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Abstract:



Design of hydraulic works requires the estimation of design hydrological events by statistical inference from a probability distribution. Using Monte Carlo simulations, we compared coverage of confidence intervals constructed with four bootstrap techniques: percentile bootstrap (BP), bias-corrected bootstrap (BC), accelerated bias-corrected bootstrap (BCA) and a modified version of the standard bootstrap (MSB). Different simulation scenarios were analyzed. In some cases, the mother distribution function was fit to the random samples that were generated. In other cases, a distribution function different to the mother distribution was fit to the samples. When the fitted distribution had three parameters, and was the same as the mother distribution, the intervals constructed with the four techniques had acceptable coverage. However, the bootstrap techniques failed in several of the cases in which the fitted distribution had two parameters.
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1. Introduction


In the study and design of hydraulic works, hydrological events must be estimated by statistical inference [1,2] as predetermined quantiles from a probability distribution [3,4]. A quantile is defined as a magnitude of a hydroclimatological variable (precipitation, flow, etc.) associated with a return period. The return period is the average time interval in which said magnitude is reached or surpassed [5].



In hydrology, it is not enough to obtain the value of an event associated with a return period since there is a level of uncertainty in the estimation of parameters and quantiles from finite samples [6], which must be considered in decision-making [7]. One way to report this uncertainty is to provide an interval that has a high likelihood of including the true value of the quantity of interest. Said interval is known as the confidence interval, and the likelihood that it contains the true value is known as the confidence level. As the uncertainty increases, so does the width of the confidence interval [8,9].



Traditionally, confidence intervals are obtained from a parametric estimator of the standard error [image: ] of a quantity of interest [image: ]. A confidence interval of 95%, then, is obtained by adding or subtracting the standard error multiplied by a critical value (for example, [image: ]). This calculation assumes that the distribution of the estimator of [image: ] is approximately normal [6,10].



There are various situations in which the assumption of normality is incorrect. In these cases, or when the standard error is very difficult to estimate, one alternative is to use techniques based on bootstrap re-sampling [3,6,11]. In bootstrap resampling, proposed by [12], the distribution of a given statistic is inferred from the available data [8,13]. For this purpose, many samples are generated from the original sample using Monte Carlo simulations. There are two basic approaches for the bootstrap: parametric and non-parametric re-sampling. In parametric resampling, random samples are generated from a parametric model fit to the data. In non-parametric resampling, the bootstrap samples are constructed using the resampling with replacement from the original sample [14,15]. The parametric bootstrap is very similar to Monte Carlo simulation. The difference is that the parameters used for the parametric bootstrap are estimated from the sample, whereas the parameters for the Monte Carlo simulation are set, based on the purposes of the simulation. Thus, a Monte Carlo simulation would be used for a theoretical study, whereas the parametric bootstrap would be used to make statistical inference from sampled data. In terms of implementation, the parametric bootstrap and Monte Carlo simulation are the same [16].



Regardless of the approach used to generate the bootstrap samples, the construction of the confidence intervals requires calculating the quantity of interest for each of the bootstrap samples and, later, from the calculated values, estimating the confidence limits using order statistics [17,18].



There is a variety of techniques for constructing confidence intervals from bootstrap samples. Among these are the percentile bootstrap (BP), the bias-corrected bootstrap (BC), the accelerated bias-corrected bootstrap (BCA) and the standard bootstrap (SB). All of these techniques have their advantages and disadvantages [8]. However, it is not clear which is convenient for constructing confidence intervals for quantiles of hydroclimatological variables. One way to verify whether a technique for the construction of confidence intervals is effective is to calculate the coverage of the intervals constructed using that technique. Coverage is defined as the percentage of times in which the confidence intervals include the true value of the quantity of interest. This coverage should coincide with the confidence level of the interval. That is, for a confidence level of 95%, it is expected that 95% of the confidence intervals contain the true value of the quantity of interest [19,20].



The aim of this study was to compare the coverage of the confidence intervals obtained with four bootstrap techniques under different simulation scenarios, analyzing series of 24-h annual maximum precipitation. The bootstrap techniques are the percentile bootstrap, the bias-corrected bootstrap, the accelerated bias-corrected bootstrap and a modification of the standard bootstrap that we propose here.




2. Materials and Methods


2.1. Climatological Information


The data used in this study were 24-h annual maximum precipitation records obtained from 21 meteorological stations in Mexico (Figure 1) from the National Climatological Database (CLICOM-Climate Computing) (http://smn.cna.gob.mx/index.php?option=com_content&view=article&id=42&Itemid=75) [21]. The records vary from 32 to 89 years for the period from 1923 to 2012. The stations are found in five states and in three different climate types (Table 1).


Figure 1. Location of the meteorological stations used in this study.



[image: Water 10 00166 g001]






Table 1. Geographic location and information from the meteorological stations used in the study.







	
Station

	
Name

	
Climate Type

	
Latitude (° N)

	
Longitude (° E)

	
Altitude (masl)

	
Period of Records

	
Mean (mm)

