameters conditions were analyzed. The experiments were conducted with
the width B = 30 cm of the floating structure perpendicular with the flume, and the structure height
was a = 10 cm. The unit inflow discharges were q = 0.05, 0.06, 0.07 and 0.08 m2/s. To study the effect of
structure size, four lengths were used, namely, L = 10, 20, 30 and 40 cm, in the flow direction. Four flow
cases with the water level difference ∆H = 1, 2, 3 and 4 cm were tested, ∆H = H − H’, where H and
H’ are the upstream and downstream water depths, respectively. Floating structures were set at four
vertical positions at depths of submergence of e = 2, 5, 10 and 20 cm. The opening (or gap) e beneath the
structure was defined as the distance from its lower edge to the flume bottom; v denoted the velocity.
The hydrodynamics parameters are illustrated in Figure 2 and experimental parameters are showed in
Table 1.
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Figure 2. Schemes of the hydrodynamics parameters.

Table 1. Experimental parameters.

L (cm) e (cm) q (m2 s−1) ∆H (cm)

10/20/30/40

2

0.05 1.00 2.00 3.00 4.00
0.06 1.00 2.00 3.00 4.00
0.07 1.00 2.00 3.00 4.00
0.08 1.00 200 3.00 4.00

5

0.05 1.00 2.00 3.00 4.00
0.06 1.00 2.00 3.00 4.00
0.07 1.00 2.00 3.00 4.00
0.08 1.00 2.00 3.00 4.00

10

0.05 1.00 2.00 3.00 4.00
0.06 1.00 2.00 3.00 4.00
0.07 1.00 2.00 3.00 4.00
0.08 1.00 2.00 3.00 4.00

20

0.05 1.00 2.00 / /
0.06 1.00 2.00 / /
0.07 1.00 2.00 / /
0.08 1.00 2.00 / /

The pressure distribution on the surface of the floating structures was measured using miniature
dynamic pressure sensors with a resolution of 0.2 mbar. Compared with the piezometers and
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other sensors, miniature dynamic pressure sensor has the benefit of high measurement precision,
high-frequency and reliability, which is better to capture the pressure changes and improve the accuracy
of the collection pressure. Although the flow velocity near structures is relatively large, the streamline
around it is smooth, and the turbulence intensity around it is relatively weak. The change in the
hydrodynamic pressure on the surface is relatively small, and the acquisition time of the sensor is
5 min. The time-averaged values were used to investigate the change. Layout of pressure measurement
points is given in Figure 3.
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Figure 3. Layout of pressure measurement points: (a) 100 × 100; (b) 200 × 100; (c) 300 × 100;
(d) 400 × 100 (mm).

3. Calculation of the Overturning Moment

The change of the hydrodynamic pressure and the distance between adjacent measuring points is
relatively small; therefore, in order to get the exact value, the overturning is calculated by measuring
the surface pressure using the micro-integral method. The dynamic pressure on the structure was
collected, and time-averaged values were used to calculate the overturning moment by means of the
micro-integral method. Figure 4 shows the calculation schematic of the overturning moment and the
pressure profile of the measurements.

The upstream face of the floating structure is selected and depicted in Figure 4. The profile is
parallel to the flow direction; C is the center of the floating structure. Li1 and Li2 are the horizontal
distances of measuring points A and M from the measuring point to C, respectively; l is the horizontal
distance from measuring points A to M, hi1 and hi2 are the water depths of the measuring points,
respectively, and ei is the pressure center of the computational domain.
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Although the flow velocity near structures is relatively large, the hydrodynamic pressure acting
on the surface of the structures changes smoothly along the flow direction. The distance between
adjacent measuring points is small, so it is reasonable to assume that the pressure distribution is linear
between them. The pressure is calculated as follows:

Pi = ρgB
∫ Li2

Li1

h(l)dl (1)

h(l) =
hi1 − hi2
Li1 − Li2

× l + (hi2 −
hi1 − hi2
Li1 − Li2

× Li2) (2)

where g is the acceleration of gravity, 9.81 m/s2; ρ is the water density, 1000 kg/m3; dl is the differential
length of M, m; h(l) is the submerged depth of M, m, and Pi is the pressure between two measuring
points, N.

