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Abstract: Deep geological repositories for nuclear wastes consist of both engineered and natural
geologic barriers to isolate the radioactive material from the human environment. Inappropriate
repositories of nuclear waste would cause severe contamination to nearby aquifers. In this complex
environment, mass transport of radioactive contaminants displays anomalous behaviors and often
produces power-law tails in breakthrough curves due to spatial heterogeneities in fractured rocks,
velocity dispersion, adsorption, and decay of contaminants, which requires more sophisticated
models beyond the typical advection-dispersion equation. In this paper, accounting for the mass
exchange between a fracture and a porous matrix of complex geometry, the universal equation
of mass transport within a fracture is derived. This equation represents the generalization of the
previously used models and accounts for anomalous mass exchange between a fracture and porous
blocks through the introduction of the integral term of convolution type and fractional derivatives.
This equation can be applied for the variety of processes taking place in the complex fractured porous
medium, including the transport of radioactive elements. The Laplace transform method was used to
obtain the solution of the fractional diffusion equation with a time-dependent source of radioactive
contaminant.

Keywords: radioactive contaminant; fractional derivative; analytical solution

1. Introduction

High-level nuclear wastes are a by-product of nuclear power generation and other applications of
nuclear fission or nuclear technology which must be shielded from humans and the environment for a
long time. Subsurface nuclear waste repositories consist of engineered and geological barriers that
isolate the radioactive materials from the human environment. If the radioactive contaminants leak to
aquifers, the damage would be serious because it directly contaminates our drinking water. We need
to answer how and when the contaminants leak from the power plants or the waste repositories
unintentionally, and how much they affect human beings and the natural environment. Safe disposal
of nuclear wastes requires an evaluation of the risks of contaminants for aquifers and prediction of the
possible migration of contaminated groundwater.

Fluid flow and contaminant transport in aquifers are dominated by fractures and large
pores. Numerous studies indicate that the real nature of solute transport in geological formations
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exhibits anomalous behavior [1–4]. Multiscale subsurface systems often produce power-law tails in
breakthrough curves [5–8], as well as in a nuclear waste repository site [9]. The breakthrough curves
are not adequately described by the typical advection-dispersion with an exponential residence time
(e.g., [10,11]).

Problems of solute transport in a single fracture-matrix system have been addressed, and the
analytical solutions have been developed based on the advection-dispersion equation [12,13].
Alternative transport models are proposed to capture the effects of spatial heterogeneities in fractured
rocks and the effects of flow channeling or velocity dispersion [14,15]. The models have extended to the
mass transfer models with time- or space-dependent dispersion coefficients (e.g., [16]), the multi-rate
mass transfer models [17], the continuous time random walk approach [18], the time-domain
random walk approach, the fractional advection-dispersion equation approach [19], and the stochastic
approach [20].

The fractional derivative can be understood as a convolution of an integer-order derivative with
a memory function [21], and the time convolution can capture memory effects, allowing particles to
reside for long periods. The temporal fractional derivatives can produce power law residence times of
solute transport. Liu et al. [22] considered the time fractional advection-dispersion equation, and the
solution was obtained by using variable transformation. Fomin et al. [23] studied mass transport in a
fractured-porous aquifer (i.e., aquifer filled with porous blocks) and modeled the effects of interaction
with porous blocks in the aquifer by temporal fractional derivatives. Numerical study shows that
varying the variations of order of fractional derivatives enables the description of different power law
decays obtained from a homogeneous porous medium to a fractured medium [24].

This study proposes a mathematical model of radioactive contaminant transport in a single
fracture within a confining porous matrix. Usually, sources of radioactive contamination vary with
time. For example, an exponentially decaying source boundary condition is frequently used in
radioactive waste disposal or non-aqueous phase liquid sites [25]. We derive the universal equation
of mass transport for dissolved molecular size contaminants within a fracture, which accounts for
the complexity of the confining porous matrix and temporal decay of the contaminant concentration.
In this equation, the specific features of mass transport in the surrounding matrix and mass exchange
between the fracture and matrix are modeled by the special function Q1(t), which represents the
integral of convolution. This paper provides the analytic derivation of the function Q1(t) in its most
general form, so that the majority of the well documented models can be obtained as particular cases
of the presented model. For example, in the absence of radioactive decay, the solution presented in
this paper reduces to the solution obtained by Fomin et al. [23] for Λ = 0 and Q1 = Q0. When mass
flux is Fickian with Λ = 0 and α = 1, the solution was obtained by Tang et al. [12], which also follows
as a particular case from the solution obtained in this paper.