	
Standard Deviation

	
Skewness Coefficient






	
6017

	
Madrid

	
Hot subhumid

	
19.1122

	
−103.8839

	
195

	
1970–2012

	
112

	
65.4

	
2.38




	
6054

	
M. Á. Camacho

	
Hot subhumid

	
19.285

	
−104.245

	
376

	
1978–2012

	
107

	
62.3

	
2.02




	
6058

	
Tecomán

	
Hot subhumid

	
18.9083

	
−103.8744

	
30

	
1954–2012

	
112

	
62.2

	
1.35




	
14011

	
Apazulco

	
Hot subhumid

	
19.3064

	
−104.8875

	
5

	
1961–2011

	
126

	
62.1

	
0.9




	
14036

	
Cuautitlán

	
Hot subhumid

	
19.4506

	
−104.3592

	
600

	
1958–2011

	
115

	
50.9

	
2.08




	
14067

	
Higuera Blanca

	
Hot subhumid

	
19.9942

	
−105.1625

	
140

	
1956–2002

	
111

	
68

	
1.29




	
14148

	
Tecomates

	
Hot subhumid

	
19.5583

	
−104.5

	
286

	
1961–2006

	
102

	
32

	
1.16




	
11003

	
Agua Tibia

	
Temperate subhumid

	
20.5103

	
−101.6294

	
1720

	
1949–2012

	
53.2

	
15.7

	
0.295




	
11014

	
Cuerámaro

	
Temperate subhumid

	
20.6256

	
−101.6758

	
1732

	
1967–2012

	
49.4

	
16.8

	
−0.16




	
11028

	
Irapuato

	
Temperate subhumid

	
20.6689

	
−101.3372

	
1729

	
1923–2011

	
53.8

	
16.5

	
1.55




	
11035

	
La Sandía

	
Temperate subhumid

	
20.9211

	
−101.6974

	
1771

	
1965–2012

	
52.9

	
16.3

	
−0.31




	
11036

	
Adjuntas

	
Temperate subhumid

	
20.6753

	
−101.8442

	
1727

	
1944–2012

	
54

	
19.3

	
1.64




	
11134

	
El Conejo

	
Temperate subhumid

	
20.7158

	
−101.3697

	
1740

	
1978–2012

	
54.9

	
15.1

	
0.586




	
14038

	
Cuixtla

	
Temperate subhumid

	
21.0519

	
−103.4389

	
1000

	
1954–2011

	
57.5

	
13.9

	
0.65




	
16100

	
P. San Isidro

	
Temperate subhumid

	
19.8658

	
−101.5189

	
2022

	
1947–1992

	
46.4

	
10.2

	
0.73




	
27019

	
Jalapa

	
Hot humid

	
17.7233

	
−92.8117

	
14

	
1971–2012

	
161

	
44.5

	
0.939




	
27024

	
La Huasteca

	
Hot humid

	
17.52

	
−92.9267

	
80

	
1970–2012

	
150

	
53.4

	
1.59




	
27037

	
P. Nuevo

	
Hot humid

	
17.8542

	
−92.8792

	
21

	
1949–2012

	
127

	
46.8

	
1.33




	
27042

	
Tapijulapa

	
Hot humid

	
17.4611

	
−92.7775

	
44

	
1962–2012

	
200

	
66.9

	
0.417




	
27044

	
Teapa

	
Hot humid

	
17.5489

	
−92.9533

	
51

	
1960–2012

	
178

	
44.1

	
0.891




	
27061

	
Puyacatengo

	
Hot humid

	
17.5133

	
−92.92

	
86

	
1972–2012

	
193

	
62.7

	
1.36











2.2. Simulation Software


We used Scilab 5.4.1 (http://www.scilab.org), an open source scientific software. Scilab is a high level programming language which includes a library of around 2000 defined functions. In Scilab, matrices are the fundamental object for scientific calculations. Thus, Scilab programs are compact and usually smaller to their equivalents in C, C++, or Java.




2.3. Bootstrap Techniques


We compared four bootstrap techniques for construction of confidence intervals: the percentile bootstrap (BP), the bias-corrected bootstrap (BC), the accelerated bias-corrected bootstrap (BCA) and a modification of the standard bootstrap (MSB).



2.3.1. Percentile Bootstrap (BP)


The BP interval is just the interval between the [image: ] and [image: ] percentiles of the distribution of estimates of [image: ] from each resample. BP confidence intervals are based on the assumption that there exists a monotone transformation [image: ] such that [image: ] (the transformed variable [image: ] follows a normal distribution with mean [image: ] and variance [image: ]), where [image: ] is constant, [image: ] represents the true value of the quantile associated to the return period [image: ], [image: ] is an estimator of [image: ], and [image: ] is a normalizing transformation. It can be verified that, for the transformed variable, the BP intervals are correct, that is, their coverage probability is exactly [image: ], as claimed. BP intervals are transformation invariant, which means that if they are correct on the transformed scale [image: ], then they must also be correct on the original scale [image: ]. The BP method automatically incorporates the normalizing transformation [image: ], so knowledge of this transformation is not required to implement the method, but it must exist for the BP intervals to be correct [14,22].



To construct a confidence interval of [image: ] with the BP method, for the quantile [image: ] corresponding to a [image: ] return period, the following procedure was carried out: (1) [image: ] random samples of the mother distribution are generated; (2) for each of the random samples, the parameters of the distribution function fit to the data are estimated, and then the quantiles; (3) the quantiles of all the samples are ordered from lowest to highest, and (4) the confidence interval is constructed in the following form:


[image: ]



(1)




where [image: ] represents the jth quantile of the set of ordered quantiles from lowest to highest; [image: ] represents the kth quantile of the same set, [image: ], [image: ]; and [image: ] is the level of significance. We used [image: ] and [image: ]; the quantile corresponding to the lower limit of the interval was [image: ] (the 50th quantile) and that corresponding to the upper limit was [image: ] (the 1950th quantile).




2.3.2. Bias-Corrected Bootstrap (BC)


When the estimator [image: ] is biased, a transformation [image: ] such that [image: ] does not exist and BP intervals are not accurate [14,23]. Efron [24,25] introduced a modification of the BP method which incorporated a bias correction factor [image: ]. This factor is estimated using the expression [image: ], in which [image: ] is the standard normal distribution function and [image: ] is the empirical probability of the estimated quantile [image: ] (Equation (2)).


[image: ]



(2)




where [image: ] is the number of bootstrap quantiles smaller than [image: ]. The quantile [image: ] is that estimated from the data of the original sample; it should not be confused with the bootstrap quantiles [image: ] estimated from the random samples.



If [image: ] is known, the values of [image: ] and [image: ] are obtained:


[image: ]



(3)






[image: ]



(4)




where [image: ] and [image: ] are the percentiles [image: ] and [image: ] of a standard normal distribution, respectively. For [image: ] (95% confidence level) [image: ] y [image: ].



When [image: ] and [image: ] are known, the confidence interval is constructed as in Equation (1):


[image: ]



(5)




where [image: ] is the jth quantile of the set of quantiles ordered from lowest to highest, [image: ] represents the kth quantile of the same set, [image: ] and [image: ].



The bias-corrected (BC) bootstrap method assumes that there is a monotone transformation [image: ] such that [image: ], where [image: ] and [image: ] are constant [14]. Efron [25] has shown that when such a transformation exists, BC intervals are correct. When [image: ], the BC confidence intervals are equivalent to the BP intervals.




2.3.3. Accelerated Bias-Corrected Bootstrap (BCA)


Efron [26] introduced an improvement of the BC method which corrects for both bias and skewness. This bias-corrected and accelerated (BCA) method requires calculation of a bias correction factor [image: ] and of an acceleration factor [image: ]. The coefficient [image: ] is calculated in the same way as in the BC technique. The [image: ] coefficient can be obtained by jacknife resampling [8]. This involves generating [image: ] number of replicates of the original sample, where [image: ] is the number of observations in said sample. The first jackknife replicate is obtained by leaving out the first value of the original sample, the second by leaving out the second value, and so on, until [image: ] samples of size [image: ] are obtained. For each of the samples, the quantile [image: ] corresponding to the return period of interest is estimated. The average of these quantities is:


[image: ]



(6)







The acceleration factor [image: ] is calculated with Equation (7):


[image: ]



(7)







With the values of [image: ] and [image: ] the values [image: ] and [image: ] are calculated:


[image: ]



(8)






[image: ]



(9)




where [image: ] is the percentile [image: ] of a standard normal distribution. For an [image: ] significance level, the percentile [image: ]. With the values of [image: ] and [image: ], a confidence interval is constructed in the same way as Equations (1) and (5):


[image: ]



(10)




where [image: ] and [image: ].



