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Abstract: Coastal lagoon types of Western Greece were allocated to a spectrum of meso to polyhaline
chocked lagoons; poly to euhaline restricted lagoons; and euhaline restricted lagoons along the
Ionian Sea coast. This diversity comprises wide ranges of physical, chemical and environmental
parameters in a seasonal and annual scale, which explains the variability in the distribution of benthic
macrophytes. Four different macrophyte assemblages were distinguished, characterized by annual or
perennial species. Extensive statistical analysis showed that salinity and nitrate concentrations had
a great impact on the composition and distribution of macrophyte assemblages into lagoon types
that also changed their abundance on a seasonal and annual scale. During the monitoring period,
an important salinity shift in a chocked lagoon might cause the gradual loss of Zostera noltii and its
replacement by Ruppia cirrhosa. Restricted lagoons were characterized by higher species diversity,
while the other three identified macrophyte assemblages were dominated by the angiosperms
Ruppia cirrhosa and Cymodocea nodosa. This integrated study of coastal lagoons is likely to be broadly
applicable, since it was based on important parameters affecting such ecosystems, and the provided
links between macrophyte assemblages and abiotic factors are of critical importance to improve
management and environmental policies.
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1. Introduction

Coastal lagoons are dynamic ecosystems characterized by shallow waters isolated from the
open sea by the presence of coastal barriers. Therefore, they represent an ecotone between marine,
fresh-water, and terrestrial ecosystems showing some typical characteristics of all these types [1].
These characteristics often result in considerable seasonal changes of environmental variables
(e.g., temperature, salinity) and large fluctuations in chemical parameters with consequences to many
resident species [2–4].

Coastal lagoons are often sub-divided into choked, restricted, leaky [1] and even open [5] with
respect to the characteristics of their hydrodynamic exchange properties with the adjacent open
sea. The WFD/2000/60/EC does not include an explicit definition of lagoons, but the definition
of transitional waters (TW) specifies a salinity gradient and significant freshwater inputs [6].
Several criteria have been used to define the typology of transitional waters such as salinity, substrate
type, formation, isolation, size, morphology, etc. [7,8]. Recently, a classification approach of coastal
lagoons of Western Greece was conducted by Christia et al. [9] who revealed four different types,
based on criteria defined by the system B of WFD 2000/60/EE and other descriptors indicated as either
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obligatory or optional. Classification was based solely on abiotic parameters in order to avoid circular
reasoning due to biological variation [10–12].

Mediterranean coastal lagoons are generally shallow with tidal ranges below 0.5 m [13].
The extreme meteorological conditions (high temperatures and low precipitation in summer) observed
in the last decades in the Mediterranean basin, foster high seasonal and annual variations in
physical and chemical parameters, making these ecosystems highly vulnerable to climate change [14].
This tendency will probably continue owing to the global climate changes, leading to the degradation
and loss of critical habitats, the increase of eutrophication phenomena and associated algal blooms.
Global induced changes lead inevitably to a chain of effects on the ecosystem structure, especially in
the submerged macrophytes assemblages. Submerged macrophytes, composed of angiosperms and
macroalgae, are important primary producers in coastal lagoons, and many species are considered
as ecosystem engineers by creating habitats for aquatic organisms [15]. A coastal lagoon is typically
dominated by few submerged macrophytes genera with great plasticity in resource exploitation
and adaptation to salinity regimes and other structuring abiotic parameters [16]. During the
past 150 to 300 years, eutrophication, habitat modifications, water level and salinity fluctuations have
led to a massive decrease of angiosperms and other submerged macrophytes in temperate estuarine
and coastal ecosystems in Europe and North America [17,18]. The development of type-specific lagoon
management plans and the implementation of proactive adaptation measures became necessary [19].

The recovery of benthic macrophytes is one of the targets of the WFD/2000/60/EC and has led
to policy decisions aiming, directly or indirectly, to improve the status of coastal ecosystems [6,20].
Submerged macrophytes have morphological, physiological and ecological adaptations to confront
environmental shifts [21]. Benthic macrophytes have a strong influence on the physical and
chemical structure of aquatic ecosystems [22,23], forming extensive [15], highly productive [24] and
spatio-temporally patchy habitats [25].

A comprehensive presentation of macrophyte distribution in the Mediterranean lagoons and their
dynamics based on long-term datasets is necessary in order to depict the high temporal variability
of these environments [26,27]. Nevertheless, long-term studies supporting the spatiotemporal
dynamics of macrophyte assemblages in lagoons of Greece are scarce in literature [28,29]. Until now,
the monitoring of biological quality elements was focused on phytoplankton, benthic invertebrates,
zooplankton and fishes [30–33], while benthic macrophytes were monitored only in few lagoons in
Northern Greece [34] and in southern and western Greece [2,35]. The knowledge of the ecology of these
macrophytes is of prime importance both for the understanding of the ecosystem functioning and for
more applied aspects. Macrophytes can be used as ecological indicators of environmental health and
ecological status [36,37], as they respond to water nutrients at the community level regarding species
diversity (Shannon index), structure and abundance [38]. In the Mediterranean region, three euryhaline
species—Z. noltii, Z. marina, and C. nodosa—are present [35]. These species not only provide the physical
habitat for a rich fauna but also play a fundamental role in biogeochemical processes contributing
to lagoons water quality [39]. This knowledge is crucial to further recommend management and
restoration measures.