2. Model

2.1. Governing Equation

We consider radioactive solute transport in a single fracture surrounded by porous rocks.
The fracture does not contain any porous inclusions, which is different from the concept in the previous
study [23]. A schematic sketch of a fracture and rock matrix is presented in Figure 1. A parallel plate
fracture is confined by porous rocks, which have same physical properties for the upper and lower
sides. Cartesian coordinates (x, y) are chosen in such a manner that fluid in the fracture flows in the
x-direction and that the coordinate y is perpendicular to the x-direction. Transport processes can
be symmetrical with regard to the median line of the fracture at y = −h (dashed line in Figure 1).
This leads to the mass flux of 0 at y = −h, and the solutions in the sub-domains below and above this
line are identical. Thus, we can only consider the upper half of the domain (y = −h).
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Figure 1. Schematic of a fracture surrounded with porous rocks.

Let c1 and c2 be the concentrations of the solute within the porous matrix and the fracture,
respectively. We consider only dissolved molecular-size contaminants, not suspended particles in
the aqueous phase radioactive particles. Because the thickness of the fracture is much smaller than
its length, the mean concentration of the solute within the fracture can be given by c = 1

h

∫ 0
−h c2dy.

Mass transport in this system consists of (i) advection and (ii) diffusion in the fracture, (iii) absorption
on the fracture walls, (iv) diffusion into the surrounding rocks, (v) adsorption on the walls of the pores
in the surrounding rocks, and (vi) radioactive decay of radioactive contaminants both in fracture and
porous matrix. Each governing equation within the fracture and within the rock matrix can be written
as [12]:

∂c
∂τ

+
1
h

∂s
∂τ

= −v
∂c
∂x

+ D
∂2c
∂x2 − λ(c +

1
h

s)− q
h

, 0 < x < ∞, τ > 0, (1)

∂c1

∂τ
+

ρm

θ

∂s1

∂τ
= −1

θ

∂q
∂y
− λ(c1 +

ρm

θ
s1), 0 < y < ∞, τ > 0, (2)

where τ is time. s and s1 are the mass of the solute adsorbed on the walls of the fracture and pores in
the rock matrix, respectively. v is the average velocity of the solution in the fracture. D and D1 are the
effective diffusivities in the fracture and in the porous medium, respectively, which include dispersion
and molecular diffusion in the fracture and in the porous medium. λ is a radioactive decay constant.
q is the mass flux on the wall of the fracture. ρm is the density of the rock matrix, and θ is the matrix
porosity.

It has been observed that pore spaces and micro-cracks in the rock matrix are distributed in
various sizes and different orientations [26]. We assume that contaminants not only penetrate in the
matrix due to molecular diffusion, but also migrate through micro-cracks due to advection. Thus,
the effective diffusivity, D1, accounts for dispersion and molecular diffusion. If micro-cracks within
the surrounding matrix have an orientation perpendicular to the conducting fracture, contaminants
may migrate long distances and lead to a faster process than diffusion (super diffusion). We should
predict the worst scenario to evaluate the risks of contaminants’ migration. Thus, in order to account
for the advective process in the surrounding rocks, this study used the generalized Fickian mass flux
in the matrix by introducing a fractional derivative, in the following form [27]:

q = −θD1
∂αc1

∂yα
, (3)

where α is the order of fractional derivative (0 < α < 1). The value of 1/2 < α < 1 leads to
faster (superdispersive) spreading, while the value of 0 < α < 1/2 causes slower (subdiffusive)
spread [25]. Equation (3) describes Fickian diffusion when the index on space fractional derivative is
1/2 (i.e., α = 1/2). The fractional derivative can be defined by means of Laplace transformation L,
from the equation L[ ∂αc1

∂yα ] = pα−1(pL[c1]− c1(τ, 0)), which is equivalent to the Caputo definition [28],
dαc1
dyα =

∫ y
0

(y−ξ)−α

Γ(1−α)
dc1
dξ dξ.