The distance between ei and C is Lei:

Lei =
(Li2 − Li1)(hi1 + 2hi2)

3(hi1 + hi2)
+ Li1 (3)

The overturning moment in terms of the time-average pressure distribution is defined as MPi:

MPi = PiLei (4)

Therefore, the total overturning moment is calculated as follows:

MP =
n

∑
i=1

MPi (5)

The direction of MPi is negative in the clockwise direction and positive in the counter-clockwise
direction. The value of MP is related to the unit width dynamic pressure (B = 1 m).

The overturning moment of the floating structure varies according to the floating ratio of
the structure, water level, velocity and vertical position based on experimental observation and
analysis. Dimensional analysis is used for analyzing the relationships between influencing factors and
overturning, which makes the obtained results harmonious in dimension and universal in meaning.
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It found that MP [ML2/T2] and the other relevant physical quantities, namely, L [L], v [L/T], g [L/T2],
a [L], ∆H [L], e [L], H [L], ρ [M/L3] and dynamic viscosity µ [MT/L2]„ are related as follows:

f (MP,L, v, g, ρ, a, ∆H, e, H, µ) = 0 (6)

The effect of µ can be discussed in terms of the sheer force. It is observed that the effect of
viscosity on the floating structure can be neglected compared with the hydrodynamic pressure [29].
According to the π theorem, H, g and ρ are selected as the basic parameters. Two dimensionless
Pi-groups are given: π2 = L/H and π4 = a/H. The shape of floating structures is a factor that affects the
overturning moment. The dimensionless parameters were rearranged logically to yield, the shape
ratio to obtain: π2/π4 = (L/H)/(a/H) = L/a. The equation is derived as follows:

MP

H4gρ
= F(

L
a

,
e
a

,
v2

g∆H
,

∆H
a

) (7)

where L
a is the shape ratio. Given the definition of the overturning moment of floating structures’ and

MKP, we obtain
v2

g∆H
= Fr2 MP

H4gρ
= MKP

Thus,

MKP = F(
L
a

,
e
a

, Fr2,
∆H

a
) (8)

4. Results and Discussion

Experiments were performed to study the overturning moment of the floating structure in currents;
in these experiments, the hydrodynamic pressure was examined in terms of its governing parameters:
L/a, e/a, Fr2 and ∆H/a. The results obtained from the experiments are presented below.

4.1. Shape Ratio of the Floating Structure

The effect of the shape ratio of the floating structure L/a on MKP under ∆H/a = 0.10, 0.20, 0.30 and
0.40 is shown in Figure 5. The behavior, particularly the size and position, is directly related to
the overturning moment. The scattered points indicate that under the same ∆H/a, MKP increases
significantly with increasing L/a. The values of MKP corresponding to L/a = 4 are comparatively larger
than that of L/a = 1, 2 and 3. Note that the gradient of growth presents an increasing trend if ∆H/a is
large. The structures’ shape increases, resulting in larger surface area under the effect of hydrodynamic
pressure and bigger distance to the center point of structures. The higher water level difference
results in the higher value of pressure difference. Therefore, the value of MKP is larger and stability
is decrease. The relationship between MKP and L/a is linear, and its gradient changes under different
∆H/a. The relationship between MKP and L/a, ∆H/a is resulted from the variations of hydrodynamics
characteristics under different L and ∆H, which are described as follows. During the experiment,
with increasing L/a, the flow velocity decreases significantly near the structures’ top center. A small
recirculation region near the top of the structure expands to the back half of the structure; the minimum
pressure value is on the center of the top surface. Larger ratios result in lower pressure on the upper
and lower surfaces, and the pressure distribution on the surface is significantly uneven. For a relatively
high ratio, the pressure drop is large from the entrance of the bottom gap to the downstream part,
causing the increasing pressure difference and giving rise to the overturning moment. Although the
larger L partially improves the discharge capacity, the effects of vibration and pressure difference may
threaten the safety of the structure. Therefore, it is advisable to increase the safety of the structure by
reducing its shape ratio.
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Figure 5. MKP vs. different L/a for ∆H/a = 0.10, 0.20, 0.30 and 0.40.

Figure 5 shows that MKP increased obviously with the increasing of L/a under the same ∆H/a,
and the following equation was obtained

MKP = k1L/a + c1 (9)

where k1 is the gradient of growth, and c1 is a constant term.
The effect of L/a on MKP is different under the influence of ∆H/a. The relationship between MKP

and L/a is linear; its gradient of growth k1 changes under different ∆H/a, and k1 presents an increasing
trend with a larger ∆H/a. A linear relationship is found between the gradient k1 and ∆H/a:

k1 = k2∆H/a (10)

where k2 is the coefficient term. Combining Equations (9) and (10), the relationship between MKP and
L/a is obtained as follows:

MKP = kL/a × ∆H/a + c (11)

where k is the coefficient term, and c is a constant term.