The BCA method is based on the assumption that there is a monotone transformation [image: ] which satisfies to a high degree of approximation [image: ], where [image: ], and [image: ] and [image: ] are constants [14]. Efron [27] showed that such a transformation does exist. When the acceleration coefficient [image: ], the BCA intervals are equivalent to BC [23].




2.3.4. Modified Standard Bootstrap (MSB)


According to the standard or Gaussian bootstrap method, the confidence interval of [image: ] for a quantile [image: ] takes the form of Equation (11):


[image: ]



(11)




where [image: ] is the estimated value of the quantile, [image: ] is the percentile [image: ] of a standard normal distribution, and [image: ] is a bootstrap estimator of the standard deviation. This estimator [image: ] is given by Equation (12).


[image: ]



(12)




where [image: ] is the ith bootstrap quantile and [image: ] is the average of the bootstrap quantiles.



We did not use the standard bootstrap in this study, but instead we propose a modification of this technique. This modification consists of constructing the standard confidence interval, not for the quantile, but for a transformation of the quantile.



The standard bootstrap method assumes that the sampling distribution of [image: ] is normal, with mean [image: ] and variance [image: ], where [image: ] is constant. If this assumption is not true, the standard bootstrap intervals will not be accurate [14]. However, in many cases, a transformation that stabilizes the variance will also give a variable which is closer to a normal distribution [28]. If the transformed variable is normally distributed, then the MSB will give the correct intervals.



To find an appropriate transformation, bootstrap samples were generated. The variance of the [image: ] (the bootstrap estimates of [image: ]) was then expressed as a function of the mean of the [image: ] using a linear regression. A transformation was then chosen which would give nearly constant variance for the transformed data. This transformation was not the same if the data were generated from a two-parameter distribution or from a three-parameter distribution. Therefore, the MSB technique varies slightly, depending on the number of parameters of the probability distribution function (pdf) fit to the time series. In the case of a three-parameter distribution, the procedure is the following: (1) the bootstrap quantiles [image: ] corresponding to a return period [image: ] are estimated; (2) for each of these quantiles, the transformation [image: ] is performed for each of the quantiles; (3) the standard deviation of the transformed values is obtained (Equation (13)); (4) the confidence interval for [image: ] is constructed, with a lower limit [image: ], and an upper limit [image: ] (Equation (14)); (5) finally, the inverse transformation is applied to obtain a confidence interval for [image: ], with a lower limit [image: ] and an upper limit [image: ] (Equation (15)).


[image: ]



(13)




where [image: ] is the mean of the values [image: ].


[image: ]



(14)






[image: ]



(15)







It should be mentioned that, when the transformation is applied, the order of the limits is inverted. That is, the reciprocal of the upper limit US for the transformed variable [image: ] becomes the lower limit XI for [image: ] and the reciprocal of the lower limit UI for [image: ] becomes the upper limit XS for [image: ].



The procedure to obtain the interval for a two-parameter pdf is similar, except that the transformation used is [image: ]. Later, once the confidence interval is obtained for [image: ], the transformation [image: ] and [image: ] must be done to obtain the confidence interval of . This interval is given by Equation (16).


[image: ]



(16)







For a significance level [image: ], the percentile [image: ].





2.4. Modeling the Coverage of Confidence Intervals


The criterion used to compare bootstrap techniques was coverage of the confidence intervals obtained by those techniques. Coverage was calculated considering two or three simulation scenarios that consider different pdf and return periods. Scenario 1 corresponds to the use of the best fitting pdf (mother distribution). Scenario 2 corresponds to modeling the second best fitting pdf. Scenario 3 corresponds to modeling the pdf which is of the same family as the mother distribution. When the second best fitting distribution is of the same family as the mother distribution, there are only two scenarios. The scenarios were obtained by generating samples of a known pdf and then fitting different pdf and estimating the quantiles using those pdfs. For each of these scenarios, confidence intervals were constructed using the four bootstrap techniques and their coverage was calculated.



The reason for this approach is the following: in practice, the real distribution of extreme rainfalls is not known, so it must be inferred from samples of finite size. Therefore, it is not unlikely that there will be cases in which inappropriate pdf are used to model the extreme rainfalls. With this in mind, some simulation scenarios were considered in which an incorrect pdf was deliberately chosen to fit the simulated data, in order to study the effect that such a choice would have on the confidence intervals. However, since it was desired that this choice of pdf, although incorrect, was still reasonable, the second best fitting pdf and the pdf of the same family as the mother distribution were considered for this purpose.




2.5. Procedure for Determining the Level of Coverage


The general procedure for calculating the coverage of confidence intervals is outlined by Van de Boogard and Hall [20]. This general procedure is followed in this study, and applied to the different simulation scenarios that were considered. The methodological process used here can be summarized in the following six steps (Figure 2):

	
Select the pdf (mother distribution) to generate the random data.



The mother distribution for each site was selected by determining the best fitting pdf to the series of precipitation among a group of six candidates which included both two and three parameter pdf. The pdf used were log-gamma (LOGGM) and log-Pearson type 3 (LP3), Gumbel (GMB) and General Extreme Values (GEV), and log-logistic (LLOG) and generalized logistic (GLOG). The LP3, GLOG, GEV and GMB are among the most commonly used distributions for frequency analysis of extreme rainfalls [29]. The LOGGM and LLOG are two-parameter distributions related to the three parameter LP3 and GLOG distributions, respectively, as the GMB is related to the GEV. Thus, pairs of related two and three-parameter distributions were considered, allowing for the more parsimonious model to be chosen when it provided an adequate fit.



Selection of the pdf that best fit the original and simulated series was done by applying the Bayesian Information Criterion (BIC) [30], which assigns a numerical value to each distribution that orders them from best to worst fit. In all cases, the best fitting pdf was selected for the simulations.



	
Calculate the “true value” [image: ] of the quantile for different return periods [image: ].



Quantiles corresponding to the return periods [image: ] 2, 5, 10, 20, 25, 50, 100, 200, 500 and 1000 years were estimated from the original data. These were considered as the true values of the quantiles in the simulations. The quantiles of the GMB, GEV, LLOG and GLOG pdf were calculated with Equations (17)–(20), respectively, where [image: ], [image: ], and [image: ] are the estimators of the scale, shape and location parameters of the distributions.


[image: ]



(17)






[image: ]



(18)






[image: ]



(19)






[image: ]



(20)







No analytical forms exist for the inverse LOGGM or LP3 pdf. However, in these cases, we used SCILAB, which calculates the inverse function of the gamma distribution using the algorithm described by [31] and which served as the basis for calculating the quantiles of the LOGGM and LP3 distributions.



	
Generate synthetic samples.



One thousand synthetic samples of size [image: ] were generated from the mother distribution for each of the series that were analyzed.