The relationship between c and s in Equation (1) and between c1 and s1 in Equation (2) can be
assumed [12] as

s = K f c, (4)
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s1 = Kmc1, (5)

where K f and Km are given constants. Substituting correlations (4) and (5) into Equations (1) and (2) yields

R
∂c
∂τ

= −v
∂c
∂x

+ D
∂2c
∂x2 − Rλc +

θD1

h
∂αc1

∂yα
|y=0, (6)

R1
∂c1

∂τ
= D1

∂

∂y
(

∂αc1

∂yα
)− R1λc1, (7)

where R1 = 1+ ρmKm
θ and R = 1+

K f
h are retardation coefficients.

In general, concentration in the matrix c1 is a function of both spatial coordinates, x and y:
c1 = c1(τ, x, y). Let l and h be the characteristic scales for the length in the x-direction (along the
aquifer) and y-direction, respectively. The scale l is defined by the distance of contaminant intrusion
into the aquifer in the x-direction due to the advective transport, and the scale h is defined by the
thickness of the aquifer. The characteristic values of the concentration gradient in x- and y-direction
are C0/l and C0/h, respectively. Therefore, the ratio of the gradients can be estimated by the quotient
of the length scales, h/l. Obviously, the scale l can be much greater than the scale h, and the ratio h/l
can be very small. Hence, diffusion in the x-direction is negligibly small compared to the diffusion in
y-direction. Thus, the derivative of c1 with respect to x is ignored. This is the same assumption with
Grisak and Pickens [29] and Tang et al. [12]. Dependence of c1 on x is a consequence of the boundary
conditions on the rock–fracture interface (y = 0), which couples c1 with the mean concentration in the
fracture, c.

In order to generalize the equations, the non-dimensional forms are derived with the proper
characteristic scales. The scale for time represents the characteristic time for contaminant penetration

in the rock matrix to the distance h, given by τm = hα+1R1
D1

. The scale for the variable x-coordinate
along the fracture is the characteristic distance of contaminant migration by the characteristic time

τm, described as l = vτm
R = hα+1vR1

RD1
. The scale for the y-coordinate is defined to be half of the aquifer,

h. The initial concentration of solute at the inlet where the source of contamination is located, c0(0),
can be used as the scale for solute concentration. Based on these scales, non-dimensional variables can
be introduced as follows:

C =
c

c0(0)
; C1 =

c1

c0(0)
; Pe =

vl
D

; t =
τ

τm
; X =

x
l

; Y =
y
h

; Λ =
λR1hα+1

D1
. (8)

Substituting the non-dimensional variables in Equation (8) into Equations (6) and (7) yields the
following:

∂C
∂t
− 1

Pe
∂2C
∂X2 +

∂C
∂X

+ ΛC = θ
∂αC1

∂Yα
|Y=0, 0 < X < ∞, t > 0, (9)

∂C1

∂t
=

∂α+1C1

∂Yα+1 −ΛC1 0 < Y < ∞, t > 0. (10)

The following boundary and initial conditions can be imposed:

t = 0, C = C1 = 0; (11)

X = 0, C = C0(t); (12)

X→ ∞, C→ 0; (13)

Y→ ∞, C1 → 0; (14)

Y = 0, C1 = C; (15)
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where C0(t) is the non-dimensional concentration at the inlet of the fracture. Typically, the concentration
distribution in the aquifer can be approximated by a parabola. Therefore, the maximum values of
concentration can be reached in the middle of the aquifer, while the lowest values at the aquifer–matrix
interface. In this case, assuming that the concentration C1 on the interface Y = 0 is equal to the
mean concentration C in the aquifer (the boundary condition (15)), which slightly overestimates
the concentration on the border of the matrix. Therefore, the computed concentration C1 in the
region (0 < Y < ∞) will be slightly overestimated. However, using the present model as a tool
for predicting contamination in the real world situations, the slight overestimation of the possible
hazardous contamination is a positive factor.