4.2. Vertical Position

In Figure 6, MKP is plotted against e/a for different values of L/a. The range of MKP shows a
decreasing trend with growing e/a in all cases. With increasing e/a, the MKP decreases under the same
shape of floating structures. In the same vertical position, larger ratios L/a result in the higher gradient
of growth, and this is agreement with the previous conclusion. Hydraulic pressure causes the change
of overturning moments in different positions. The hydrodynamic pressure acting on the surface of
structures decreases obviously if the floating structure floating upward. For a submerged structure,
the hydrostatic pressure results in the pressure distribution and accounts for a large proportion of
the total pressure. The distance between the structure’s upper edge and the water surface decreases,
leading to lower pressure on the surface. Lower pressure reduces the pressure difference, which is
an essential cause to reduce MKP. The effect of e/a on MKP is different under the influence of L/a.
The relationship between MKP and e/a is linear; its gradient of growth changes under different L/a
and presents a linear relationship between them. It is also found that there is the linear relationship
between the MKP and e/a and L/a, which is obtained as follows:

MKP = ke Le/a2 + ce (12)

where ke is the the coefficient term, and ce a the constant term.
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4.3. Froude Number

In Figure 7, the experimental data of MKP are plotted versus Fr2 for L/a = 1.00, 2.00, 3.00 and 4.00.
The change of the overturning moment is not prominent until Fr2 reaches 1.00, which is defined as
the critical Froude number of the overturning moment. In the range Fr2 < 1.00, L/a influences MKP.
The higher shape ratio results in the higher value of MKP and the gradient, in agreement with the
previous conclusion. The scattered points indicate that under the same ratio of floating structures,
MKP increases significantly with decreasing Fr2. If Fr2 > 1.00, then the range of MKP becomes close to
a straight line, i.e., L/a has no significant effect on MKP if Fr2 reaches and exceeds 1.00. Note that the
distribution of MKP is wider as L/a grows if Fr2 is small. MKP and Fr2 exhibit a nonlinear relationship
in all cases. With an increasing velocity, the velocity difference between the upstream and downstream
face of the structure becomes larger. Due to the throttling effect of the floating structure, the water
level between the upstream and downstream regions increases, leading to an increasing overturning
moment and decreasing of its stability. In actual situations, if Fr2 is lower than its critical value, it has a
significant impact on the stability behavior.
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4.4. Water Level

In Figure 8, the effect of ∆H/a on MKP is shown for all ratios. A greater value of ∆H/a significantly
increases MKP for the same L/a, and with increasing shape ratio, the gradient of MKP becomes larger.
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With the increasing water level difference, the hydrodynamic pressure acting on the upstream face of
the floating structure is obviously higher than that of downstream face therefore, the structures tilt
toward the downstream, and the overturning moment increases obviously. The water flow through
the upper surface of structures into the downstream area, the water profile over the floating structure
obviously drops, leading to the higher pressure difference. Also, the flow velocity increases significantly
under the bigger water level difference. The flow kinetic energy converts to potential energy due to the
water acting on the upstream face, resulting in higher hydrodynamic pressure. There is a recirculation
zone exists near the downstream face of structures, which causing the lower hydrodynamic pressure
acting on downstream face. The overturning moment becomes greater as a result of the pressure
distribution under the effect of increasing water level. According to the experimental results, the effect
of ∆H/a on MKP is significant for the same structure. With a higher water level, the instability of the
structure increases as a result of the increasing hydrostatic pressure difference between the upstream
and downstream faces, and the floating structure becomes easily unbalanced. The effect of ∆H/a on
MKP is different under the influence of L/a. The relationship between MKP and ∆H/a is linear under
same L/a, a linear relationship is found between the gradient of growth and L/a. Equation (11) also can
used to describe the relationship between MKP and ∆H/a: MKP = k L/a × ∆H/a + c.