In this paper, the hypothesis that physical, chemical and environmental parameters of water
column have played significant roles in the distribution of macrophyte assemblages was investigated
in the identified lagoon types. In this context, the composition of each macrophyte assemblage on a
seasonal and annual scale was examined in each lagoon type and correlated with key role parameters
such as salinity and nitrogen compounds concentrations as derived by the multivariate analysis.
In addition, the species that contributed more to the dissimilarity among lagoon types were identified
and the seasonal evolution of their abundance was investigated following the spatial and temporal
variations of number of species, species richness, Evenness and Shannon diversity in each lagoon.
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2. Materials and Methods

2.1. Study Area

The current study was based on the typological framework of coastal lagoons of Western Greece
(Ionian Sea), as derived by Christia et al. [9]. According to them, the investigated area is classified into
three different lagoon types based on hydromorphological characteristics (Figure 1): (a) Lagoon Type I
includes large, chocked lagoons with meso to polyhaline waters as Rodia which belongs to the natural
complex system of Amvrakikos Gulf; (b) Type II consists of large, shallow, restricted lagoons with
poly to euhaline salinity regimes and higher sea water exchanges. This type includes Tsoukalio and
Logarou lagoons (Amvarkikos Gulf) and Kleisova lagoon that belongs to the lagoonal complex system
of Messolonghi-Aitoliko; (c) Type III includes small, shallow and restricted lagoons with euhaline
salinity regime and medium seawater intrusion (Araxos lagoon). Detailed information is reported in
Christia and Papastergiadou [2] and Christia et al. [9,35]. According to Christia et al. [9] the typological
classification of lagoons also revealed a fourth type which includes Kaiafas but this has been omitted
from the current research due to its peculiar environmental characteristics: small, deep, mesohaline
lagoon with a wide barrier and a unique macrophyte assemblage composed by Potamogeton pectinatus
and Chara hispida f. corfuensis. For that reason, it was tested as a case study by Christia et al. [40].
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Figure 1. Maps and sampling stations of the investigated Western Greece coastal lagoons: (a) Rodia
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lagoonal complex; (c) Araxos (Type III).

2.2. Sampling Design of Water Quality and Aquatic Macrophytes

Samplings were carried out seasonally (spring, summer, autumn) between 2005 and 2007
in 24 stations of the five studied coastal lagoons of Western Greece. Sampling stations were
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homogeneously distributed, covering the spatial heterogeneity of each particular lagoonal
environment (Figure 1). Depth, transparency, temperature, salinity, dissolved oxygen (DO) and
pH were directly measured in situ using portable equipment (Secchi disk, WTW multi 340i/SET,
Wissenschaftlich—Technische Werkstätten, Dr- Karl-Slevogt—Straße 1, 82362, Weilheim, Germany).
Discrete surface water samples were collected in 1 L polyethylene bottles and preserved at 4 ◦C for
laboratory analysis of the following nutrients: NH4

+-N, NO2
−-N, NO3

−-N, PO4
−3-P. Water samples

for dissolved nutrients analyses were filtered using 0.45 µm pore size filters and immediately
frozen (T = −20 ◦C) until analysis, while Chlorophyll-a (Chl-a; µg/L) extraction was conducted
in 90% acetone for 24 h. All concentrations were measured according to American Public Health
Association (APHA) [41]. For total phosphorus (TP), water samples were collected before filtering.
Dissolved inorganic nitrogen (DIN) was calculated as the sum of the inorganic nitrogen forms.

The macrophyte sampling campaigns were generally carried out in each station during spring,
summer and early autumn in order to evaluate the presence and abundance of species during the
whole growth period. Macrophyte compositional and abundance data were measured from a sampling
plot of 10 m × 10 m. In each plot, three samples were randomly scraped from the bottom, in a water
depth range of 1 to 3 m, on an area of 2 m × 2 m [42]. Plant species abundance was visually scored
on a 5-level percentage coverage abundance scale (1 ≤ 20%; 2 = 21–40%; 3 = 31–60%; 4 = 61–80%;
5 = 81–100%). Macrophyte specimens were placed in a plastic bag and transported to the laboratory
for identification. The samples were rinsed with water to remove sediments, identified at species level
and then fixed in 2% formalin.

2.3. Statistical Analysis

All environmental parameters were log (x + 1) transformed in order to make them closer to normal
distribution. Multivariate analysis of variance was applied to investigate the differences of these
parameters between sampling periods and macrophyte assemblages. A two-way ANOVA (analysis of
variance) test was performed to assess which parameters differed significantly between seasons and
years. A factorial ANOVA with interactions between seasons and years was run. Interactions were
specified by joining the variables with asterisks, e.g. seasons*years. An LSD test (SPSS V.15) [43]
provided direct comparisons between two means from two individual groups (Table S1) in order to
address which variables differed significantly among lagoon types.

A detrended correspondence analysis (DCA) was conducted with the CANOCO 4.5 software [44]
to explore the different macrophyte assemblages occurring in different coastal lagoon types.
A correspondence analysis (CA) was also tested but, due to the presence of an arch effect, the DCA
was finally chosen. DCA was performed using the percentage coverage data of the species found
in each lagoon type. All data were log (x + 1) to avoid the down weighting of rare species with
values approaching to zero. In order to meet criticism rose against DCA on the wedge effect a
Multidimentional Scaling (MDS) plot in PRIMER (6.0) [45] was also run.

A redundancy analysis (RDA) takes explanatory variables into account, which allows a direct
modeling of the cause-effect relationship between species data and environmental parameters.
Explanatory variables were selected using the threshold of p < 0.5 of the Monte Carlo permutation test
and the threshold of <20 of inflation factors (VIF) [43]. RDA results are displayed by an ordination
diagram which reflects the distribution of macrophytes species along coastal lagoon types with different
environmental parameters [44].