2.2. Analytical Solution

Equation (9) describes mass transport in a fracture, which contains the variables C and C1

(i.e., concentration in the fracture and in the matrix, respectively). Let us consider the mass flux
on the fracture–matrix interface on the right hand side in Equation (9), which can be written by:

Q =
∂αC1

∂Yα
|Y=0. (16)

Based on an analogy of Duhamel’s theorem [30], the solution for the concentration in the matrix,
C1, can be coupled with the concentration in the fracture, C, by the following equation:

C1(t, X, Y) = e−Λt ∂

∂t

∫ t

0
eΛτC(τ, X)u0(t− τ, Y)dτ, (17)

where the function u0 in Equation (17) is a solution of the following auxiliary problem:

∂u0

∂t
=

∂α+1u0

∂Yα+1 ; 0 < Y < ∞; t > 0, (18)

t = 0, u0 = 0; (19)

Y = 0, u0 = 1; (20)

Y→ ∞, u0 → 0. (21)

The mass flux in Equation (18) is given by:

Q0(t) = −
∂αu0

∂Yα
|Y=0. (22)

Mass flux differentiations, Q given by Equation (16) and Q0 given by Equation (22), are performed
with respect to the variable Y, whereas the differentiation and the integration in Equation (17) are
performed with respect to the variables t and τ, respectively. We can change the order of fractional
differentiation with respect to Y to the order of differentiation with respect to t and the order of
integration with respect to τ. As a result, we obtain

Q =
∂αC1

∂Yα
|Y=0 = e−Λt ∂

∂t

∫ t

0
eΛτC(τ, X)

∂αu0

∂Yα
|Y=0dτ = −e−Λt ∂

∂t

∫ t

0
eΛtC(τ, X)Q0(t− τ)dτ, (23)

where C(τ, X) does not depend on Y. In addition, the mass flux Q given by Equation (23) can be
rewritten in the form:

Q = − ∂

∂t

∫ t

0
C(t− τ, X)Q1(τ)dτ, (24)

where

Q1 = e−Λt ∂

∂t

∫ t

0
eΛτQ0(t− τ)dτ. (25)
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The proof of the derivation of Equation (24) can be found in the Appendix.
Substituting Equations (23) and (24) into Equation (9) leads to the following boundary value

problem for C (i.e., concentration in the fracture):

∂C
∂t
− 1

Pe
∂2C
∂X2 +

∂C
∂X

+ ΛC = −θ
∂

∂t

∫ t

0
C(τ, X)Q1(t− τ)dτ, 0 < X < ∞, t > 0, (26)

t = 0, C = 0; (27)

X = 0, C = C0(t); (28)

X→ ∞, C→ 0. (29)

Equation (26) describes the majority of the transfer processes in the fracture and the specific feature
of mass exchange between the fracture and the matrix. The derivation can be done by constructing the
appropriate function Q1(t) in Equation (25).

Applying the technique of the group analysis of differential equations [31], the solution of the
formulated boundary-value problem (18)–(21) can be obtained in the following form [23]:

u0(η) = 1−
∑M−1

m=0
(−1)mΓ( α

α+1+m)

Γ[(α+1)(m+1)] ηα+m(α+1)

Γ[1/(α + 1)]Γ[α/(α + 1)]
+O(ηα+M((α+1))), (30)

where η = Yt−
1

1+α . Γ(z) is Gamma function. This expression follows from (2.17)–(2.32) in [23] at µ = 0.
From Equation (30), it follows that

∂αu0

∂Yα
|Y=0 = − 1

Γ(1− β)
t−β, (31)

where β = α/(α + 1). Accounting for Equations (22) and (31), Equation (25) leads to the following
expression:

Q1 =
e−Λtt−β

Γ(1− β)
+

Λβ

Γ(1− β)
[Γ(1− β)− γ(1− β, Λt)], (32)

where γ(a, z) is an incomplete Gamma function. Equation (32) represents the mass flux on the wall of
the fracture when C1 = 1 on the fracture wall.