	
Estimate the quantiles [image: ].



For each of the samples generated, a pdf was fitted to estimate the quantiles [image: ] corresponding to the return periods analyzed.



	
Construct confidence intervals.



Confidence intervals were constructed for the quantiles [image: ] with the BP, BC, BCA and MSB techniques. By generating 1000 synthetic samples, 1000 BP, 1000 BC, 1000 BCA and 1000 MSB intervals were obtained for each return period.



	
Calculate coverage.



Coverage was calculated as the percentage of times in which the intervals constructed by a bootstrap technique included the real value [image: ] of the quantile.







Figure 2. Methodological process for obtaining the coverage of the confidence intervals.



[image: Water 10 00166 g002]








3. Results and Discussion


Precipitation in the tropics is higher than in temperate regions, especially in the hot humid region (southeastern Mexico) where it can reach annual values of up to 3000 mm [32], which is reflected in the yearly maximum 24-h precipitation analyzed (Figure 3). Mean values of annual maximum precipitation recorded by the stations in the hot humid region vary between 127 and 200 mm, while in the hot subhumid region they vary from 102 to 126 mm. The temperate subhumid region has lower values, and mean values vary between 46 and 57 mm. As observed in Figure 3, maximum annual precipitations are more variable in the hot region than in the temperate region. The coefficients of variation of the hot subhumid region have large variation, from 31% to 62%, and, in the hot humid region, values are lower, varying from 25% to 37%, while in the temperate subhumid region coefficients of variation vary from 22% to 34%.


Figure 3. Maximum yearly precipitation recorded at the stations included in the analysis.



[image: Water 10 00166 g003]






3.1. Frequency Analysis


The first step was a frequency analysis to determine which pdf best fit to the series of maximum annual precipitation analyzed. The results show that there is no pdf that adequately represents most of the series analyzed. In general, the LOGGM pdf was the function that most often had the best fit to the series, since in a little more than 40% of the series it was the best fitting pdf, particularly in the series belonging the hot humid region. In addition, in a little more than 20% of the series, it was the second best fitting function. The LP3 pdf, which is of the same family as the LOGGM, was found to have the best fit in almost 20% of the series. If the pdf are considered by family, the pdf most often selected belong to the log-Pearson type 3 family, for a little over 60% of the series. In contrast, the least selected family was the logistic family. A pdf of this family was selected as the best fitting pdf in only 14% of the series. On the other hand, if the pdf are considered by number of parameters, it was observed that two-parameter pdf were selected as the best for 67% of the series, against only 33% of the series in the case of the three-parameter distributions. This is consistent with the BIC tendency towards parsimony, that is, selecting the model with the fewest parameters when the goodness of fit of the models is similar [33].



It is also worth noting that, when the skewness coefficient [image: ] was below 0.30, only three-parameter distributions were selected. GLOG or GEV were selected when the [image: ] value was slightly negative, but LP3 was selected for the case in which [image: ]. In addition, for [image: ], the LP3 was selected. On the other hand, two-parameter distributions were selected in 15 of the 16 cases in which [image: ]. While GLOG, GEV and LP3 can fit data in this range of [image: ] values, the BIC includes a term which penalizes the number of parameters in a distribution, so it will select a two-parameter distribution if it provides a fit similar to that of the best fitting three-parameter distribution. However, for [image: ] and [image: ], the two-parameter distributions did not provide a sufficiently good fit, so three-parameter distributions were selected instead.



For each of the analyzed series, the best fitting distribution was used as the mother distribution for the generation of the random samples. The best and second best fitting distributions for each of the series are shown in the Table 2.



Table 2. Parameters of the best fitting probability distribution functions.







	
Name

	
Best pdf

	
Second Best pdf

	
[image: ]

	
[image: ]

	
[image: ]






	
Madrid

	
LP3

	
LOGGM

	
5.3287144

	
0.1992481

	
3.5390657




	
M. Á. Camacho

	
LP3

	
GEV

	
4.1525277

	
0.2254003

	
3.6213723




	
Tecomán

	
LOGGM

	
LLOG

	
82.634782

	
0.0555225

	




	
Apazulco

	
LOGGM

	
GMB

	
91.842315

	
0.0514029

	




	
Cuautitlán

	
LP3

	
GEV

	
4.376189

	
0.1731262

	
3.9173081




	
Higuera Blanca

	
GMB

	
GLOG

	

	
51.898719

	
80.561081




	
Tecomates

	
GEV

	
LP3

	
0.1945382

	
19.86305

	
85.816749




	
Agua Tibia

	
LP3

	
GEV

	
11.795387

	
−0.0914924

	
5.0066864




	
Cuerámaro

	
GEV

	
GLOG

	
−0.2865803

	
16.660192

	
43.524345




	
Irapuato

	
LLOG

	
LOGGM

	

	
0.1621175

	
3.9415775




	
La Sandía

	
GLOG

	
LLOG

	
0.0823704

	
9.1261126

	
54.169179




	
Adjuntas

	
LOGGM

	
LLOG

	
154.81554

	
0.0254319

	




	
El Conejo

	
LOGGM

	
GMB

	
213.81437

	
0.0185691

	




	
Cuixtla

	
LOGGM

	
GMB

	
286.73673

	
0.0140327

	




	
P. San Isidro

	
GMB

	
LOGGM

	

	
8.2309395

	
41.686879




	
Jalapa

	
LLOG

	
LOGGM

	

	
0.1493782

	
5.0432277




	
La Huasteca

	
LOGGM

	
GMB

	
236.09342

	
0.0210114

	




	
P. Nuevo

	
LOGGM

	
LP3

	
201.45845

	
0.0237352

	




	
Tapijulapa

	
LOGGM

	
GMB

	
235.16545

	
0.0222989

	




	
Teapa

	
GMB

	
LOGGM

	

	
35.105362

	
157.71026




	
Puyacatengo

	
LOGGM

	
GMB

	
313.25914

	
0.0166501

	








[image: ] is the scale parameter; [image: ] the shape parameter, and [image: ] the location parameter.








For most of the analyzed series, one or more of the considered distributions provided an adequate fit. Figure 4a, Figure 5a and Figure 6a show the graphs of the fitted distributions for stations 6054, 11035 and 27037. Figure 5a and Figure 6a show examples of adequate fit, whereas Figure 4a provides one of the scarce examples of poor fit. It was observed that for values of [image: ] between [image: ] and [image: ], all the distributions provided a similar fit (as in Figure 6a); this means that, the more parsimonious two-parameter distributions were selected by the BIC. However, for values of [image: ] above 2 (i.e., Figure 4a), or below 0.30 (i.e., Figure 5a), there were significant differences between the distribution curves, and only three-parameter distributions, if any, provided an adequate fit. The similarities between distribution curves happen mostly within the interpolation region. Outside of this region, differences between curves become grater, increasing with the return period. The distribution curves spread out considerably for return periods with orders of magnitude of 100 and above. This behavior is illustrated in Figure 4b, Figure 5b and Figure 6b, which show the estimated quantiles for stations 6054, 11035 and 27037. It means that for high return periods, the different distributions provide very different estimates of the quantiles. This is true for all the analyzed series, but more so for the high variance and high skew series of the hot subhumid region.