The structure of macrophyte assemblages was inspected by calculating the total number of
species (S), Margalef’s species richness (d), diversity index of Shannon (H) and Pielou evenness (J’)
with PRIMER (6.0). These indices were calculated for each lagoon and their variations were tested
with three-way ANOVA on a seasonal, annual and spatial scale (SPSS V.15).

The contribution of individual macrophyte species to the dissimilarity between lagoon types
on an annual scale was tested with the similarity percentages (SIMPER) analysis. The zero-adjusted
Bray–Curtis coefficient was used to modulate the erratic behavior of Bray-Curtis for near-denuded
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assemblages in the sampling sites [46]. For this analysis a 90% cut off of the cumulative percentage
was applied for taxa with low contributions. Moreover, pairwise Analysis of Similarity (ANOSIM)
comparisons applied between all groups, using 10,000 simulations in each case. This analysis was
carried out to test the null hypothesis that there were no differences in the composition of macrophyte
species among different lagoon types. Both analyses, SIMPER and ANOSIM were based on the
Bray–Curtis dissimilarity index and were conducted using the PRIMER (6.0) statistical software.
Values were square-root transformed before the analyses; in this way, each species contributed fairly
evenly to each analysis [45].

3. Results

3.1. Environmental Change and Water Quality Characteristics

The analysis of variance showed significant variations of environmental parameters, both
on seasonal and annual scale, in the three studied lagoon types of Western Greece (Table 1).
Water temperature in coastal lagoon types did not show significant differences and followed the
typical pattern which is generally characterized by highest values during the dry period (summer).
Water depth played an important role not only to the classification of lagoon types [10] but also to
the variability of nutrient concentrations. The higher mean depth value was found in lagoon Type I
(1.06 m) where the predominant forms of nitrogen were NO3-N and NH4-N. During the wet period
(spring) they accounted for 396 µg/L and 186 µg/L, respectively, showing significant difference among
all lagoon types (Figure 2; Table 1). During the monitoring period the higher concentration of TP
was measured in lagoon Type II (156.1 µg/L) in autumn (Figure 2). The concentration of TP showed
significant variations between seasons and years (Table 1).

Salinity varied significantly among lagoons and played pivotal role in the classification of lagoon
types. On a seasonal scale, it followed a marked similar pattern in all lagoon types with higher
values recorded during the dry period. Restricted lagoons showed typically marine conditions, while
chocked lagoons are strongly influenced by freshwater inputs. Therefore, lagoon Type III showed
the higher mean salinity (40.5‰), while the lower value was recorded in Type I (14.1‰). Low Chl-a
concentrations were common in all lagoon types during the monitoring period. The highest value
(3.7 µg/L) was measured during spring in lagoon Type III. The significance of interactions between
the two factors of season, year and season*year was also considered. More specifically, the interaction
between season and year indicated significant (p < 0.05) effects for temperature, pH, DO, nutrients of
N and P, alkalinity and Chl-a (Table 1).
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Table 1. Analysis of variance with the effects of the factors of season, year and their interactions (Season*Year) on the environmental parameters of three lagoon types
of Western Greece.

Environmental Parameters

Type I (n = 27) Type II (n = 111) Type III (n = 50) Interaction

Season Year Season Year Season Year Season*Year

F Sig F Sig F Sig F Sig F Sig F Sig F Sig

Depth (m) 411.7 0.000 2.2 ns 0.1 ns 1.2 ns 0.2 ns 1.2 ns 0.5 ns
Transparency (m) 301.7 0.000 0.1 ns 0.2 ns 0.0 ns 0.1 ns 0.0 ns 0.2 ns
Temperature (◦C) 32,021.2 0.000 38.1 0.000 652.8 0.000 33.6 0.000 476.8 0.000 39.2 0.000 27.1 0.000

pH 249,734.3 0.000 32.9 0.000 22.3 0.000 25.2 0.000 9.6 0.002 27.1 0.000 33.9 0.000
DO (mg/L) 2308.2 0.000 19.6 0.000 43.1 0.000 7.1 0.006 26.1 0.000 10.9 0.001 37.8 0.000
Salinity (‰) 818,318.8 0.000 12,391.2 0.000 21,547.4 0.000 6788.5 0.000 19,105.6 0.000 7108.8 0.000 1414.0 0.000

PO4-P (µg/L) 434.8 0.000 9.9 0.001 14.4 0.000 10.0 0.001 8.1 0.003 8.6 0.003 7.4 0.001
TP (µg/L) 78.5 0.000 0.6 ns 2.3 ns 0.7 ns 1.4 ns 0.5 ns 5.1 0.007

NO2-N (µg/L) 39.4 0.000 11.9 0.001 22.4 0.000 6.2 0.010 29.3 0.000 6.9 0.006 7.2 0.001
NO3-N (µg/L) 57.3 0.000 10.8 0.001 8.0 0.004 6.6 0.007 2.2 ns 6.6 0.007 8.0 0.001
NH4-N (µg/L) 192.7 0.000 17.9 0.000 11.5 0.001 5.2 0.017 21.0 0.000 5.6 0.013 10.4 0.000

Alkalinity (mg/L) 132.4 0.000 16.9 0.000 14.8 0.000 11.0 0.001 8.5 0.003 10.6 0.001 6.4 0.002
Chl-a (µg/L) 1547.0 0.000 20.3 0.000 8.2 0.003 17.8 0.000 2.0 ns 19.5 0.000 18.2 0.000
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3.2. Macrophyte ‘Assemblages’ in the three Lagoon Types of Western Greece