Let us consider particular cases. If Q0 and Q1 were 0, mass exchange does not occur at the
fracture–matrix interface. Then, the problem is reduced to the problem in [12]. If no radioactive
decay occurs (i.e., Λ = 0) and diffusion is Fickian (i.e., α = 1, β = 1/2), Q1 = 1√

πt
. According

to the definition of the fractional derivative [28], Equation (24) can be written as Q = ∂1/2C
∂t1/2 . If no

radioactive decay occurs (i.e., Λ = 0) but diffusion is described by the generalized Fick’s law (3)
(i.e., 0 < α < 1 (0 < β < 1/2)), the mass fluxes can be given as Q1 = t−β/Γ(1− β) and Q = ∂βC

∂tβ .
When Λ is small and time is t = O(1), formula (32) approaches the following asymptotic representation:

Q1 =
t−β

Γ(1− β)
− Λt1−β

Γ(1− β)
[1− Γ(1− β)

Γ(2− β)
] +O(Λ2t2−β). (33)

The accuracy of this asymptotic formula can be easily verified by simple numerical computations.
Our computations show that the difference between the values of Q1 computed by Equations (32) and (33)
is negligibly small within the relatively long time interval from 0 to 1/Λ and β ≥ 0.1 [23]. Thus,
Equation (33) can be used as a good approximation for Q1, the exact value of which is given by
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Equation (32). Using formula (33), the mass flux Q defined by Equation (24) can be presented through
the fractional derivatives:

Q =
∂βC
∂tβ
−Λ[1− Γ(1− β)

Γ(2− β)
](1− β)

∂β

∂tβ

∫ t

0
C(τ, X)dτ +O(Λ2). (34)

Let us turn to solution of the boundary value problem (26)–(29). In the case where Λ = 0, β = 1/2,
and converting to originals, we obtain

C(T, X′) = H(T− X′)erfc[
X′

2
√

T− X′
]. (35)

Or, in the case where Λ 6= 0, β = 1/2, then

C(T, X′) =
e−ΛX′H(T − X′)

2
(e−X′

√
Λerfc[

X′

2
√

T − X′
−

√
Λ(T − X′)] + eX′

√
Λerfc[

X′

2
√

T − X′
+

√
Λ(T − X′)]). (36)

Equations (35) and (36) are well-known solutions in [12,14]. Solution (36) does not follow from
(35), while solution (35) follows from (36) at Λ = 0.

The function Q1 at the right hand side in Equation (26) is given by Equation (33). If the time range
is from 0 to 1/Λ for Equation (26), it is convenient to rescale Equation (26) with new time variable
T = Λt. In this case, the new spatial variable should be defined as X′ = X(Λ + θΛβ). With these new
non-dimensional variables, Equation (26) can be presented in the following form:

w1
∂C
∂T

+
∂C
∂X′
− ε

∂2C
∂X′2

+ C = −w2
∂

∂T

∫ T

0
C(T − τ, X′)Ψβ(τ)dτ, (37)

where w1 = Λ
Λ+θΛβ , w2 = θΛβ

Λ+θΛβ , ε = Λ+θΛβ

Pe , and Ψβ = Q1Λ−β − 1. Note that the expression for Ψβ

can be presented as Ψβ = [T−βe−T − γ(1− β, T)]/Γ(1− β), according to Equation (33). The third term
at the left hand side in Equation (37) including ε describes diffusion in the fracture. Because Λ << 1
and Pe = O(1), parameter ε in Equation (37) is small (ε << 1). Hence, in major cases within time of
the order of 1/Λ, the effects of the diffusive transport in the fracture is negligible. Equation (37) can be
rewritten as follows:

w1
∂C
∂T

+
∂C
∂X′

+ C = −w2
∂

∂T

∫ T

0
C(T − τ, X′)Ψβ(τ)dτ. (38)

Applying Laplace transformation L with respect to time to the Equation (38), we obtain

dC
dX′

+ (sw1 + 1 + sw2Ψβ)C = 0, 0 < X′ < ∞, (39)

