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Abstract: Nitrate is one of the most common pollutants in river systems. This study takes the lower
reach of Fenhe River as a case study, combined with a multi-isotope and hydrochemical as the
tracers to identify nitrate sources in river system. The results show that all samples in the industrial
region (IR) and urban region (UR) and 68.8% of the samples in the agriculture region (AR) suffer
from nitrate pollution. NO3

−–N is the main existing form of dissolved inorganic nitrogen (DIN),
followed by NH4

+–N, which account for 57.9% and 41.9% of the DIN, respectively. The temporal
variation in nitrogenous species concentration is clear over the whole hydrological year. The spatial
variation is smaller among different sampling sites in the same region but greater among different
regions. The main source of nitrogenous species is from anthropogenic rather than natural effects.
Multi-isotope analysis shows that denitrification is found in some water samples. Combined with
the apportionment of nitrate sources by the IsoSource model and the analysis of the Cl− content, the
main source of nitrate in the IR, UR and AR are industrial sewage and manure, domestic sewage and
manure, and chemical fertilizers, respectively. Atmospheric nitrogen deposition is also a source of
nitrate in the study area.

Keywords: anthropogenic impact; nitrate isotope; quantitative analysis; river systems; temporal and
spatial variation

1. Introduction

Nitrate pollution in river systems is a worldwide problem that has gained widespread attention in
the field of aquatic ecology [1–3]. In recent years, economic development and anthropogenic activities
have increased the concentration of nitrate in river systems, which has caused many environmental
problems, such as the eutrophication of water, algal blooms, and low oxygen zones [4–6]. Excessive
nitrates in drinking water and foodstuff can transform into nitrosamines with hydrochloric acid
in gastric juice. The nitrosamines combine with hemoglobin and greatly reduce the function of
hemoglobin to carry oxygen, endangering human and animal health; this disease is medically known
as methemoglobinemia [7]. Accordingly, numerous independent countries and the World Health
Organization (WHO) have stipulated that NO3

−–N concentrations in drinking water should be limited
to 10 mg/L.

A high load of nitrogen and other nutrients can cause eutrophication of water bodies. The study of
the temporal and spatial distribution of nitrogenous species in watersheds can be used for watershed
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management. It is also beneficial to reduce the loss of nitrogen in soil and improve the ecological
environment of the watershed. Many studies show that industrial sewage and domestic sewage are
the main sources of nitrogenous species, particularly in heavily polluted areas. The direct discharge of
untreated industrial sewage and the overland flow of domestic sewage are the main sources of the
nitrate pollution in the industrial and residential areas. The application of chemical fertilizers is the
main source of nitrogen species in the highly agricultural areas [8–11].

Traditional methods to identify water pollutant sources are mainly by investigating the land
use types and local hydrochemical characteristics in the polluted areas. However, the point-source
and non-point-source pollutions generally overlap; the results are inaccurate [12]. Temporal and
spatial variation in nitrogenous species are also studied in some catchment areas; the concentration of
nitrogenous species shows characteristics of being higher in summer and lower in winter; the spatial
distribution variability of nitrogenous species is complex [13–16]. However, the site-specific studies
are not appropriate for the Fenhe River Basin, and there are few studies on the temporal and spatial
variation in nitrate in the Fenhe River Basin.

The sources of nitrogen in nature include atmospheric deposition, industrial sewage, domestic
sewage, municipal solid waste, chemical fertilizers, industrial synthetic nitrogenous substances,
livestock manures and plant humic substances [17]. Many studies have shown that the multi-isotope
tracer technique of δ15N and δ18O is an important way to study the nitrate pollution in groundwater
and surface water [18,19]. Owing to that the ranges of stable isotopic compositions of different water
bodies are not affected by the variation in water environmental factors, it is possible to trace the nitrate
sources by using δ15N–NO3

− and δ18O–NO3
− multi-isotope and hydrochemical analysis data and

field investigations [20–22].
At the same time, the multi-source mass balance (IsoSource model), based on the principle of

stable isotope mass conservation, has been used to partition pollutant sources in wastewater, food
sources in animal food, water sources for plant uptake, and nitrate sources in soil organic matter. The
principle is to construct a conservation model for the nitrogen and oxygen isotopes by inputting the
isotopic data of potential nitrate sources. The probability distribution of the different pollution sources’
contribution rate in water samples is calculated by the model with the iterative method, and it gives
the average values of all the sources [23,24].

In the past few decades, the Fenhe River Basin has suffered serious pollution. The amount
of untreated sewage discharged into Fenhe River is 3.4 × 1010 kg year−1. The main pollutants are
volatile phenols, reducing substances and ammonia nitrogen, which form the main industrial waste
of the coal mines, thermal power stations and coal preparation plants that exist in the area. These
pollutants account for 42% of the sewage discharge; the reducing substances metered as chemical
oxygen demand (COD) amount up to 5.8 × 107 kg year−1; the amount of ammonia and nitrogen
discharged into Fenhe River is up to 9.1× 106 kg year−1 [25]. Fenhe River is the second major tributary
of the Yellow River; there is an estimated 1.9 × 104 kg (N) km−2 year−1 of nitrate from nitrification of
ammonium/urea-containing fertilizer discharged into the Yellow River annually [26]. The amount
of nitrogen deposited from the atmosphere into the Yellow River is approximately 2000 kg (N) km−2

year−1 annually [27].
At present, the research on nitrate source identification and apportionment in Fenhe River Basin is

fragmentary. There are some studies on water nitrate pollution in the Loess Plateau. However,
the Fenhe River Basin is only considered as a subcatchment of the Yellow River Basin in these
studies [28–31]. The common shortcoming is that there are too few sampling sites and data in the
Fenhe River Basin, which has led to an incomplete analysis of the nitrate source identification and
apportionment in the basin; systematic studies on the nitrogen cycle in this area are necessary. These
would not only be beneficial to the sustainable utilization of local water resources but also provide a
scientific basis for the management of water resources in the Yellow River Basin and Loess Plateau.
In this study, the lower reach of the Fenhe River in Shanxi Province, China is taken as the case study,
combined with δ15N–NO3