A total of 38 macrophytic taxa [35] were recorded in the three studied lagoon types:
three angiosperm species (Z. noltii, R. cirrhosa, C. nodosa), one Charophyte (Lamprothamnium papulosum)
and 34 macroalgae (Rhodophytes, Chlorophytes, Ochrophytes). In the lagoon Type I, 8 macrophyte
species were identified; 25% belonged to the Magnoliophyta phylum, 62.5% to Chlorophyta and 12.5%
to Rhodophyta and Charophyta (Figure 3). In Lagoon Type II, 25 species were recorded, 48% belonged
to Rhodophyta, 24% to Chlorophyta, 12% to Ochrophyta and Magnoliophyta and only 4% to
Charophyta. Finally, in lagoon Type III, 19 species were found, 36.8% accounted for Rhodophyta,
42.1% for Chlorophyta, 10.1% for Ochrophyta and Magnoliophyta, while no Charophyte species
were observed.
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Figure 3. Percentage of macrophyte species occurrence in the three different lagoon types of
Western Greece.

DCA analysis revealed four macrophyte assemblages (Figure 4). The first two DCA axes accounted
for 84.73% (DCA axis 1: 59.36%; DCA axis 2: 25.37%) of the total variance (Figure 3, Table S2).
The angiosperm Z. noltii and the charophyte L. papulosum are positioned along the left part of the
ordination plot, forming the macrophyte assemblage i which is associated with G. bursa pastoris and
Cl. glomerata. According to the results of DCA axes the species of the assemblage i (Table 2) are typical
of coastal lagoons of Type I. They seem to prefer mesohaline, deep, high transparent waters with
occasional high nitrate concentrations. In the middle part of the ordination plot, the angiosperm
R. cirrhosa coexisted with Ac. acetabulum, Gr. longissima, U. rigida and Ch. linum forming the macrophyte
assemblage ii. These species are well established in coastal lagoon Type II, showing high adaptability
to high salinity shifts and shallow water depths.

The macrophyte assemblage iii (Table 2) is common in both lagoon Types II and III. It is established
to the right part of the plot and characterized by the dominance of the angiosperm C. nodosa and the
epiphyte species C. diaphanum and Ch. capillaris. Finally, across the left bottom part of the ordination
plot, the marine species of C. barbata, Al. corrallinum, A. nayadiformis, Gr. gracilis, V. aegagropila and
L. obtusa are dispersed forming the macrophyte assemblage iv. These marine species were found only
in the lagoon Type II, in shallow, euhaline and low nutrient waters, especially in the sampling stations
adjacent to the marine inlet channels of the lagoons (Table 2). The identified macrophyte assemblages
i, ii and iii are occupied by fast growing opportunistic species such as the green algae Chaetomorpha
and Cladophora, mainly during the dry period (summer).
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Figure 4. Species ordination obtained by the detrended correspondence analysis (DCA) conducted
with species coverages data (%) in the three different lagoon types of Western Greece.

Table 2. List of the species belonging to the four macrophyte assemblages (i–iv) identified after the
detrended correspondenceaAnalysis (DCA) in the three lagoon types of Western Greece.

Lagoon Type Macrophyte Assemblages

Type I i. Zostera noltii-Lamprothamnium papulosum-Gracilaria bursa pastoris-Cladophora glomerata
ii. Ruppia cirrhosa-Acetabularia acetabulum-Gracilariopsis longissima-Ulva rigida

Type II
ii. Ruppia cirrhosa-Acetabularia acetabulum-Gracilariopsis longissima-Ulva rigida
iii. Cymodocea nodosa-Chondria capillaris-Ceramium siliquosum-Ulva species
iv. Cystoseira barbata, Alsidium corrallinum, Acanthophora nayadiformis, Gracilaria gracilis and Valonia aegagropila

Type III iii. Cymodocea nodosa-Chondria capillaris-Ceramium siliquosum-Ulva species

The MDS analysis (Figure 5) gave a potentially useful two-dimensional picture of the studied
lagoons with no real prospect of a misleading interpretation (stress = 0.16). The pattern in the species
ordination was confirmed by the correlations of DCA axes. DCA axis 1 is positively correlated with
salinity, while a negative relation is shown with nitrogen forms and depth. However, the DCA axis 2 is
negatively related with transparency and ammonium concentrations, while a positive correlation was
found for Chl-a (Table S2).
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Figure 5. Results of Multidimentional Scaling (MDS) analysis of macrophyte assemblages identified in
the three different lagoon types of Western Greece.

