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Abstract: The efficient and effective management of existing water distribution systems (WDSs) faces
challenges related to aging of infrastructure, population growth, extended urbanization, climate
change impacts and environmental pollution. Therefore, there is a need for integrated solutions that
support decision makers to plan today potential interventions, considering the possible consequences
and variations in mid- and long-term perspectives. This study is a part of a more comprehensive
project, where advanced hydraulic analysis of WDS is coupled with a dynamic resources input-output
analysis model. The proposed modeling solution provides a robust tool to support planning of
intervention actions and can be applied to optimize the performance of a water supply system
considering energy consumption and environmental impacts. This paper presents an application
of the proposed method in pipe rehabilitation/replacement planning, maximizing the network
mechanical reliability and minimizing the risk of unsupplied water demand and pressure deficit
evaluated at nodal level, under given economic constraints.
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1. Introduction

According to an Environmental Protection Agency (EPA) report [1]: “System rehabilitation is the
application of infrastructure repair, renewal, and replacement technologies to return functionality to a
drinking water distribution system or a wastewater collection system”. The process of intervention
planning and prioritization is a function of a network’s current condition assessment, the extent of
critical repair needs, the availability of funding for rehabilitation work options, and the ability to
inspect and assess the condition and deterioration rate of each element [2]. Asset management activity
and life cycle analysis drive the broad activities that determine system-wide planning.

Among the possible alternatives for leakage reduction, asset replacement is quite expensive
compared to active leakage control (ALC) and pressure management (PM). However, if the condition of
the underground assets is so poor ALC and PM do not provide a sustainable solution. A well-managed
water loss program should always include a budget for selective replacement of mains and/or service
pipes specifically to reduce leakage if ALC, or PM is no longer a feasible option to mend the situation [3].
Knowing when, where and how to rehabilitate pipes requires a good knowledge of the system
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performance, its conditions and the availability of decision support systems for rehabilitation planning.
The present study describes a replacement planning approach based on mechanical reliability to
minimize unsupplied water demand and pressure deficit.

Reliability Theory Applied to Water Distribution System

The definition of reliability is not unique, but depends on the specific field in which it is applied.
Therefore, it is more precise to use this term in a general sense to indicate the overall ability of a
system to perform its function [4]. The mechanical and electrical complex systems are the main sectors
where the theory of reliability found the initial application and only later was applied to hydraulic
systems that exhibit some analogues aspects with those of the production, transport and distribution.
Reliability is commonly defined, among other definitions, as “the probability of a device performing its
purpose adequately for the period of time intended under the operating conditions encountered” [5].
This comprises the concept of probability, adequate performance, time and operating conditions [6].

For water distribution systems (WDSs), several types of reliability can be defined, in theory one
for each set expected function of an asset or of the entire network [7]. However, the literature has
mainly focused on the concepts of mechanical and hydraulic reliability. The mechanical reliability can
be defined as the probability that a component (new or repaired) experiences no structural failures
during the time interval from time zero to time t (0, t). The hydraulic reliability refers to the probability
that a water distribution pipe can meet a required water flow level at a required pressure at each
nodal demand [8]. Walski [9] observed that the topic of reliability is integrated to all parts of decision
related to WDS design, operation and maintenance, even though most evaluations of reliability tend
to focus on the design of the system. If the WDS has a sufficient redundancy to deliver water and
is able to perform the expected function even for an aging infrastructure, it is therefore considered
reliable. Moreover Kanakoudis et al. [10,11] observed that reliability is the most common performance
indicators used as maintenance priority criterion.