− and δ18O–NO3
− multi-isotope tracers, hydrochemical analysis, and the
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IsoSource model to identify and apportion the nitrate sources in river systems. Our objectives are (1) to
identify and verify the main existing forms of nitrogenous species, (2) to investigate the temporal and
spatial variation in nitrogenous species, and (3) to trace and apportion the proportional contributions
of each potential nitrate source in the river system. This study aims to provide scientific evidence
and reference for an insight regarding water management and the safeguarding of water ecology in
river systems.

2. Materials and Methods

2.1. Study Area

Fenhe River is the largest river in Shanxi Province, and it is also the second largest tributary of
the Yellow River, China (Figure 1). Fenhe River is divided into upper, middle and lower reaches by
Shanglan and Shitan as a result of the geologic and hydrologic characteristics [32]. The lower reach
of the Fenhe River Basin is located between a latitude of 35◦20′ N and 36◦57′ N and a longitude of
110◦30′ E and 112◦34′ E, with a catchment area of 11,276 km2. The total annual runoff of Fenhe River
is 2.286 billion m3, and the average annual runoff in the lower reach is 0.776 billion m3. Loess and
alluvial deposits constitute the hydrological underlying surface where the river flows through Linfen
Basin and Yuncheng Basin.
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Figure 1. Location of lower reach of Fenhe River and sampling sites. IR: industrial region; UR: urban
region; AR: agricultural region.

The lower reach of the Fenhe River Basin has a temperate continental monsoon climate; the climate
is mild, and the sunshine is sufficient. The mean annual temperature ranges from 9 to 13 ◦C. The
annual precipitation is 538.6 mm, and the evaporation is 1120 mm; 72% of the rainfall is concentrated
in the rainy season (July to September) because of the uneven rainfall distribution. The per capita
water resources constitute only 350 m3, which belongs to the poor water resources area.
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The study area is the main irrigation area of Shanxi Province, which is also the main industrial
area and urban area. The study area can be divided into three categories by the different typical land
use types along the river flow direction: the industrial region (IR), urban region (UR) and agricultural
region (AR) (Figure 1). Many factories and enterprises are located in the IR, such as coal mines, thermal
power stations, and coal preparation plants. Therefore, a large amount of industrial sewage discharges
into the river; this tends to be the potential pollution source of the water bodies in this area. The UR is
characterized by being densely populated and highly urbanized; the urban agglomeration in the lower
reach of Fenhe River is located in this area, which has a population of 4.5 million. Domestic sewage
and livestock manure tend to be potential pollution sources of the water bodies in this area. More
than 83% of the land area in the AR is farmland; corn and winter wheat are planted as rotation crops.
Ammonia fertilizer and nitrogen fertilizer are widely used in March and April in this area to improve
the food production; these tend to be potential nitrate sources of the water bodies in this area [33].

2.2. Sample Collection and Field Experiment

Twelve sampling sites are situated in the lower reach of the Fenhe River according to the basin’s
topographic features and hydrological characteristics. F1, F2, F3, and F4 are in the IR; F5, F6, F7 and
F8 are in the UR; and F9, F10, F11 and F12 are in the AR. The sampling sites were pinpointed with
handheld GPS devices in the field (Figure 1). Six water samples were collected at each sampling site
with a frequency of once every 2 months from July 2015 to June 2016. River water was collected at
a depth of 50 cm in the central stream with an organic glass water collector (WB-PM, Beijing Purity
Instrument CO., Ltd., Beijing, China). In order to determine the source of contaminants accurately,
industrial sewage, domestic sewage, livestock manure, fertilizer and precipitation were collected in the
study area. The industrial sewage was collected at the sewage outfalls of the main factories, domestic
sewage was collected at the sewage outfalls of the urban residential area, livestock manure was
collected at sheepfolds and pigsties, and fertilizer was collected in the farmland during the fertilization
season; the main chemical compound of the fertilizer in the lower reach of Fenhe River was CO(NH2)2;
NH4Cl and NH4NO3 precipitations were collected at the hydrological stations of Fenhe River when
it rained.

The liquid samples, which were measured for δ15N–NO3
− and δ18O–NO3

−, were stored in 0.1 L
polymethyl methacrylate (PMMA) organic glass bottles, and for water chemistry are stored in 1 L
polyethylene terephthalate (PET) bottles, respectively. All the sampling bottles were washed with the
collected water three times before storing the water samples to avoid contamination by impurities.
The liquid samples were sealed with Parafilm to prevent water evaporation and isotopic fractionation
and were stored at 4 ◦C. The solid samples were stored in a self-sealing bag at −20 ◦C in a refrigerator.