X′ = 0, C = C0, (40)

where C = L[C], Ψβ = L[Ψβ]. Substituting Ψβ = [(s + 1)β − 1]/s into Equation (39) and integrating it
accounting for the boundary condition (40) yields

C = C0e−[(s+1)w1+(s+1)βw2]X′ . (41)

3. Results

First, we consider the case where the concentration at the inlet is constant (i.e., C0 = 1 and
C0 = 1/s). For this case, let us describe the concentration as Cc. The inverse Laplace transformation
leads to the following expression:

Cc(T, X′) = L−1[ 1
s exp(−w1X′)exp(−sw1X′)exp(−w2X′(s + 1)β)]

= e−w1X′H(T − w1X′)G(T − w1X′, X′),
(42)
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where H(z) is a Heaviside step function and

G(T, X′) = L−1[
exp(−w2X′(s+1)β)

s ]

= e−w2X′ − 1
π

∫ ∞
0 e−T(ξ+1)exp[−ξβw2X′cos(πβ)]sin[ξβw2X′sin(πβ)] dξ

ξ+1 .
(43)

when concentration in the inlet is an arbitrary function of T (i.e., C0 = C0(T)), then concentration in
the fracture can be obtained by utilizing Duhamel’s theorem [30]:

C(T, X′) =
∂

∂T

∫ T

0
C0(T − τ)Cc(τ, X′)dτ, (44)

where Cc is the concentration when the concentration at the inlet is constant, defined by Equation (42).
If the radioactivity decays exponentially at the inlet, the boundary concentration and its Laplace form
are given as C0 = e−T and C0 = 1/(s + 1). The solution C can be obtained by the inverse Laplace
transform directly from Equation (41) as:

C(T, X′) = L−1[ 1
s+1 exp[−w1X′(s + 1)]exp[−w2X′(s + 1)β]]

= e−T H(T − w1X′)G′(T − w1X′, w2X′),
(45)

where

G′(T, X′) = L−1[
1
s

e−X′sβ
] = 1− 1

π

∫ ∞

0

e−ξT

ξ
exp[−X′ξβcos(πβ)]sin[X′ξβsin(πβ)]dξ. (46)

The effects of the order of fractional derivatives on radioactive contaminant transportation are
shown in Figures 2 and 3. Analytical solutions for the constant concentration at the inlet given by
Equation (42) are plotted for different β in Figure 2a,b. The initial concentration is C(T = 0, X′) = 0,
and the boundary source concentration at x = 0 is C0 = 1. As shown in Figure 2a, concentrations at far
points from the inlet were larger for β = 0.5 than that for β = 0.1. For the case of larger β, contaminants
are most likely to migrate through the fracture. In contrast, small β describes transport with longer
delays, which derive from diffusion into the surrounding rocks or adsorption and desorption to the
fracture walls. Thus, smaller β describes a longer memory effect.

The mass flux on the fracture–matrix interface in Equation (3) is taken account for the generalized
Fick’s law with fractional spatial derivative, and does not describe the effect of temporal memory.
However, since we deal with the mass flux on the fracture–matrix interface where the concentration
of the transported contaminant significantly depends on time, it is physically obvious that the mass
flux at the given moment of time depends not only on concentration at this moment of time, but also
on how this concentration varied in the previous moment of time. This feature can be called the
effect of temporal memory and mathematically described by the convolution integral in Equation (24).
Equation (31) also explains that the generalized Fick’s law with fractional spatial derivative accounts for
the memory effect. Incidentally, Equation (24) allows the mixed problems of calculating concentration
on the fracture–matrix interface to be split into separate problems of calculating concentration in the
matrix and calculating concentration in the fracture, respectively. The latter significantly simplifies the
analysis of mass transport in the matrix–fracture system.

As shown in Figure 3a, concentration for constant boundary source approached certain values of
concentration, which did not reach the injected concentration (C0 = 1). We can see that larger β shows
larger concentration at the late time, showing the phenomenon of longer memory as discussed above.