Figure 4. Frequency analysis of maximum yearly precipitation recorded at the station 6054: (a) fitted distributions; and (b) estimated quantiles.



[image: Water 10 00166 g004]





Figure 5. Frequency analysis of maximum yearly precipitation recorded at the station 11035: (a) fitted distributions; and (b) estimated quantiles.



[image: Water 10 00166 g005]





Figure 6. Frequency analysis of maximum yearly precipitation recorded at the station 27037: (a) fitted distributions; and (b) estimated quantiles.



[image: Water 10 00166 g006]







3.2. Construction of Confidence Intervals


Once the best fitting pdf were identified, they were used to estimate the quantiles corresponding to the return periods [image: ] = 2, 5, 10, 20, 25, 50, 100, 200, 500 and 1000 years. The confidence intervals were then constructed for those return periods using the four bootstrap techniques.



Because of the large number of intervals obtained, Table 3 gives only those intervals obtained for [image: ] = 10, 100 and 1000 years. These intervals show that, for a single series, the intervals increase with respect to the return period and that, in general, the BC and MSB methods give the widest intervals, while BP gives the narrowest intervals. The difference between confidence intervals obtained by the different bootstrap methods is more noticeable when the return periods are longer. In addition, the results indicate that the intervals for the series from the hot humid and hot subhumid regions are wider than those of the series from the temperate subhumid region, since the maximum annual precipitation is more variable (Figure 3).



Table 3. Confidence intervals for the quantiles corresponding to the return periods of 10, 100, and 1000 years.







	
Station

	
Climate Region

	
Fitted pdf

	
Return Period (Years)

	
Estimated Quantile (mm)

	
Confidence Intervals (mm)