2.3. Laboratory Analyses

The hydrochemical was measured at Shanxi University within 24 h of sampling. The major cations
were found by atomic absorption spectrometry (PE-2380, PE Company, Waltham, MA, USA) and the
major anions were found by ion chromatography (Dionex-100, Dionex Company, Sunnyvale, CA,
USA) after being filtered through a 0.45 µm cellulose acetate membrane to eliminate the interference of
impurities. The charge balance calculation showed that the charge imbalance did not exceed ±5% for
any of the samples. NO3

−–N, NO2
−–N, NH4

+–N, and TN were analyzed by a flow-injection analyzer
(HACH Quick chem 8500S2, Hach Company, Loveland, CO, USA). The solid samples were centrifugal
oscillated and filtered (0.3 µm) before hydrochemical analysis [34]. The analytical precision was less
than ±3%.

The measurements of δ15N–NO3
− and δ18O–NO3

− were taken with an isotope ratio mass
spectrometer at the Institute of Environment and Sustainable Development in the Agricultural Chinese
Academy of Agricultural Sciences (AESIL, CAAS) by the denitrifying bacteria method [35]. All the
liquid samples were filtered through a 0.45 µm cellulose acetate membrane before determination and
analysis. For solid samples, 2 mol/L KCl was added and the solution underwent centrifugal oscillation
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for 1 h; the suspension was settled for 3–5 min to make the impurities precipitate completely and was
then filtered. The denitrifying bacteria (Pseudomonas aureofacien) was added to the samples, which
had a lack of the N2O activating enzyme. All the NO3

− and NO2
− ions were transformed to N2O gas

before being delivered to a trace gas analyzer (Trace Gas) for automatic sampling to purify and trap
N2O; there was no isotopic fractionation in this process.

The per mil deviation values (δ) of the isotope ratio of the sample to the standard sample is used
to indicate the isotopic content of the element; the isotope results are represented in δ units defined
as follows:

δ(h) = [(Rsample − Rstandard)/Rstandard] × 1000 (1)

where Rsample and Rstandard are the ratio of heavy and light isotopes in the sample and standard sample,
respectively.

The international isotope standards used were USGS-32, USGS-34 and USGS-35 (National
Laboratory of the United States, USA). The test precision values of δ15N–NO3

− and δ18O–NO3
−

of the water samples were 0.05h and 0.28h, respectively. Duplicate analyses were within the σ of
working standards, and the results were reproducible.

2.4. IsoSource Model Calculation

The IsoSource model is mainly used in the study of food web and plant water supply, and it
provides a new means for quantitative research of nitrate point-source pollution. In order to quantify
the proportion of different nitrate pollution sources, the data were calculated by the IsoSource model
in this study [23]. The mass conservation model is constructed by inputting the nitrogen and oxygen
isotopes in the water samples, as well as the sources of the determined nitrate (assuming there are
three sources), as shown by the following formulas:

δ15N =
3

∑
i=1

fi × δ15Ni (2)

δ18O =
3

∑
i=1

fi × δ18Oi (3)

1 =
3

∑
i=1

fi (4)

where i refers to the three kinds of nitrate pollution sources; δ15N and δ18O refer to nitrogen and
oxygen isotope values in mixed waters, respectively; δ15Ni and δ18Oi refer to nitrogen and oxygen
isotopes in different nitrate pollution sources, respectively; fi refers to the proportion of different nitrate
pollution sources.

The tolerance parameter and increment parameter are set up before the software runs. The
probability distribution of the different sources in water samples is calculated by an iterative
method [24]. All possible percentage combinations (the sum is 100%) from different sources are
calculated by the following formula:

No. Combinations =
[(100/i) + (s− 1)]!
(100/i)!(s− 1)!

(5)

where i refers to the increment parameter, and s refers to the number of nitrate sources. This model
can test all possible combinations of potential contributions from each source. When the difference
between the weighted average values of nitrogen and oxygen isotopes from different sources and
the measured values of nitrogen and oxygen isotopes in the water samples is less than 0.1h, it is
considered to be a possible solution value [23].
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3. Results and Discussion

3.1. Identification and Verification of Nitrogenous Species

The chemical compositions of river water samples collected in the lower reach of Fenhe River
Basin are summarized in Table 1. NO3

−–N, NH4
+–N and NO2

−–N were the main sources of dissolved
inorganic nitrogen (DIN) in the study area.

Table 1. Mean concentration of hydrochemical parameters and the environmental isotopic ratios in
water samples in the lower reach of Fenhe River.