3.2.1. Relationship between Macrophytes and Environment

The first two axes of the redundancy analysis accounted for 81% of the total variance (Table S3).
Axis 1 (66.9%) explained the higher percentage of the total variance, while axis 2 explained the 14.08%.
The ordination diagram of the redundancy analysis (RDA) (Figure 6) with environmental parameters
and macrophyte species shows the distribution of macrophyte species and the position of coastal
lagoon types in an approximate way. The first axis is highly positively correlated with salinity and
DIN concentration, while axis 2 is highly positively correlated with DO, transparency and Chl-a.
Following the RDA analysis, the clustering allows the classification of the macrophyte species into
lagoon types according to physical and chemical parameters. Thus, sampling stations of lagoon
Type I are positioned to the upper left section of the plot, the samplings of lagoon Type II are mainly
dispersed in the bottom part, while samplings of lagoon Type III are clustered to the right section
of the plot. The angiosperm species Z. noltii, R. cirrhosa and the charophyte L. papulosum, positioned
to the upper left part of axis 1, have a relatively large distribution span in waters with medium
salinity, high transparency and high concentrations of total inorganic nitrogen as mainly found
in lagoon Type I. Species located at the right part of Axis 1 are mainly found in poly to euhaline
waters. The angiosperm species C. nodosa, as well as the macrophyte species C. siliquosum, C. capillaris,
A. nayadiformis and C. barbata are typical of coastal lagoons classified in Type III. In the center of the
diagram, along axis 1, the macrophyte species Gr. bursa-pastoris, Ac. acetabulum and R. cirrhosa, which
belongs to lagoon Type II, show their preference to high salinity, lower nutrients concentrations and
high marine water exchanges. The second axis reflected the gradient of photosynthetic activity with
taxa located to the lower part showing higher adaptability to lower transparency, DO and Chl-a waters.
Macrophyte species positioned in the upper part of the diagram were mainly present in sampling
stations with high transparency and higher Chl-a, DO and PO4-P concentrations.
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3.2.2. Comparisons of Macrophyte Assemblages among Lagoon Types

Following the results of similarity percentage (SIMPER) analysis, macrophyte assemblages of
Type I differ significantly from Types II and III (Tables 3 and 4). The highest average dissimilarity of
Type I was recorded during spring (96.44) and autumn (96.9) especially with Type III. The main species
contributed to this difference were the angiosperms Z. noltii, C. nodosa and the charophyte L. papulosum.
Lower average dissimilarity (83.6) was observed between lagoon Type I and II, due to the presence
of more common species. At the opposite, the angiosperms R. cirrhosa, Z. noltii and the Rhodophyte
Gr. longissima contributed to the differences between these lagoon types.

During the monitoring period an interesting shift in distribution and abundance of the angiosperm
Z. noltii was noticed in lagoon Type I related to changes in salinity regime. The gradual loss of Z. noltii
and its replacement by R. cirrhosa in Type I was recorded through years 2005 to 2007 (Table 3, Figure S1),
while the mean average abundance of R. cirrhosa and C. nodosa followed an increasing trend (Table 3).
The average abundance of R. cirrhosa was null in 2005, 36.6% in 2006 and 40.8% in 2007 while salinity
increased from 8.2‰ to 4.2‰ and to 22.4‰ in the same years. The mean average abundance of
R. cirrhosa (Table 4) was highest in summer (31.7) when salinity rose from 10.7‰ (2006) to 17.6‰ (2007).
In Type II lagoons, R. cirrhosa showed high average abundance in spring and followed an increasing
trend from 2005 (6.4) to 2007 (25.4).
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Table 3. SIMPER (similarity percentage) analysis results: average dissimilarity (%) within the three lagoon types of Western Greece during the three years 2005, 2006
and 2007. The macrophyte species primarily responsible for differences between macrophyte assemblages and its contribution within the lagoon type are also reported.

Average Dissimilarity (%)
between Lagoon Types

2005 2006 2007

Av. Dis. (I–II)= 77.1
Av. Dis. (I–III) = 95.9
Av. Dis. (II–III) = 83.8

Av. Dis. (I–II) = 77.7
Av. Dis. (I–III) = 95.2
Av. Dis. (II–III) = 81.6

Av. Dis. (I-II) = 77.8
Av. Dis. (I-III) = 97.6
Av. Dis. (II-III) = 83.0

Type I Type II Type III Type I Type II Type III Type I Type II Type III

Species Av. Abund. Av. Abund. Av. Abund. Av. Abund. Av. Abund. Av. Abund. Av. Abund. Av. Abund. Av. Abund.

Acanthophora nayadiformis 0 0 0 0 3 0 0 6.1 0
Acetabularia acetabulum 0 14.3 0 0 4.2 0.2 0 7.1 0.5
Ceramium diaphanum 0 0 0 0 1.7 3.4 0 0.9 2.3
Chaetomorpha linum 6.6 5.6 1.5 1.8 2.9 1.6 0.7 3.4 0.9
Chondria capillaris 0 0 6 0 2.1 5.6 0 2.8 6.1

Cladophora glomerata 10 6.5 0 0.4 2.1 0 2.7 1.7 0
Cladophora prolifera 0 0 0 0 0 0 0 2.9 4.1

Cladophora sp. 0 0 0 0 2.8 3.2 0 0 0
Cymodocea nodosa 0 15.9 44.4 0 17.2 27.0 0 18.6 34.9
Cystoseira barbata 0 0 0 0 2.3 0 0 0 0

Gracilaria bursa-pastoris 0 6.4 0 0 0 0 0 4.4 3.3
Gracilariopsis longissima 0 0 4.5 0.8 4.1 16.1 0 0 9.3

Lamprothamnium papulosum 25.9 20.2 0 18.9 6.8 0 4.2 8.4 6.6
Ruppia cirrhosa 0 6.4 1.4 36.3 18.9 1.2 40.8 25.4 19.4

Ulva lactuca 0 0 12.1 6 0.4 9.7 8.4 0.4 4.6
Ulva laetevirens 0 0 0 0 0.5 2.2 0 0 0

Ulva rigida 0 5.9 2 0 2.4 3.0 0 0 1.8
Zostera noltii 27.8 4.5 0 2.3 0 0 2.8 0 0
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Table 4. SIMPER (similarity percentage) analysis results: average dissimilarity (%) within the three lagoon types of Western Greece during spring, summer and autumn.
The macrophyte species primarily responsible for the differences between macrophyte assemblages and its contribution within the lagoon type are also reported.