	
BP

	
BC

	
MSB

	
BCA






	
6017

	
Hot subhumid

	
LP3

	
10

	
184

	
140–237

	
145–245

	
146–251

	
140–256




	
100

	
384

	
221–720

	
252–927

	
240–957

	
223–1501




	
1000

	
732

	
300–2166

	
377–3619

	
-

	
314–8071




	
6054

	
Hot subhumid

	
LP3

	
10

	
176

	
133–240

	
137–250

	
136–251

	
133–271




	
100

	
380

	
206–774

	
232–947

	
226–1201

	
211–1374




	
1000

	
755

	
282–2487

	
351–5165

	
-

	
315–9317




	
6058

	
Hot subhumid

	
LOGGM

	
10

	
191

	
155–233

	
157–238

	
158–240

	
155–243




	
100

	
358

	
242–543

	
253–574

	
254–606

	
244–608




	
1000

	
590

	
321–1191

	
345–1328

	
353–1796

	
329–1424




	
14011

	
Hot subhumid

	
LOGGM

	
10

	
213

	
175–259

	
177–262

	
176–263

	
175–266




	
100

	
381

	
283–512

	
288–521

	
287–528

	
281–536




	
1000

	
596

	
408–887

	
417–903

	
416–926

	
405–920




	
14036

	
Hot subhumid

	
LP3

	
10

	
174

	
145–210

	
149–218

	
147–214

	
145–225




	
100

	
317

	
213–522

	
229–642

	
220–570

	
215–789




	
1000

	
541

	
285–1325

	
323–2169

	
307–2285

	
296–2941




	
14067

	
Hot subhumid

	
GMB

	
10

	
197

	
164–237

	
166–240

	
165–240

	
163–247




	
100

	
319

	
260–392

	
262–394

	
262–398

	
253–411




	
1000

	
439

	
352–543

	
357–550

	
356–555

	
344–572




	
14148

	
Hot subhumid

	
GEV

	
10

	
142

	
122–166

	
124–172

	
123–168

	
123–174




	
100

	
234

	
163–365

	
171–404

	
166–392

	
165–436




	
1000

	
375

	
194–901

	
211–1095

	
211–1695

	
206–1241




	
11003

	
Temperate subhumid

	
LP3

	
10

	
74.1

	
68.0–80.5

	
68.1–80.5

	
68.4–80.8

	
67.7–81.3




	
100

	
92.1

	
79.4–108

	
76.8–105

	
80.0–109

	
78.0–105




	
1000

	
104

	
83.1–136

	
77.8–129

	
84.1–137

	
81.8–126




	
11014

	
Temperate subhumid

	
GEV

	
10

	
71.2

	
64.7–77.0

	
65.1–77.4

	
65.3–78.1

	
64.6–77.6




	
100

	
86.1

	
74.5–100

	
74.1–99.2

	
75.2–101

	
73.6–100




	
1000

	
93.6

	
77.4–120

	
77.0–119

	
77.1–119

	
77.3–119




	
11028

	
Temperate subhumid

	
LLOG

	
10

	
73.5

	
67.1–81.1

	
67.6–82.3

	
67.1–81.0

	
66.5–84.1




	
100

	
108

	
93.2–128

	
94.9–132

	
93.3–128

	
92.3–137




	
1000

	
158

	
127–200

	
131–208

	
128–200

	
126–222




	
11035

	
Temperate subhumid

	
GLOG

	
10

	
72.5

	
66.7–78.1

	
67.1–78.4

	
67.2–78.7

	
65.9–79.6




	
100

	
89.1

	
78.0–104

	
78.1–104

	
78.0–104

	
76.0–108




	
1000

	
102

	
83.9–134

	
84.1–135

	
83.2–133

	
82.0–140




	
11036

	
Temperate subhumid

	
LOGGM

	
10

	
77.3

	
69.4–86.1

	
69.5–86.4

	
69.6–86.4

	
68.8–87.4




	
100

	
111

	
94.5–131

	
95.4–132

	
95.0–132

	
93.7–135




	
1000

	
147

	
119–181

	
121–185

	
120–183

	
117–190




	
11134

	
Temperate subhumid

	
LOGGM

	
10

	
75.3

	
66.1–85.9

	
66.7–86.8

	
66.4–86.2

	
65.9–87.8




	
100

	
102

	
83.7–125

	
84.7–127

	
84.9–126

	
83.2–131




	
1000

	
129

	
100–168

	
101–171

	
102–170

	
98.6–175




	
14038

	
Temperate subhumid

	
LOGGM

	
10

	
76.0

	
69.6–83.0

	
69.9–83.3

	
69.7–83.3

	
69.4–84.3




	
100

	
99.2

	
87.0–113

	
87.5–114

	
87.3–114

	
86.5–115




	
1000

	
121

	
103–144

	
104–145

	
103–145

	
102–147




	
16100

	
Temperate subhumid

	
GMB

	
10

	
60.2

	
54.3–66.7

	
54.3–66.8

	
54.5–66.9

	
53.9–67.6




	
100

	
79.6

	
69.3–91.8

	
69.4–92.0

	
69.5–92.0

	
68.4–92.9




	
1000

	
98.5

	
83.7–116

	
84.0–117

	
84.1–117

	
82.5–118




	
27019

	
Hot humid

	
LLOG

	
10

	
215

	
191–246

	
193–247

	
190–245

	
190–254




	
100

	
308

	
253–386

	
258–392

	
252–384

	
251–411




	
1000

	
435

	
329–602

	
339–610

	
329–600

	
325–665




	
27024

	
Hot humid

	
LOGGM

	
10

	
217

	
186–253

	
185–252

	
187–255

	
180–264




	
100

	
312

	
248–395

	
249–395

	
250–399

	
236–425




	
1000

	
411

	
307–559

	
308–564

	
311–569

	
289–618




	
27037

	
Hot humid

	
LOGGM

	
10

	
185

	
164–208

	
164–208

	
165–208

	
162–212




	
100

	
270

	
226–322

	
229–327

	
229–325

	
224–340




	
1000

	
362

	
289–453

	
293–465

	
292–460

	
284–488




	
27042

	
Hot humid

	
LOGGM

	
10

	
295

	
257–337

	
258–338

	
259–339

	
257–342




	
100

	
434

	
355–531

	
358–542

	
359–534

	
355–544




	
1000

	
581

	
450–758

	
457–771

	
457–764

	
452–782




	
27044

	
Hot humid

	
GMB

	
10

	
237

	
214–263

	
215–265

	
214–263

	
214–269




	
100

	
319

	
279–368

	
280–371

	
279–368

	
277–376




	
1000

	
400

	
342–472

	
344–475

	
343–473

	
338–483




	
27061

	
Hot humid

	
LOGGM

	
10

	
270

	
234–305

	
235–307

	
237–309

	
230–312




	
100

	
375

	
305–450

	
308–456

	
311–461

	
298–470




	
1000

	
480

	
370–611

	
374–619

	
378–629

	
363–652










The blank cells indicate cases in which negative values were obtained for the upper limit. This anomaly occurred only with the MSB confidence intervals, for the return periods of 500 or 1000 years, indicating a defect in this method. In the methodology section, we mentioned that to calculate the upper limit of the confidence interval of a quantile [image: ] of a three-parameter distribution with the MSB method, the difference [image: ] must be calculated. This difference was negative in some cases, and, therefore, the upper limit [image: ] was also negative, which is an unacceptable result. Thus, the MSB method does not function in some cases and its use is not recommended.



It was observed that the size of the confidence intervals was related to both the standard deviation [image: ] and the skewness coefficient [image: ] of the series. The five series with the widest confidence intervals were Manuel Ávila Camacho (6054), Madrid (6017), Cuautitlán (14036), Tecomán (6058) and Tecomates (14148). All five belong to the hot subhumid region, where the estimated values of [image: ] were relatively high. On the other hand, the series from the temperate subhumid region had the smallest estimates of [image: ] and therefore, the narrowest confidence intervals. The three series with the widest intervals (6054, 6017 and 14036) also had the highest estimated values of [image: ]. A relationship between the size of the intervals and the best fitting pdf was also observed. Of the five series with the widest intervals, the best fitting pdf had three parameters in four of the cases. For the three series with the widest confidence intervals, the best fitting pdf was the LP3.




3.3. Comparison of Bootstrap Techniques


As we pointed out earlier, the best fitting pdf were used as mother distributions to generate random samples and, for each of the mother distributions, two or three different scenarios were considered.



Considering the combination of all the mother distributions, possible scenarios, bootstrap techniques and return periods, the number of coverage values obtained was very large. Table 4 shows a summary of the obtained results. Only the maximum, minimum and average of all the coverages for each time series and return periods analyzed are shown. According to the selected confidence level of 95%, the minimum, maximum and average coverage should be 95%. In practice, we consider the coverage to be adequate if the maximum coverage is not far above 95%, the minimum coverage is not far below, and the average coverage is around 95%.



Table 4. Coverages obtained for different mother distributions and fitted pdf.







	
Station

	
Mother Distribution

	
Fitted pdf

	
Coverage (%)




	
BP

	
BC

	
MSB

	
BCA




	
Max

	
Min

	
Mean

	
Max

	
Min

	
Mean

	
Max

	
Min

	
Mean

	
Max

	
Min

	
Mean






	
6017

	
LP3, [image: ],

[image: ], [image: ]

	
LP3

	
94

	
89

	
90

	
93

	
90

	
91

	
93

	
51

	
83

	
96

	
93

	
95




	
LOGGM

	
92

	
44

	
71

	
91

	
48

	
73

	
91

	
50

	
73

	
92

	
57

	
79




	
6054

	
LP3, [image: ],

[image: ], [image: ]

	
LP3

	
95

	
86

	
88

	
94

	
89

	
90

	
94

	
38

	
78

	
94

	
93

	
93




	
GEV

	
94

	
90

	
91

	
93

	
89

	
91

	
92

	
21

	
75

	
94

	
93

	
93




	
LOGGM

	
90

	
40

	
67

	
89

	
44

	
69

	
89

	
46

	
69

	
91

	
54

	
76




	
6058

	
LOGGM,

[image: ],

[image: ]

	
LOGGM

	
95

	
93

	
94

	
95

	
93

	
94

	
95

	
94

	
93

	
96

	
95

	
93




	
LLOG

	
98

	
91

	
96

	
98

	
83

	
94

	
98

	
90

	
95

	
99

	
90

	
97




	
LP3

	
94

	
92

	
93

	
95

	
91

	
93

	
95

	
90

	
94

	
96

	
93

	
95




	
11003

	
LP3, [image: ],

[image: ], [image: ]

	
LP3

	
97

	
94

	
96

	
95

	
92

	
93

	
97

	
95

	
96

	
96

	
92

	
94




	
GEV

	
95

	
94

	
94

	
95

	
93

	
94

	
95

	
94

	
94

	
96

	
94

	
95




	
LOGGM

	
99

	
8

	
63

	
99

	
7

	
60

	
99

	
8

	
61

	
99

	
11

	
64




	
11014

	
GEV, [image: ],

[image: ], [image: ]

	
GEV

	
95

	
93

	
93

	
95

	
91

	
93

	
95

	
92

	
93

	
96

	
94

	
94




	
GLOG

	
99

	
90

	
95

	
99

	
84

	
94

	
99

	
85

	
95

	
100

	
88

	
96




	
GMB

	
100

	
1

	
59

	
99

	
0

	
57

	
99

	
0

	
58

	
100

	
1

	
60




	
11028

	
LOGL,

[image: ], [image: ]