Analytical solutions for the time-dependent boundary sources given by Equation (45) are plotted
for different β in Figures 2b and 3b. With the same conditions as above, the initial concentration is
C(T = 0, X′) = 0. The boundary source was set to time-dependent C0 = exp(−T). Concentration
at x = 0 was 1 for constant boundary source (Figure 2a), while concentration for time-dependent
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boundary source started from 0.37 when t = 1 (Figure 2b). In the case of the time-dependent boundary
source, concentrations decayed at the late time.

1 
 

(a) (b) 

(a) (b) 

 

Figure 2. Effects of beta on spatial distribution at t = 1 with Λ = 0.5 and θ = 0.01. (a) Constant
boundary source concentration and (b) time-dependent boundary source concentration.

1 
 

(a) (b) 

(a) (b) 

 Figure 3. Effects of beta on time history at x = 1 with Λ = 0.5 and θ = 0.01. (a) Constant boundary
source concentration and (b) time-dependent boundary source concentration.

4. Conclusions

We derived the analytical solution of the boundary value problem (26)–(29) for radioactive
contaminant transport through a fracture. By deriving the formula (24), This formula allows the
mixed problems of calculating concentration on the fracture–matrix interface to be split into separate
problems of calculating concentration in the matrix and calculating concentration in the fracture,
respectively. The latter significantly simplifies the analysis of mass transport in the matrix–fracture
system. When the solute concentration at the inlet is constant, the concentration in the fracture can be
obtained by Equation (42). When the source boundary concentration at the inlet decays exponentially,
the concentration in the fracture can be obtained by Equation (45). We plotted the analytical solutions
for different values of β, which indicate that the value of β allows the evaluation of the residence time
of contaminants in the aquifer. This analysis, based on the analytical solutions of fractional diffusion
equation, can provide simple and quick results to evaluate solute transport in fractured rocks. Most of
the cases where radioactive contaminants cause troubles would be in unexpected situations. At that
time, the simple and quick analysis proposed by this research will help instant management strategies.
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Appendix A

By substituting t− τ = ξ in the integral in Equation (23), the mass flux Q can be written in the form:

Q = −e−Λt ∂
∂t

∫ t
0 eΛ(t−ξ)C(t− ξ, X)Q0(ξ)dξ

= −Λ
∫ t

0 e−ΛξC(t− ξ, X)Q0(ξ)dξ − ∂
∂t

∫ t
0 e−ΛξC(t− ξ, X)Q0(ξ)dξ

(A1)

This is equivalent to the mass flux Q on the left hand side in Equation (24). Now we consider
the differentiation and the integration on the right hand side in Equation (24). Let’s introduce the
following function:

Q1 = e−Λt ∂

∂t

∫ t

0
eΛτQ0(t− τ)dτ (A2)

In the same way as Q in Equation (A1), the function Q1 is transformed as:

Q1 = Λ
∫ t

0
e−ΛξQ0(ξ)dξ + e−ΛtQ0(t) (A3)

By substituting function (A3), Equation (24) can be written in the form:

Q = − ∂
∂t

∫ t
0 C(t− τ, X)Q1(τ)dτ

= − ∂
∂t

∫ t
0 C(t− τ, X)(Λ

∫ t
0 e−ΛξQ0(ξ)dξ + e−ΛtQ0(t))dτ

= − ∂
∂t [

∫ t
0 C(t− τ, X)e−ΛtQ0(t))dτ]−Λ ∂

∂t [
∫ t

0 C(η, X)(
∫ t−η

0 e−ΛξQ0(ξ)dξ)dτ]

= − ∂
∂t [

∫ t
0 C(t− τ, X)e−ΛtQ0(t))dτ]−Λ

∫ t
0 C(η, X)e−Λ(t−η)Q0(t− η)dη

= −Λ
∫ t

0 e−ΛξC(t− ξ, X)Q0(ξ)dξ − ∂
∂t

∫ t
0 e−ΛξC(t− ξ, X)Q0(ξ)dξ

(A4)

The latter expression in the right hand side in Equation (A4) is equivalent to the expression in
Equation (A1). Thus, Equation (24) can be derived.
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