Water 2018, 10, x FOR PEER REVIEW  10 of 15 

 

4.4. Water Level 

In Figure 8, the effect of ΔH/a on MKP is shown for all ratios. A greater value of ΔH/a significantly 
increases MKP for the same L/a, and with increasing shape ratio, the gradient of MKP becomes larger. 
With the increasing water level difference, the hydrodynamic pressure acting on the upstream face 
of the floating structure is obviously higher than that of downstream face therefore, the structures tilt 
toward the downstream, and the overturning moment increases obviously. The water flow through 
the upper surface of structures into the downstream area, the water profile over the floating structure 
obviously drops, leading to the higher pressure difference. Also, the flow velocity increases 
significantly under the bigger water level difference. The flow kinetic energy converts to potential 
energy due to the water acting on the upstream face, resulting in higher hydrodynamic pressure. 
There is a recirculation zone exists near the downstream face of structures, which causing the lower 
hydrodynamic pressure acting on downstream face. The overturning moment becomes greater as a 
result of the pressure distribution under the effect of increasing water level. According to the 
experimental results, the effect of ΔH/a on MKP is significant for the same structure. With a higher 
water level, the instability of the structure increases as a result of the increasing hydrostatic pressure 
difference between the upstream and downstream faces, and the floating structure becomes easily 
unbalanced. The effect of ΔH/a on MKP is different under the influence of L/a. The relationship between 
MKP and ΔH/a is linear under same L/a, a linear relationship is found between the gradient of growth 
and L/a. Equation (11) also can used to describe the relationship between MKP and ΔH/a: MKP = k L/a × 
ΔH/a + c. 

 

Figure 8. MKP vs. ΔH/a for L/a = 1.00, 2.00, 3.00 and 4.00. 

4.5. Calculation Formula of the Overturning Moment 

The formula for MKP is obtained through dimensional analysis. To obtain an equation to describe 
the relationship of the experimental data, correlation analysis is conducted for the observed data. 
Compared with nonlinear fitting method, the overturning moment expression obtained by using 
multiple linear regression analysis has the advantages of simple in form, easy to calculate and more 
practical in engineering. The scatter plots of Figures 5–8 show that with the same L/a, MKP has a linear 
correlation with e/a and ΔH/a; the effect of these parameters on MKP is related to L/a if the structure’s 
shape is change; there is a nonlinear correlation with Fr2, the effect of it on MKP is also related to L/a. 
Ordinary least squares method is a common method for estimating the relationship between the 
predicted data and the experimental data by minimizing the sum of the squares of the errors. 
Therefore, the ordinary least squares method is used to fit each parameter for the value of MKP. From 

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.00 0.10 0.20 0.30 0.40

M
K
P

ΔH/a

L/a=1.00 L/a=2.00

L/a=3.00 L/a=4.00

Figure 8. MKP vs. ∆H/a for L/a = 1.00, 2.00, 3.00 and 4.00.

4.5. Calculation Formula of the Overturning Moment

The formula for MKP is obtained through dimensional analysis. To obtain an equation to describe
the relationship of the experimental data, correlation analysis is conducted for the observed data.
Compared with nonlinear fitting method, the overturning moment expression obtained by using
multiple linear regression analysis has the advantages of simple in form, easy to calculate and more
practical in engineering. The scatter plots of Figures 5–8 show that with the same L/a, MKP has a
linear correlation with e/a and ∆H/a; the effect of these parameters on MKP is related to L/a if the
structure’s shape is change; there is a nonlinear correlation with Fr2, the effect of it on MKP is also
related to L/a. Ordinary least squares method is a common method for estimating the relationship
between the predicted data and the experimental data by minimizing the sum of the squares of the
errors. Therefore, the ordinary least squares method is used to fit each parameter for the value of
MKP. From dimensionless analysis of Equation (8), a linear algebra relationship between MKP and the
variables is expressed as follows:

MKP = −0.093 − 0.039
L
a

lnFr2 + 0.093Fr2 + 0.151
L∆H

a2 − 0.003
Le
a2 (13)
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where MKP and Fr are dimensionless and L, a, ∆H and e are measured in meters. Equation (13) is valid
for H ≥ e + a.

The pressure acting on the floating structure near the sidewall was also measured by taking into
account the sidewall effect; the pressure value decreases slightly in a small area near the sidewall.
Relative to the pressure acting on the center section, the boundary pressure is essentially unaffected.
In actual situations, it is reasonable to calculate the overturning moment using the pressure acting on
the central section.