	
LOGL

	
95

	
95

	
95

	
95

	
94

	
94

	
95

	
95

	
95

	
97

	
95

	
97




	
LOGGM

	
94

	
54

	
84

	
94

	
57

	
84

	
94

	
56

	
84

	
96

	
64

	
88




	
GLOG

	
95

	
94

	
94

	
95

	
93

	
94

	
95

	
93

	
94

	
97

	
95

	
96




	
11035

	
GLOG, [image: ],

[image: ], [image: ]

	
GLOG

	
95

	
93

	
94

	
94

	
92

	
93

	
94

	
93

	
93

	
96

	
93

	
94




	
LLOG

	
100

	
2

	
59

	
100

	
1

	
55

	
100

	
2

	
60

	
100

	
2

	
59




	
11036

	
LOGGM,

[image: ],

[image: ]

	
LOGGM

	
95

	
94

	
94

	
95

	
94

	
95

	
95

	
94

	
94

	
97

	
94

	
96




	
LLOG

	
98

	
81

	
93

	
98

	
74

	
92

	
98

	
81

	
93

	
99

	
82

	
95




	
LP3

	
95

	
92

	
93

	
94

	
92

	
93

	
94

	
93

	
94

	
96

	
94

	
95




	
11134

	
LOGGM,

[image: ], [image: ]

	
LOGGM

	
94

	
94

	
94

	
95

	
94

	
94

	
94

	
94

	
94

	
97

	
94

	
96




	
GMB

	
97

	
94

	
96

	
97

	
95

	
96

	
97

	
94

	
96

	
99

	
95

	
98




	
LP3

	
95

	
92

	
93

	
94

	
90

	
92

	
95

	
93

	
94

	
95

	
93

	
94




	
14011

	
LOGGM,

[image: ],

[image: ]

	
LOGGM

	
95

	
93

	
94

	
94

	
93

	
94

	
94

	
93

	
94

	
96

	
93

	
96




	
GMB

	
93

	
23

	
67

	
92

	
25

	
68

	
91

	
27

	
69

	
94

	
33

	
75




	
LP3

	
95

	
92

	
94

	
94

	
92

	
93

	
95

	
90

	
94

	
96

	
94

	
95




	
14036

	
LP3, [image: ],

[image: ], [image: ]

	
LP3

	
95

	
90

	
91

	
94

	
92

	
93

	
95

	
81

	
91

	
96

	
95

	
95




	
GEV

	
94

	
91

	
92

	
94

	
91

	
92

	
93

	
61

	
87

	
95

	
94

	
95




	
LOGGM

	
86

	
25

	
60

	
86

	
28

	
62

	
86

	
28

	
62

	
90

	
35

	
68




	
14038

	
LOGGM,

[image: ],

[image: ]

	
LOGGM

	
95

	
93

	
94

	
96

	
93

	
94

	
95

	
93

	
94

	
97

	
96

	
96




	
GMB

	
97

	
92

	
95

	
97

	
90

	
94

	
97

	
90

	
94

	
98

	
94

	
97




	
LP3

	
94

	
93

	
93

	
95

	
92

	
93

	
94

	
93

	
94

	
96

	
94

	
95




	
14067

	
GMB,

[image: ], [image: ]

	
GMB

	
95

	
93

	
94

	
95

	
94

	
94

	
95

	
94

	
94

	
97

	
95

	
95




	
GLOG

	
99

	
91

	
96

	
97

	
93

	
95

	
97

	
91

	
95

	
99

	
93

	
97




	
GEV

	
95

	
89

	
91

	
95

	
89

	
91

	
94

	
90

	
92

	
95

	
92

	
93




	
14148

	
GEV, [image: ],

[image: ], [image: ]

	
GEV

	
92

	
87

	
89

	
92

	
86

	
88

	
92

	
66

	
86

	
94

	
90

	
92




	
LP3

	
95

	
82

	
87

	
92

	
85

	
88

	
94

	
76

	
86

	
94

	
91

	
93




	
GMB

	
90

	
8

	
57

	
88

	
9

	
57

	
88

	
9

	
57

	
91

	
14

	
64




	
16100

	
GMB,

[image: ], [image: ]

	
GMB

	
94

	
94

	
94

	
94

	
94

	
94

	
94

	
94

	
94

	
97

	
95

	
96




	
LOGGM

	
94

	
78

	
87

	
94

	
82

	
88

	
94

	
80

	
87

	
96

	
87

	
92




	
GEV

	
94

	
91

	
92

	
94

	
91

	
92

	
94

	
91

	
92

	
95

	
93

	
94




	
27019

	
LLOG,

[image: ], [image: ]

	
LLOG

	
95

	
94

	
95

	
95

	
94

	
94

	
96

	
94

	
94

	
97

	
94

	
97




	
LOGGM

	
94

	
63

	
86

	
94

	
67

	
86

	
94

	
66

	
86

	
97

	
73

	
90




	
GLOG

	
95

	
93

	
93

	
95

	
92

	
92

	
95

	
90

	
93

	
96

	
95

	
95




	
27024

	
LOGGM,

[image: ],

[image: ]

	
LOGGM

	
96

	
95

	
95

	
96

	
95

	
95

	
96

	
95

	
95

	
98

	
95

	
97




	
GMB

	
94

	
92

	
93

	
95

	
93

	
94

	
94

	
93

	
93

	
97

	
94

	
96




	
LP3

	
95

	
93

	
93

	
94

	
91

	
92

	
94

	
93

	
94

	
96

	
93

	
94




	
27037

	
LOGGM, [image: ],

[image: ]

	
LOGGM

	
95

	
93

	
93

	
95

	
93

	
94

	
95

	
93

	
94

	
96

	
95

	
96




	
LP3

	
94

	
93

	
93

	
94

	
91

	
92

	
94

	
93

	
94

	
95

	
94

	
95




	
27042

	
LOGGM,

[image: ],

[image: ]

	
LOGGM

	
95

	
93

	
94

	
96

	
93

	
95

	
96

	
94

	
95

	
97

	
94

	
96




	
GMB

	
95

	
89

	
93

	
94

	
90

	
93

	
95

	
91

	
93

	
97

	
94

	
96




	
LP3

	
95

	
92

	
93

	
94

	
90

	
92

	
95

	
93

	
94

	
96

	
93

	
94




	
27044

	
GMB,

[image: ], [image: ]

	
GMB

	
96

	
94

	
95

	
95

	
94

	
95

	
95

	
94

	
95

	
97

	
95

	
97




	
LOGGM

	
94

	
82

	
88

	
95

	
85

	
89

	
94

	
84

	
89

	
96

	
89

	
92




	
GEV

	
95

	
93

	
93

	
95

	
92

	
93

	
95

	
93

	
93

	
96

	
95

	
95




	
27061

	
LOGGM,

[image: ],

[image: ]