Category Site NO3
−

(mg/L) Cl− (mg/L) NO3
−–N

(mg/L)
NO2

−–N
(mg/L)

NH4
+–N

(mg/L) TN (mg/L) δ15N–NO3
−

(h)
δ18O–NO3

−

(h)

IR 1

F1 42.0 ± 6.2 54.4 ± 7.3 9.5 ± 2.6 0.04 ± 0.02 5.2 ± 1.7 24.6 ± 4.8 12.3 ± 2.8 10.2 ± 2.1
F2 44.9 ± 5.6 43.1 ± 6.1 10.1 ± 3.6 0.03 ± 0.01 5.1 ± 1.6 25.9 ± 6.4 12.7 ± 2.2 9.1 ± 2.0
F3 43.5 ± 4.9 42.1 ± 4.1 9.8 ± 2.9 0.04 ± 0.01 4.8 ± 1.2 24.1 ± 7.8 12.7 ± 2.1 10.2 ± 1.8
F4 42.7 ± 3.9 40.0 ± 3.9 9.6 ± 3.7 0.04 ± 0.01 5.6 ± 1.3 24.7 ± 5.9 12.7 ± 1.9 9.1 ± 1.7

UR

F5 39.5 ± 4.1 58.9 ± 4.5 8.9 ± 3.8 0.05 ± 0.02 7.7 ± 1.5 26.6 ± 4.9 16.7 ± 1.8 8.3 ± 2.0
F6 40.5 ± 3.8 59.7 ± 4.2 9.1 ± 2.7 0.04 ± 0.01 8.5 ± 1.7 28.2 ± 7.4 16.3 ± 1.6 8.4 ± 1.7
F7 40.1 ± 5.2 62.0 ± 4.9 9.01 ± 2.7 0.04 ± 0.02 8.1 ± 1.9 27.4 ± 8.1 16.7 ± 1.7 8.4 ± 1.5
F8 37.6 ± 4.9 64.9 ± 7.8 8.5 ± 3.4 0.05 ± 0.02 7.6 ± 1.6 27.4 ± 7.1 16.5 ± 1.5 8.4 ± 1.8

AR

F9 29.9 ± 3.7 10.0 ± 3.1 6.8 ± 1.8 0.02 ± 0.01 5.1 ± 1.2 20.5 ± 3.1 0.7 ± 0.6 14.2 ± 2.1
F10 28.2 ± 3.8 9.8 ± 4.9 6.4 ± 2.5 0.03 ± 0.01 5.6 ± 2.0 20.7 ± 5.9 −2.2 ± 1.1 18.1 ± 2.2
F11 28.1 ± 3.4 10.3 ± 5.8 6.4 ± 3.7 0.02 ± 0.01 5.1 ± 1.3 19.7 ± 5.7 −1.4 ± 1.5 13.7 ± 1.7
F12 30.0 ± 4.8 9.6 ± 4.7 6.8 ± 2.7 0.02 ± 0.01 5.2 ± 1.8 21.2 ± 4.5 −2.1 ± 0.9 17.7 ± 2.5

Notes: 1 IR: industrial region; UR: urban region; AR: agricultural region.

NO3
−–N is the final product of oxidative decomposition of nitrogenous organic compounds.

The NO3
−–N concentration in the IR was the highest among the three regions, with mean values of

9.4 ± 1.4 mg/L in the rainy season and 9.9 ± 1.6 mg/L in the dry season. This is due to the industrial
sewage discharge around the sampling sites. However, the NO3

−–N concentration in the UR was
lower than that of the IR, with mean values of 7.0 ± 0.8 mg/L in the rainy season and 9.5 ± 1.6 mg/L
in the dry season. Although the AR is located in the lower reach of the IR and UR, the NO3

−–N
concentration in the AR was the lowest among the three regions, with mean values of 6.6 ± 0.5 mg/L
in the rainy season and 6.5 ± 1.9 mg/L in the dry season.

The NH4
+–N concentration in the UR was the highest among the three regions, with mean values

of 6.1 ± 1 mg/L in the rainy season and 8.5 ± 1.6 mg/L in the dry season. This is due to the domestic
sewage discharge and livestock manure around the sampling sites. The NH4

+–N concentration in the
IR was the lowest among the three regions, with mean values of 4.4 ± 0.6 mg/L in the rainy season
and 5.4 ± 0.8 mg/L in the dry season. The NH4

+–N concentration in the AR was higher than that in
the IR, with mean values of 5.6 ± 0.6 mg/L in the rainy season and 5.1 ± 1.6 mg/L in the dry season.
Related research shows that the NH4

+–N concentration in river water would increase as a result of the
discharge of domestic sewage and the application of nitrogen fertilizer along the riverbank [36].

NO2
−–N is the intermediate product in the process of nitrogenous organic compounds oxidizing

into nitrate. The presence of NO2
−–N in water indicates that the decomposition of organic compounds

is still in process. The high NO2
−–N concentration illustrates a process of nitrogenous organic

compounds oxidizing into nitrate in the river water. In this study, the NO2
−–N concentration was

relatively low, and the maximum concentration was 0.05± 0.03 mg/L in the UR in the dry season. This
is due to the domestic sewage and livestock manure in the UR and the industrial sewage discharge
from the IR, which is in the upper reach of the UR.

Total nitrogen (TN) is defined as the total amount of DIN and dissolved organic nitrogen (DON)
in water. The TN concentration is one of the important indices to measure water quality [37]. In this
study, the TN concentration in the IR was 26± 1.6 mg/L in the rainy season and 24.4± 3.0 mg/L in the
dry season, while the TN concentration in the UR was the highest among the three regions, with mean
values of 23.9 ± 3.1 mg/L in the rainy season and 28.6 ± 3.2 mg/L in the dry season, which means that
the river water in this region is extremely polluted. The TN concentration in the AR was the lowest
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among the three regions, with mean values of 21.5± 1.5 mg/L in the rainy season and 20.2 ± 4.9 mg/L
in the dry season. The seasonal variations in the TN concentration were not obvious in the AR, while
the seasonal variations among the three regions were clear, which was mainly due to the different land
use types along the riverbanks. There was no clear variation in the nitrogenous species concentration
between the rainy season and dry season in the AR. This is due to the insignificant change in the solute
content buffered by the wide river channel and slow water flow in the AR.