Average Dissimilarity (%)
between Lagoon Types

Spring Summer Autumn

Av. Dis. (I–II) = 83.6
Av. Dis. (I–III) = 96.44
Av. Dis. (II–III) = 87.6

Av. Dis. (I–II) = 82.4
Av. Dis. (I–III) = 95.9
Av. Dis. (II–III) = 80.1

Av. Dis. (I-II) = 81.2
Av. Dis. (I-III) = 96.9
Av. Dis. (II-III) = 83.2

Type I Type II Type III Type I Type II Type III Type I Type II Type III

Species Av. Abund. Av. Abund. Av. Abund. Av. Abund. Av. Abund. Av. Abund. Av. Abund. Av. Abund. Av. Abund.

Acanthophora nayadiformis 0 2.4 0 0 4.7 0 0 3.1 0
Acetabularia acetabulum 0 8.4 0 0 8.0 1.3 0 6.9 0
Ceramium diaphanum 0 0 0 0 1.5 4 0 1.3 2.4
Chaetomorpha linum 1.5 2.8 1.5 6.2 3.3 0.8 1.6 5.0 1.5

Chaetomorpha sp. 0 0 2.4 0 0 0 0 0 0
Chondria capillaries 0 1.4 3.6 0 2.9 5.1 0 1.8 8.4

Cladophora glomerata 2.6 1.7 0 5.1 3.6 0 5.9 3.6 0
Cladophora prolifera 0 1.4 3.3 0 1 2.3 0 1.4 1

Cladophora sp. 0 1.5 2.1 0 0.6 2.3 0 0 0
Cymodocea nodosa 0 13.2 24.2 0 20.9 35.5 0 17.9 37.6
Cystoseira barbata 0 2.1 0 0 0 0 0 0 0

Gracilaria bursa-pastoris 0 3.1 0 0 3.3 0 0 4.1 0
Gracilariopsis longissima 0 0.5 18.9 0 2.7 8.9 1 1.7 10.4

Lamprothamnium papulosum 4.1 9.3 0 17 10.4 0 19.6 12.2 0
Ruppia cirrhosa 22.5 23.9 0.4 31.7 15.8 0.5 29.7 15.6 0.3

Ulva lactuca 3 0.4 9.6 9.2 0.7 5.2 5.7 0.4 10.2
Ulva rigida 0 2.9 1.9 0 3.7 2.3 0 2.3 2.4

Zostera noltii 16.3 0.46 0 12 1.7 0 6.4 1.1 0
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3.3. Univariate Variables of Diversity Indices and Environmental Variables

The list of diversity indices applied to each lagoon type during the study period point out
significant differences on seasonal and annual scale (Figure 7a–e). Coastal lagoons of Type II (Tsoukalio
and Kleisova) and Type III (Araxos) showed highest Shannon and species richness values. For example
Kleisova and Araxos showed the higher species richness in spring 2007 (3.5) and summer 2005 (2.8),
respectively. Figure 7e shows the clear relationship of salinity with univariate variables. Thus, coastal
lagoons with higher salinity and higher seawater exchange have higher values of diversity indices.
Lower Shannon values were found in the highly confined lagoon (Rodia), which is more influenced by
freshwater inputs.

The differences of univariate variables among lagoon types and the conceptual linear regression
analysis between univariate variables showed that seasons and stations played significant role to the
results of the variables. No significant interaction was obtained between the factors season*year*station
(Table S4). Number of species, species richness and Shannon differed significantly between seasons
and stations, but no significant temporal variations were observed with the only exception of the
Shannon index (H) in lagoon Type I.

4. Discussion

The results derived from the monitoring of the five selected coastal lagoons of Western Greece are
representative of several Mediterranean ecosystems. These lagoons belong to three different lagoon
types and show the typical gradient of environmental conditions observed in many transitional
water ecosystems due to the mixing of freshwater, seawater and human impacts [47]. The observed
salinity followed a seasonal trend, typical of all Mediterranean lagoons, with higher values in the
dry period and in the restricted lagoon types. Salinity was the main variable driving the distribution
of submerged macrophytes in these coastal lagoons, explaining more than 71% of the variance;
DIN can explain 19%. Highly confined lagoons with lower salinity such as Rodia (Type I) show high
concentrations of nitrogen compounds (NO3-N and NH4-N) during the wet period (spring, autumn).
Freshwater inputs and agricultural runoff from the adjacent drainage channels [2] affect the nutrient
concentrations which increase with habitat isolation [48]. The highest NO3-N and DIN concentrations
observed in chocked lagoon revealed the inverse relationship of salinity with nitrates, which is the
most abundant nitrogen compound in these coastal lagoons [48]. Less confined and euryhaline lagoons
(Type II and III) had higher TP concentrations probably due to high salinity values and associated
high sulfate reduction rates [49]. The dissimilatory reduction of sulfate is very abundant in marine
waters and produces sulfide ions that precipitate ferrous iron. With the removal of iron, phosphate
can be released from the sediment to the water mass [50]. Even if nutrient loads range was similar
to other transitional water ecosystems in the Mediterranean region [51,52] a buffering capacity or a
feedback mechanism of submerged macrophytes in stabilizing phosphorus is expected in lagoons with
high habitat isolation [48]. The dense mats of charophyte species such as L. papulosum, typical of such
lagoon types, can prevent sediment resuspension and mitigate the phosphorus binding capacity of
particulate matter [53,54].