	
LOGGM

	
95

	
94

	
94

	
95

	
94

	
94

	
95

	
94

	
94

	
97

	
94

	
96




	
GMB

	
96

	
94

	
95

	
96

	
94

	
95

	
96

	
94

	
95

	
98

	
94

	
97




	
LP3

	
94

	
92

	
93

	
94

	
90

	
92

	
94

	
93

	
93

	
96

	
93

	
94










As an example, Figure 7 shows the coverages obtained for the resulting mother distribution in the series of the Apazulco station (14011). Each of the curves corresponds to the combination of a fitted pdf and a bootstrap technique. Thus, the curve with the legend “BP—LOGGM fit” corresponds to a coverage obtained when the pdf used for the fit was LOGGM, and the technique used to construct the confidence intervals was BP. Each bootstrap technique is distinguished by a different color. The fit by the LOGGM pdf (which coincides with the mother pdf) is seen as continuous lines, the fit by the GMB pdf by broken lines, and the fit by the LP3 pdf by dotted lines. In the figure, it can be seen that when the fitted pdf is LOGGM, the coverage obtained is good for the four bootstrap techniques since it takes values near 95% for all of the return periods. Coverage is also good when the fitted pdf is LP3 since it never falls below 90%. In contrast, when the fitted pdf is GMB, the coverage of the bootstrap intervals is not adequate since it falls below 90% for [image: ], and below 60% for [image: ]. In Table 4, it can be seen that, when LOGGM and LP3 pdf are fitted, the maximum and average coverages always remain near 95%, while the minimum coverage never falls below 90%. However, for the GMB pdf, average coverage is always less than 80% and the minimum is always below 35%.


Figure 7. Coverages for the Apazulco station (14011) for a LOGGM mother distribution.



[image: Water 10 00166 g007]






The results indicate that the BCA coverages were almost always higher than those obtained with the other techniques. It was observed that the BP coverage was very similar to that of the BC. It was also found that in scenarios corresponding to the mother distributions taken from the series Madrid (6017) and Manuel Ávila Camacho (6054) the MSB technique failed, while BP and BC performed well. This is due to the defect pointed out above that when a negative value is obtained for the upper limit, the quantile value is outside the confidence interval.



In those scenarios in which the fitted pdf was equal to the mother pdf, the coverages were generally good. When the mother distribution had three parameters, the BCA intervals had the coverage closest to the 95% confidence level. This is because the wider BCA intervals are more likely to contain the true values of the larger quantiles estimated for the three parameters distributions. On the other hand, when the mother distribution had two parameters, all techniques performed similarly well.



For the scenarios in which a pdf different from the mother pdf was fitted, coverage was always good when the fitted pdf had three parameters ([image: ]90%). When the fitted pdf had two parameters, coverage was not always poor, however, when coverage was poor (<60%), the fitted pdf had two parameters. This makes sense since, when there was great variability, the confidence intervals for three-parameter distribution quantiles were generally wider than for two-parameter distribution quantiles. Thus, the confidence intervals for the three-parameter distribution quantiles were wide enough that it was highly probable that they contained the quantiles of the mother distribution. The same was not always true for the confidence intervals for two-parameter distributions. It may be assumed that it is convenient to always use three-parameter distributions, because that would assure that the confidence intervals have adequate coverage. However, there is more uncertainty in the estimation of the quantiles of a three-parameter distribution, which would affect decision-making.



On the other hand, the BIC selects a distribution following two criteria: the degree of fit and the number of parameters. According to the law of parsimony, the BIC will select the simplest model (the model with the least parameters) that adequately fits the data. Therefore, when it selects a three-parameter distribution instead of a two-parameter distribution, it does so necessarily because of its better fit. Surely, the two-parameter distribution could not approximate well the form of the distribution of the data, while the three-parameter distribution, which can adopt a larger variety of forms, could. However, if several two-parameter distributions are considered as hypothetical distributions, it is possible that together they can adopt the variety of forms that the three-parameter distribution can take, and that one of them could fit well the analyzed series. This distribution would be selected, avoiding the higher level of estimation uncertainty associated with the use of three-parameter distributions.





4. Conclusions


No single distribution provided the best fit always. Two-parameter distributions were selected more frequently than those of three parameters by the BIC. However, in cases in which the coefficient of skew was below 0.30, or when it was greater than 2.00, the two-parameter distributions did not provide a good fit, so three-parameter distributions were selected.



In some cases, there were considerable differences in the tails of the fitted distributions, which resulted in vastly different estimates of the quantiles for large return periods. Both two- and three-parameter distributions should be considered for frequency analysis of hydrological extremes, and an adequate selection criterion should be used to select the best fitting distribution. The advantage of two-parameter distributions is that there is less uncertainty in the estimation of the quantiles, which results in narrower confidence intervals. However, there will be cases in which two-parameter distributions will not provide adequate fit. Three-parameter distributions provide a good fit for a wider variety of cases than two-parameter distributions, so they should be considered for those cases in which the later do not provide an adequate fit. Whenever both two- and three-parameter distributions provide an adequate fit, the two-parameter distribution should be selected, since the estimation uncertainty is lower.



We recommend that log-gamma, which is seldom used in hydrology, should be considered among the two-parameter distributions used for frequency analysis of hydrological extremes. In this study, it was the most frequently selected distribution (9 of the 21 series analyzed), outperforming the Gumbel and GEV distributions, which are used in Mexico for analysis of annual maximum precipitations.



The confidence intervals obtained in this study with bootstrap techniques had adequate coverage in cases in which the fitted pdf was correct. In addition, when the fitted pdf was incorrect but had three parameters, the coverage was adequate when that distribution was either the second best fitting or of the same family as a best fitting two parameter distribution. In contrast, in all cases in which the four techniques performed poorly, an incorrect two-parameter pdf was fit, and it did not provide an adequate fit. Therefore, the quantiles estimated from the two-parameter distributions were very different from the quantiles of the mother distribution, and the confidence intervals were not wide enough to include these quantiles with a high probability. This confirms the need of an adequate criterion for selecting the distribution for frequency analysis. If an inappropriate distribution is chosen, not only the quantiles will be incorrectly estimated, but the confidence intervals will give a false idea of the estimation uncertainty.



In general, the widest confidence intervals were obtained with the BCA and MSB techniques, while the narrowest were obtained with the BP technique. When the fitted pdf has three parameters the use of BCA is recommended. On the other hand, it was observed that when the fitted pdf was correct and had two parameters, the BP, BC and BCA techniques had similar performance. Therefore, when the fitted pdf has two parameters, it is recommended to use the BP technique, since it gives narrower intervals and is easier to program. The MSB technique is not recommended because it failed in situations in which the other techniques had better results.
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