Figure 2a shows the contrast between NO3
−–N, NO2

−–N, and NH4
+–N concentrations. NO3

−–N
is the main existing form of DIN in the lower reach of Fenhe River, particularly in the IR, and accounted
for 65.2% of the DIN. The industrial wastewater discharge results in a higher NO3

−–N concentration
in this area. The percentage of NH4

+–N increased from 34.5% in the IR to 47.1% in the UR, which
was relatively close to that of NO3

−–N (52.6%). This is due to the large amount of domestic sewage
discharge from the urban residential area, which is typical of a higher ammonia nitrogen concentration.
Figure 2b shows the contrast in NO3

−–N, NH4
+–N and DON concentrations. The sampling sites that

were situated in the IR showed characteristics of higher values of NO3
−–N and DON but a lower

value of NH4
+–N; the sampling sites that were situated in the UR showed characteristics of similar

values of NO3
−–N, NH4

+–N and DON, which indicates that the IR and UR are mainly polluted by
anthropogenic sources, such as industrial sewage in the IR and domestic sewage and livestock manure
in the UR. The sampling sites that were situated in the AR showed characteristics of lower values of
NO3

−–N and NH4
+–N but a higher value of DON, which indicates that the AR is mainly polluted by

agricultural pollution, such as animal manure and nitrogenous fertilizer. The sampling site F9 was
located near the water-source protection area, which is the main drinking water source of the residents.
There are few industrial facilities and human activities around this area because of the protection
policy of the local government. The hydrogeological conditions are the result of the Ordovician karst
aquifer in this area; the groundwater is recharged by unsaturated vertical infiltration of the Fenhe
River and its tributaries [38]. The TN in this area is mainly formed by soil organic nitrogen. The
studies of Chanhe River in the Loess Plateau and the Songhua River in the Northeast China Plain
show that the TN is mainly derived from soil organic nitrogen and the nitrate concentration is lower;
these are rarely affected by human activities [39,40]. Compared with similar studies in Poland and
Japan, the results also suggest that soil organic nitrogen is the main source of TN or nitrate in the
less-anthropogenic-impacted river [6,13].
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3.2. Temporal and Spatial Variation in Nitrogenous Species

Figure 3a shows the temporal variation in the TN concentration in the lower reach of Fenhe
River. The maximum concentrations of the TN were observed in the IR and AR in March, while the
minimum concentrations were observed in the IR and AR in January and February. This could be
attributed to the cyclical changes in the industrial production activities in the IR. Another reason is
the application of nitrogen fertilizers to winter wheat from early March, and nitrogenous substances
leaching into soil and flowing into the river water with the soil runoff. However, the TN concentration
in the UR showed an opposite temporal variation trend; the maximum concentration was observed
in January, and the minimum concentration was observed in September. This phenomenon could be
explained by the TN concentration mainly being influenced by anthropogenic activities rather than
natural effects. Although the seasonal variation in river water flow has an effect on the variation in the
TN concentration, the influence of human-induced land use changes was more apparent in this study
area. Industrial land and urban residential land will deteriorate water quality, whereas agricultural
land has little influence on water quality change.
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+–N concentrations in
the lower reach of Fenhe River. The error bars represent standard deviation. RW in IR: river water in
industrial region; RW in UR: river water in urban region; RW in AR: river water in agricultural region.

The concentrations of NO3
−–N and NH4

+–N increased rapidly from March to May in the AR
(Figure 3b,c); the maximum concentration of NO3

−–N was observed in March, and the maximum
concentration of NH4

+–N was observed in April. This could be attributed to the agricultural activities
in the AR, such as the application of fertilizers and aerial farming. March and April are the seeding
period of most crops; large amounts of fertilizer are applied in this period. Nutrient nitrogen that is
not absorbed by crops flows into the river with the surface runoff after a great deal of fertilization.
The maximum concentrations of NO3

−–N and NH4
+–N were observed in the IR in December and in

the UR in January, which was consistent with the land use investigation. This could be attributed to
the IR being dominated by industrial and mining enterprises and the UR being dominated by urban
residents’ living and commercial areas. The maximum concentration of NO3

−–N was found in the
UR in February 2016. This is due to less upstream water from the IR, and the reduced denitrification
process in the lower-temperature environment also makes the NO3

− concentration increase.
The annual precipitation is 538.6 mm and the annual evaporation is 1120 mm in the study area.