Changes in water and sediment quality subsequently lead to changes in the macrophyte
community composition and vice versa [9,40,55]. High light penetration and high water transparency
can be the result of low phytoplankton densities (as indicated by low Chl-a concentrations) but can
also be promoted by the distribution of macrophyte assemblages as the dominance of angiosperms
that diminishes the resuspension of the sediments [56]. The highest Chl-a mean values recorded in the
lagoon Type III were supported by the runoff of adjacent agricultural lands.
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The results also supported the hypothesis that physical and chemical parameters of the water
column may determine the composition and distribution of macrophyte assemblages. In coastal
ecosystems with low seawater inflow, several specialist species may tolerate severe environmental
conditions and potentially develop large populations in a wide range of salinity gradients.
Lagoon specialists are better adapted to high environmental variability, most likely afforded by
a degree of genetic plasticity [57]. However, in extreme salinity conditions, a drop of species
richness is expected [58]. From the seven species of phanerogams that have been signaled in the
Mediterranean [59], three of them: Z. noltii, R. cirrhosa and C. nodosa have been formed extensive
meadows in the studied areas [35] and support four macrophyte assemblages. The structure and
composition of these four macrophyte assemblages distinguished in the coastal lagoons of Western
Greece was determined by the abiotic gradients [1] and the degree of isolation by the sea [7].
Due to the higher variability of abiotic gradients (transparency and salinity) and the hydrological
regime in lagoons, diversity is generally lower than in more stable and marine environments [60,61].
The detrended correspondence analysis showed that lagoon type, salinity and nutrient concentrations
played relatively important roles on species distribution and succession [62]. The results also show
that chocked and more isolated lagoons (Type I) with lower salinity values had lower Shannon index
diversity. The seasonal variations of diversity (H) reflected the seasonally high abundance of a few
dominant species, such as Z. noltii, R. cirrhosa and C. nodosa.

Macrophyte assemblages formed by R. cirrhosa and C. nodosa and accompanied with the
opportunistic species of Ulva and various Rhodophyceae of the genus Gracilaria and Gracilariopsis
were found in the lagoons Types II and III characterized by high salinity values (>30‰). Also, in the
lagoons with high sea water exchange and heterogeneous physical and chemical characteristics [63],
the diversity indices (number of species, species richness and Shannon) are higher than those observed
in the isolated lagoons or with little exchanges with the sea [64].

R. cirrhosa presents high ranges of habitability both in terms of salinity and inorganic nitrogen
concentrations and can be found from oligotrophic to hypertrophic environments [65,66]. The higher
densities of R. cirrhosa were observed in spring and summer, while from late summer to autumn,
the senescence of the plants associated with intense grazing and the development of opportunistic
species and epiphytes, may limit the growth of this phanerogam in the Mediterranean lagoons [67,68].
C. nodosa appears to be more vulnerable to salinity changes and was found to colonize areas of the
lagoons more affected by marine intrusions [15,69]. In the lagoon Type III, characterized by high
salinity values induced by low freshwater inflows and high influence of the sea water, C. nodosa can
dominate or can be a competitor of R. cirrhosa [70]. The abundance of C. nodosa observed from summer
to autumn is one of the highest among other Mediterranean lagoons [24,71].

The angiosperm Z. noltii, recorded in the lagoon Type I, forms the macrophyte assemblage i with
the charophyte L. papulosum., This assemblage is typical of lagoons with low salinity, high transparency
and high concentrations of total inorganic nitrogen. Z. noltii is a relatively small and fast-growing
species having a high tolerance to changes of environmental conditions, such as light irradiance,
temperature and nutrient concentrations [72]. It can be established on a wide range of substrata [70]
and form mixed meadows with R. cirrhosa and C. nodosa in areas where salinity fluctuate as estuaries
and coastal lagoons [73,74]. Based on its field distribution Z. noltii is classified as euryhaline species [73].
The growth and survival of Z. noltii are both significantly affected by water salinity [75]. In the current
study, Z. noltii was found at salinities lower than 20‰, while in other Mediterranean lagoons such
as Mar Menor the species was found at higher salinities (42‰ to 47‰). The average abundance of
Z. noltii can be reduced by 50% at salinities lower than 10–20‰, whereas high rates of leaf production
were found when salinity ranges from 20 to 31‰ [76]. In our study, Z. noltii was found only in the
confined lagoon type I. In the marshes of Rodia, large freshwater inputs from Louros River in June
and July 2003 and March 2004 combined with high precipitation rates, increased the water level of the
lagoon and probably contributed to the reduction of Z. noltii [2]. However, Z. noltii was recorded at low
average abundances in lagoon Type II and absent in the lagoon Type III. These differences in salinity
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tolerance could be explained by individuals’ adaptation to different and variable local conditions that
occur naturally in their habitats, as it is the case of other widespread species [74].