5. Verification and Error Analysis

To evaluate the accuracy of the estimate Equation (13), the adjusted multiple correlation
coefficients (AMCC) and the standard error of estimation (SEE) were used. AMCC is the modified
version of the multiple correlation coefficients; it gives the percentage of variation explained by only
those significant variables that in reality affect the predicted value. The value of AMCC indicates the
goodness of the fit of the MKP values, it was used to verify the prediction is right and the regression
model is satisfactory. The value of SEE evaluates the reliability of the data, smaller values are better,
which indicates that the observations are closer to the fitted line. The quantities of AMCC and SEE are
defined as follows:

R2 =
∑K

k=1 (ỹk − y)2

∑K
k=1 (yk − y)2 (14)

AMCC = R2 − J × (1 − R2)

K − J − 1
(15)

SEE =

√
∑K

k=1 (yk − ỹk)
2

K − J − 1
(16)

where R2 is the coefficient of determination, K is the size of the data set, J is the number of dimensionless
independent variables, and yk is the measured value of MKP. Here, ỹk is the estimated value of MKP of
Equation (13), and y is the mean value of yk.

It is determined that AMCC and SEE for Equation (13) are 0.90 and 0.02, respectively, thus proving
that the significance is strong.

The model can be further tested to judge its applicability of the regression equation and the fitting
effect. A 95% confidence interval was selected; the corresponding value of F is 395.10. Autocorrelation
affects the ability to conduct valid statistical tests. Autocorrelation affects the ability to conduct valid
statistical tests. The autocorrelation of the model was evaluated by using Dubin-Watson (DW) test
which is commonly used. The significance test of variables is meaning and the prediction of the model
is valid if the value of DW is smaller than 5. The value of DW was 1.84, that is, no autocorrelation exists
in the model. The correlation coefficient of the formula between the variables is low; the independent
variables are not correlated. Multicollinearity produces large standard errors in the related independent
variables and it causes imprecise estimates of coefficient values, it also results in the imprecise and
instability the model predictions. To quickly eliminate the instability of the model, the variance
inflation factor (VIF) method was used to perform multicollinearity diagnosis. The maximum value of
VIF was 5.60; thus, there is no multicollinearity problem between the variables and MKP. The F-test,
DW test and VIF test formulas are given as follows:

F =
∑K

k=1 (ỹk − yk)
2/K

∑K
k=1 (yk − ỹk)

2/(K − J − 1)
(17)

DW =
∑K

t=1(et − et−1)

∑K
t=2 et2

(18)

VIFi = (1 − R2
i )

−1
(19)
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where yk is the mean value of ỹk, et is the error term at time t, and Ri
2 is the multiple coefficient of

determination of the independent variable.
The standard residuals need to satisfy the requirements of randomness and normality to prove

the correctness of the obtained formula. The following results were obtained by analyzing the standard
residuals. Figure 9 illustrates the corresponding statistical analysis of the residuals of Equation (13)
and the histogram of the residuals with normal probability curve; the residuals present a normal
distribution. The 95% distribution of standardized residual is between −2 and +2, which suggests that
the model assumptions are reasonable. Figure 10 shows the scatter plot of the standardized residual.
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As for MKP, the comparison between the measured and calculated results is shown in Figure 11,
suggesting a good agreement. Thus, the calculation formula of overturning moment is obtained.
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6. Conclusions

The overturning moment of the floating structure influenced by currents was assessed by means
of theoretical analysis and physical model tests. A calculation formula was proposed by using
dimensional analyses between the overturning moments and the contributing parameters: structural
shape ratios, structural vertical positions, flow velocities and water levels.

The structure shape ratio influences the stability of the structure. The stability deteriorates as
the ratio increases; the range of overturning moment shows a decreasing trend with the increase of
structural vertical positions. The stability of structures is influenced by Fr2. If the value of Fr2 is
small (≤1), then the overturning moment decreases significantly with increasing Fr2. If the Fr2 value is
greater than 1, then the range of overturning moment converges to a straight line, and the effect of
Fr2 on overturning moment is not easily detectable. A lower water level leads to smaller overturning
moment and improves the stability of structures.

Nonlinear regression and multi-linear regression were used to obtain the formula for calculation
of the overturning moment. Statistical indices were used to quantitatively investigate the accuracy
of the formula; the values of AMCC and SEE were 0.90 and 0.02, respectively, and the residuals
of the formula presented normal distribution. The calculation formula is in agreement with the
experimental data, thus supporting the validity of the stability evaluation. Compared with the action
of hydrodynamic pressure, the role of shear force is small. This study did not consider overturning
generated by shear stress; In order to study the systematical and accurate value of overturning moment
in prototype engineering, the moment and the proportion generated by shear force can be studied in
the future. Thus, the influence of shear stress on the overturning phenomenon and its proportion are
recommended for evaluation in the future.
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