Related studies show that the lower reach of Fenhe River Basin is a semiarid region; a wide range of
water shortages result because of the lower precipitation and higher evaporation in this area. The
unreasonable development and excessive exploitation of the water resources has led to a serious
decrease in the ground water storage. Precipitation is the main recharge source of surface water in
this area [41,42]. Precipitation has a certain dilution effect on the concentration of river pollutants
in the rainy season. Although surface water is recharged by groundwater in the dry season, the
recharge is very small. Some river reaches have dried up in the dry season, and the interaction between
groundwater and surface water has little influence on the nitrogen concentration of the surface water.
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Additionally, many factors would affect the nitrogenous species concentration, such as the
distribution of sampling sites, the topography of the study area, hydrogeological conditions, and
regional precipitation, particularly in regions that are seriously influenced by anthropogenic activities.
Figure 4 shows the spatial variation in the nitrogenous species concentration in the three regions. The
results show that the variation was smaller among different sampling sites in the same region, while
the variation was greater among different regions. This could be attributed to the different land use
types along the riverbanks. Compared with the IR and UR, the nitrogenous species concentration was
relatively low in the AR. The dissolved oxygen (DO) decreased as a result of the sluggish flow in the
broad river channel; this environment is conducive to anaerobic microorganisms, and the NO3

− ions
are transformed into N2 by the process of denitrification. At the same time, the Huihe River, which is
one of the primary tributaries of Fenhe River, flows into the main stream of Fenhe River in the AR; the
water quality of the Huihe Reservoir and Huihe Second Reservoir in the upper reach of the Huihe
River is relatively good. Gudui Spring, which is a karstic spring with a 1.3 m3/s natural resources
quantity, is also in the AR. The recharge by Huihe River and Gudui Spring also reduce the nitrogen
pollutant concentration. On the other hand, the sampling sites F9, F10, F11, and F12 were located at
the Yumenkou irrigated area, not far away from the estuary of the Fenhe River and the Yellow River.
The longitudinal gradient of the Fenhe River is slow, and the flow velocity is small. The Yellow River
flowing backwards has caused a great deal of siltation in the Fenhe River. This is also an effective way
to reduce nitrate concentrations in this region.
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On the whole, the mean concentrations of TN and NH4
+–N increased with the flow direction

in the IR and UR. The maximum concentrations of TN and NH4
+–N were observed in the UR. This

phenomenon could be explained by the urban domestic sewage discharged into the river water in
this region; another reason is that the river water in this region is the influx of the upstream water
from the IR. Land use types have changed the underlying surface characteristics and have a great
impact on the water cycle and material transport. The nitrogen output of different land use types
is different, and the output intensity of nutrients would increase as a result of the decrease in the
forest land area and the increase in agricultural land area. Urbanization has increased the pollutants
discharged into rivers by point-source pollution. Another main characteristic of urbanization is the
increase in the impervious ground surface ratio; the natural infiltration process of soil will also weaken
by the impervious ground surface. During the rainstorm period, the urban areas will lose the natural
vegetation’s interception and absorption of pollutants, and a large number of pollutants will flow
into the river through the impervious ground surface in a short time [43]. Sampling sites F2 and F3
were nearby a coal preparation plant and a thermal power plant, and industrial sewage was the major
factor of the increase in the NO3

−–N concentration. Agricultural land will affect the degradation of
water quality, which may depend on the farming methods and climatic characteristics in the study
area [44]. Sampling site F10 was located in a typical intensive agricultural area, and the application
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of nitrogenous fertilizer and ammonia fertilizer were the major factors for the increase in NH4
+–N

and NO3
−–N concentrations. At the same time, the groundwater resources in the AR also reduced the

nitrogen concentration by recharging the surface water [41]. The results of this study can be interpreted
as the fact that the agricultural land is near the river channel, and the fluctuation of water quality
is more sensitive with the changes in land use types or geological conditions, while the correlation
between climatic conditions and water quality is offset or covered.

3.3. Nitrate Source Identification and Apportionment

Cl− is a conservative element in natural water environments. Cl− can be used as an indicator
to trace the changes in the NO3

− concentration in the process of water mixing and denitrification.
The high Cl− concentration in river water could signify a multi-anthropogenic source in the study
area [1,45]. Cl− in domestic sewage is high and it has the chemical property of stability. Comparing
the concentrations of Cl− and NO3

− in river water can provide more evidence of nitrate sources [18].
The NO3

− concentrations of sewage, manure and fertilizer collected in this study were 1.3 ± 0.2,
1.0± 0.12, and 0.2± 0.2 mmol/L, respectively. The Cl− concentrations of sewage, manure and fertilizer
were 1.3 ± 0.2, 2.2 ± 0.1, and 0.2 ± 0.1 mmol/L, respectively. There was no significant correlation
between NO3

− and Cl− on account of the large variation in the Cl− concentration in the study area
(Figure 5). The IR had a relatively low Cl− concentration but a high NO3

− concentration. Most of the
river water samples collected in this region are plotted in the triangle diagram and are close to the side
of the sewage, which indicated that industrial sewage is the major factor controlling the hydrochemical
composition in this region. At the same time, fertilizers and manure are also the potential sources
of nitrate in water body in the region, while in the UR, the NO3

− concentration was low and the
Cl− concentration was high. Most of the river water samples collected in this region are plotted
around the line of sewage and manure, indicating that the domestic sewage discharge and livestock
manures from local residents are the dominant sources in this region, because the domestic sewage and
livestock manures were found to have the highest Cl− concentrations and lowest NO3

− concentrations.
Both the NO3

− and Cl− concentrations of samples were low in the AR. All the river water samples
collected in the AR are plotted around the lower left quarter of the triangle diagram, which suggests
that fertilizer is the main source in this region. The Cl− concentration in the AR decreased by a
factor of 6 when compared with that in the UR; with no chloride leaving the water system and a
decrease in concentration, the low-chloride water of tributaries and groundwater in the AR diluted
the Cl− concentration, which is a result that has also been found in low-gradient agricultural streams
of Little Kickapoo Creek in Illinois State [46]. Similar studies in the large rivers of Bangladesh, India
and Pakistan show that domestic sewage and manure are the main sources of nitrate in the urban
regions [11]. The related study on the Yellow River of China also shows that the main source of nitrate
in the agricultural region is chemical fertilizers [14].