Transparency and Chl-a concentrations may affect the composition and distribution of
macrophytes as indicated by several studies [9,77]. With low nutrient levels and clear water conditions,
such as those typical of an oligotrophic state, Zostera spp. and the aquatic plants of the Ruppia genus are
the dominant macrophytes taxa of the lagoon [9,39]. The seasonal salinity fluctuations and especially
the increase of the gradient registered in 2007 resulted in the deterioration of Z. noltii abundance
and its replacement by the angiosperm R. cirrhosa [78]. The degradation of submerged phanerogam
meadows is generally indicated by a reduction of water transparency and the consequent decrement
of the depth limits for all macrophytes growth. Moreover, a gradual loss of plant communities
containing charophytes can be also observed [42]. Also, high nutrient concentrations can lead to
damages of submerged meadows, losses of diversity and increments of angiosperms mortality [76].
However, increase in nutrient availability enhances the development of fast growing macroalgae
and epiphytic communities that shade aquatic angiosperms and may affect their abundance [67].
Typical green algae, such as Chaetomorpha spp., Cladophora spp. and Ulva spp. display enhanced
growth in euryhaline environments and its abundance is favored by the confinement with the sea [51].
Since macrophytes are typically adapted to euryhaline waters, drastic variations in salinity may be an
important local factor contributing to the species losses observed not only in Western Greece lagoons,
but also in the Baltic Sea and in the Catalan area [18,42].

In less confined lagoon types, macrophyte species typical of marine environments were recorded.
The angiosperms C. nodosa and R. cirrhosa, associated with several epiphytes or opportunistic species,
were forming dense mats [15,77]. Blooms of Ulvaceae, Cladophoraceae and Gracilariaceae could decrease
the abundance of these angiosperms and restrict their distribution to areas close to the sea inlets [39].
Both species were adapted to polyhaline waters ranging from 27‰ to 43‰ mean salinity values [76]
but, in accordance with the ordination analysis, they differ in their responses to nutrient concentrations.
R. cirrhosa (as Z. noltii) is more adapted to high DIN concentrations and is abundant in spring where
nutrient concentrations are at the maximum [79]. C. nodosa, on the other hand, prevails in sampling
sites with lower nitrate or ammonia concentrations and high salinity values. In Kleisova and Araxos
lagoons, even if C. nodosa formed mixed meadows with R. cirrhosa, it was the species with the highest
average abundance.

Finally, the presence of marine species such as C. barbata, Al. corrallinum, A. nayadiformis,
Gr. gracilis and L. obtusa are common in lagoons representing slow-growing, sun-adapted perennial to
annual macroalgae favoured in pristine and moderately degraded environments [80,81]. Stands of
C. barbata could be found together with C. nodosa and R. cirrhosa [81]. The species of the genus
Cystoseira are usually the dominant element of the benthic vegetation on unpolluted hard substratum
and the Cystoseira algal community is considered as the final stage (climax) in a succession of
photophilic algal communities [82]. The species C. barbata is an important element of upper infralittoral
benthic vegetation in semi enclosed bays and even in small fishing ports [83]. According to
Montesanto and Panayiotides [80] species of genus Cystoseira could be considered as indicator
species of unpolluted waters, with the exception of C. barbata which seems to be tolerant of moderate
eutrophication conditions.

A decline of benthic angiosperms was referenced on a worldwide scale during last decades [84].
Climate change, induced land cover/use changes, eutrophication and hydrological alteration are the
main threats of benthic macrophytes in transitional water ecosystems [84]. The high temperatures
predicted for the Mediterranean area through the end of 21st century will significantly impact the
biodiversity of coastal lagoons [85]. Conservation actions such as the improvement of water quality by
the reduction of pollution sources, water drainage and habitat modifications are needed to preserve
macrophyte species. The knowledge of spatial variability and the temporal changes in macrobenthic
assemblages of coastal lagoons can be highly relevant namely for the establishment of monitoring
programs and develop national conservation strategies for transitional water ecosystems.
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5. Conclusions

Our findings support the identification of macrophyte assemblages distinguished in three
different lagoon types of Western Greece. These are composed by species that are common in coastal
environments and are able to form populations capable to acclimate to the particular environmental
conditions of these ecosystems. The four macrophyte assemblages are characterized by the presence
of the angiosperms Z. noltii, R. cirrhosa, C. nodosa and the charophyte L. papulosum. In these lagoons,
the adaptations and the replacement of macrophyte species are more likely to occur during the wet
period (spring) by taking advantage of the more favorable environmental conditions rather than
in the extreme conditions typical of summer. Submerged macrophytes have to cope with large
and frequent changes in their environment by means of morphological, physiological and life-cycle
adaptations. Our findings support the crucial impact of sea water intrusion to the relative abundance
and distribution of macrophyte species, as has occurred in other Mediterranean coastal lagoons.
Furthermore, the shifts in salinity regime may introduce alterations in the abundance and distribution
of the angiosperm Z. noltii especially in chocked lagoons. Due to the important structuring effects
of macrophytes in shallow ecosystems, gaining insights into the connections between macrophytes
structuring and environmental conditions is of critical importance to improve management and
environmental policies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/10/2/151/s1.
Table S1: Mean values and standard deviation of environmental parameters observed into the different
macrophytic assemblages (i–iv), as well as the results of One Way ANOVA and LSD test. Table S2: Summary
on variable correlations to DCA axes based on species coverage (%). Table S3: Intra-relationships of Correlation
coefficients between the environmental variables and the principal component axes of Redundant Direct Analysis
in three lagoon types. Table S4: Results of mixed analysis of variance in three different coastal lagoon types of
Western Greece showing the effects of the factors Season, Year, Station and their interactions (Season*Year*Station)
on the univariate variables: (i) Number of species (S), (ii) Margalef Species Richness (d), (iii) Pielou Evenness
(J), (iv) Shannon Diversity Index (H). Figure S1: MDS analysis based on the seasonal variation of abundances
of the angiosperms Zostera noltii, Cymodocea nodosa and Ruppia cirrhosa into the three different lagoon types of
Western Greece.
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