The main sources of nitrate include manure, sewage, fertilizers, and atmospheric deposition;
δ15N–NO3

− and δ18O–NO3
− are ideal geochemical tracers that can be used to identify the origin and

transformation of nitrate [47,48]. For all samples in the IR, δ15N–NO3
− values ranged from 2.8h to

15.5h with a mean value of 12.5h, and δ18O–NO3
− values ranged from 3.9h to 14.6h with a mean

value of 9.6h. For all samples in the UR, δ15N–NO3
− values ranged from 7.7h to 22.3h with a mean

value of 16.5h, and δ18O–NO3
− values ranged from −1.0h to 17.5h with a mean value of 8.3h. For

all samples in the AR, δ15N–NO3
− values ranged from −7.8h to 11.9h with a mean value of −1.3h,

and δ18O–NO3
− values ranged from 3.9h to 31.3h with a mean value of 15.7h.
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water in urban region; RW in AR: river water in agricultural region.

Nitrification and denitrification are the major controlling factors in the process of nitrogen cycling
and nitrogen balance in ecological systems. Nitrification is the process of NH4

+ oxidizing into NO3
−

by autotrophic microbes in soil and aquatic environments. Isotopic compositions of NO3
−–N in water

and soil are also greatly controlled by isotopic fractionation caused by nitrification. Theoretically,
NO3

− generated by nitrification derives one-third of its oxygen from DO, and two-thirds of its oxygen
from water [49]. Denitrification is the process of reducing NO3

−–N to N2 and N2O by anaerobic
microorganisms [20]. The fractionation of nitrogen isotope is very significant in this process. Compared
with the products of N2 and N2O, the residual nitrate is significantly enriched in 18O and 15N.

The δ15N–NO3
− background value of shallow groundwater (≤+5h) under natural conditions is

typically used to determine whether groundwater is polluted by nitrate [50]; 68.8% of the samples in
the AR and all samples in the IR and UR exceeded the background value, which indicated varying
degrees of nitrate pollution in the lower reach of Fenhe River, particularly in the IR and UR. At the
same time, denitrification was also observed in the lower reach of Fenhe River. As Figure 6a shows,
most of the samples are plotted in the fertilizer and soil organic nitrogen field, indicating that the
fertilizer and soil organic nitrogen are the main sources of nitrate in the AR. The δ15N–NO3

− and
δ18O–NO3

− in precipitation are affected by many complicated atmospheric processes, which leads
to great spatial and temporal variability in the δ15N–NO3

− and δ18O–NO3
− in precipitation. The

influence factors include isotope fractionation caused by heavy rain in the process of nitrification,
and many other factors contribute to the reduction in δ15N–NO3

− and δ18O–NO3
− in atmospheric

chemical reactions. Some of the samples are plotted within or close to the precipitation field, indicating
that the nitrate in precipitation also plays the role of a nitrate source in the AR. In order to identify the
sources accurately, we also determined the δ15N–NO3

− and δ18O–NO3
− values of industrial sewage,

domestic sewage, manure, fertilizer and precipitation in the study area (Figure 6b). The results show
that industrial sewage is the major source of nitrate in the IR. Domestic sewage and manure are the
major sources of nitrate in the UR, and industrial sewage is also a potential source in this region.
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As Figure 6b shows, the ranges of stable isotopic compositions of nitrate for industrial sewage,
domestic sewage, and manure overlap, which indicates that they cannot be considered as separate
nitrogen sources in terms of stable isotopes of nitrate. In this regard, the three identified nitrogen
sources were merged into one nitrogen source of sewage and manure for the apportionment of nitrate
sources. In order to accurately identify the contribution of each source, the contribution rate of nitrate
pollution sources in the study area were calculated by the IsoSource model. The δ15N–NO3

− and
δ18O–NO3

− values of the chemical fertilizer, manure and sewage in the study area are shown in
Figure 6b, and the δ15N–NO3

− and δ18O–NO3
− values of atmospheric nitrogen were −0.2h and

53.1h, respectively [53]. Some water samples in the lower reach of Fenhe River were affected by
denitrification (Figure 6a); thus, these water samples were excluded for the quantitative calculation of
nitrate pollution sources by the IsoSource model.

As Table 2 shows, the mean contribution of sewage and manure was the highest (80.5%), followed
by chemical fertilizers (14.2%) and then the atmospheric nitrogen (5.3%), for the river water in the
IR. Significant differences were found among different sampling sites in this region. In fact, human
activities were ubiquitous. For example, some residential areas are plotted in the IR for the industrial
workers of coal mines, thermal power stations, and coal preparation plants. The domestic sewage and
manure of the dependents also plays a role in the nitrate pollution in the local water. Furthermore,
the sampling site F1 was located near a mixed rural and factory area; the agricultural activities also
affect the water quality to a certain extent. Therefore, the results of the IsoSource model show that
the atmospheric nitrogen, chemical fertilizers, and sewage and manure accounted for 5.3%, 26.4%,
and 68.3% of the nitrate sources in the sampling site F1, respectively. The percentages of sewage and
manure were high in sampling sites F2 (84.1%) and F3 (89.5%), respectively. This could be attributed to
the sewage continuously discharged from the coal mine, thermal power station, and coal preparation
plant around these two sampling sites, which would lead to the enrichment of heavy isotopes 15N in
the river water.

The mean contribution of sewage and manure was the highest (87.5%), followed by chemical
fertilizers (6.7%) and then the atmospheric nitrogen (5.8%), for the river water in the UR. The results
show that the percentages of sewage and manure were high in sampling sites F7 (88.1%) and F8 (89.3%),
respectively. This is due to a large residential area near the sampling site F7 and a farm product market
near the sampling site F8, according to our investigation. Cl− in domestic sewage is high and has
stable chemical properties. Comparing the concentration of Cl− and NO3

− in river water can provide
more evidence of nitrate sources. The mean contributions of sewage and manure were 87.5% in the UR
and 80.5% in the IR (Table 2). The mean values of Cl− were 61.4 mg/L in the UR and 44.9 mg/L in



Water 2018, 10, 231 13 of 16

the IR (Table 1). Consequently, the main source of nitrate pollution in the UR is domestic sewage and
manure; industrial sewage and manure are the main sources of nitrate pollution in the IR.

Table 2. Proportional contributions of three potential nitrate sources as estimated using IsoSource
model in the lower reach of Fenhe River.

Category Site Atmospheric N (%) Chemical Fertilizer (%) Sewage and Manure (%)

IR

F1 5.3 ± 1.2 26.4 ± 4.8 68.3 ± 7.8
F2 5.8 ± 1.0 10.1 ± 5.6 84.1 ± 10.1
F3 4.7 ± 0.9 5.8 ± 2.4 89.5 ± 9.1
F4 5.4 ± 1.1 14.5 ± 5.3 80.1 ± 11.2

UR

F5 5.6 ± 1.1 6.1 ± 2.4 88.3 ± 9.8
F6 7.9 ± 3.2 7.9 ± 4.1 84.2 ± 12.3
F7 4.7 ± 0.7 7.2 ± 3.1 88.1 ± 8.5
F8 4.9 ± 0.9 5.8 ± 2.0 89.3 ± 10.2

AR

F9 4.8 ± 0.6 49.8 ± 5.4 45.4 ± 7.5
F10 7.7 ± 2.3 53.7 ± 5.9 38.6 ± 5.7
F11 7.6 ± 2.7 47.8 ± 7.1 44.6 ± 6.1
F12 7.1 ± 1.6 60.2 ± 8.5 32.7 ± 5.9

The mean contribution of chemical fertilizers was the highest (52.9%), followed by sewage and
manure (40.3%) and then the atmospheric nitrogen (6.8%), for the river water in the AR. This area
is the main grain producing area of Shanxi Province. Nitrogen fertilizer and ammonia fertilizer are
applied extensively in March and April in this region. The study area was located in the southeast of
the Chinese Loess Plateau, where the soil and water loss is serious. The excessive fertilizers used are
vulnerable to being lost and flowing into the river water by the surface runoff. This is the reason why
fertilizer is the dominant pollution source in this region.

The contributions of each nitrate source in the lower reach of Fenhe River are similar to those of
the Jinghe River in the Loess Plateau of China; the potential nitrate sources showed high variability
between the different land use areas [39]. Compared with similar studies in other catchments, such
as a river subcatchment in Germany and Baltic Sea catchments [54,55], the contributions of sewage
and manure were much higher in the lower reach of Fenhe River. This phenomenon indicates that the
nitrate pollution in the lower reaches of Fenhe River is serious because of the frequent industrial and
anthropogenic activities.

4. Conclusions

The following conclusions can be drawn from this study:

(1) All samples in the IR and UR and 68.8% of the samples in the AR suffered from nitrate pollution.
The nitrate pollution has already endangered the health of local residents in the lower reach of the
Fenhe River. Denitrification was found in some water samples in the study area. Land use types
were the major influencing factors of nitrate pollution sources. NO3

−–N is the main existing form
of DIN, followed by NH4

+–N.
(2) Over the whole hydrological year, the temporal variation in the nitrogenous species concentration

was clear in the study area. In the UR, the nitrogenous species concentration was high in winter
and low in summer. In the IR and AR, the nitrogenous species concentrations were high in
summer and low in winter. The major factor influencing the nitrogenous species concentration
was anthropogenic rather than natural effects. The spatial variation was smaller among different
sampling sites in the same region but greater among different regions. This distribution was not
only affected by the seasonal changes of precipitation condition and runoff variation, but was
also closely related to the seasonal changes in human activities. Compared with the IR and UR,
the nitrogenous species concentration was relatively low in the AR.
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(3) The apportionment of the nitrate pollution source by the IsoSource model showed that the
atmospheric nitrogen, chemical fertilizers, sewage and manure are the main sources of nitrate in
the study area. Combined with the analysis of Cl−, industrial sewage and manure are the main
sources of nitrate in the IR, domestic sewage and manure are the main sources of nitrate in the UR,
and chemical fertilizers are the main sources of nitrate in the AR. Atmospheric nitrogen deposition
is also a source of nitrate in the study area. In order to control the pollution of the point-source
pollution, we should establish a reasonable land use mode and scientific management measures
for livestock manure. Environmental awareness and living environment management of urban
and rural residents should also be strengthened.
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