The reliability analysis could be used to identify repair works on existing system [12] considering
various random factors such as customer demand, mechanical failures, roughness indices, that could
affect the performance or in the expansion of existing networks [13] where the reliability is maximized
with the support of computer models. Among the existing models to analyze the reliability of a
water distribution system, “Management module” in WDNetXL (Version 4.0, IDEA RT, http://www.
hydroinformatics.it) [14,15] is a tool that enables reliability analysis of the network by three specific
functions: Reliability One Failure, Reliability Multiple Failure and Hydraulic Reliability. The first
two functions analyze hydraulic behavior of a WDS by simulating single or multiple pipe or node
failures/disconnections. Hydraulic Reliability function performs the analysis of the network hydraulic
behavior by varying the boundary conditions such as pipe hydraulic resistances, background leakages,
nodal customer demands, nodal free-orifice demands, and their combinations.

Reliability One-Failure function, which was used in this study, investigates all failure scenarios
generated by disconnection of single pipe or node from the network. Given that a link may represent
not only a pipe but also a device (valve or pump), a pipe failure can be associated also as a device failure.
The reliability indicators proposed in this study are based on two parameters: unsupplied demand and
pressure deficit. Both parameters are assessed from the failure events considered in Reliability One
Failure function in a pressure driven, extended period simulation [16] and are associated with Isolation
Valve system (IVS) that disconnects the failing pipe or node from the rest of the network [17,18].
Therefore, the study of WDS behavior resulting from failure events can be considered a mechanical
reliability analysis.

The break rate λ that represents the number of break per kilometer per year is a common
parameter associated with the mechanical reliability analysis [19]. It is dependent on many factors
such as installation year, pipe corrosion, diameter, break type, pipe material, seasonal variation, soil
environment, break history, pressure, land use and pipe length. Consequently, to consider these factors
individually to obtain a prevision of the expected break rate is a rather difficult task. Break rate is
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case specific and, therefore, it is advisable to calculate it at a cohort level through an analysis of the
historical break data related to the specific network. Otherwise, it is also possible to use formulae
taken from the literature from a similar case study. The break rate is assessed for different pipe cohorts
defined by similar characteristics and grouped to have a representative statistical sample. Afterwards,
the specific number of breaks per year is evaluated for each pipe by multiplying λ with the individual
pipe length.

2. Methodology

Figure 1 depicts the proposed reliability-based risk assessment methodology. The analysis starts
with the creation of the hydraulic model for the specific case study in WDNetXL environment [14,15].
Mechanical reliability is done by running simulations in “Reliability One Failure” function that evaluate
the hydraulic behavior in term of unsupplied demand and pressure deficit after each failure event.
The specific contribution of this study is to couple failure statistics with a risk based ranking of pipes
for rehabilitation by using the reliability indicators calculated from WDNetXL simulation results.
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2.1. The Reliability Indicators Implemented in WDNetXL

Many WDS performance indicators found in the literature were initially developed by agencies
such as International Water Association (IWA), the American Water Works Association (AWWA),
Asian Development Bank, (ADB), National Research Councils (NRCs), National Water Commissions
(NWCs), World Bank (WB). Such indicators were then studied, improved and implemented [20–24].

Several authors [12,25,26] evaluated reliability by using performance indicators on the basis of
the ratio between volumes actually delivered during the evaluation period and the volume required
at a given node. A performance indicator relative to pressure that considers the ratio between the
minimum pressure value and pressure required was also proposed [27].

WDNetXL model evaluates in extended period simulation (EPS) unsupplied customer demand
(UN) and pressure deficit (PR) evaluated at node level after each failure event. These two parameters
represent the actual values of customer demand and pressure after a failure event occurs and are
compared with those in a normal condition, that is, condition in which no failure occurs. UN and PR
are defined as [28]:

UNi,e,t = 1 −
dact

i,e,t

drequ
i,0,t

i ε nn eε ne t ε [1, T] (1)

PRi,e,t = 1 −
pact

i,e,t

pnormal
i,0,t

i ε nn eε ne t ε [1, T] (2)

where:
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• i, e and t are subscripts indicating respectively the i-th node, the e-th failure event and the time t
of the EPS during time interval T; e = 0 represents for normal condition;

• dact and pact are the actual customer demand computed in pressure driven analysis (PDA)
using the Wagner’s model [29] and actual nodal pressure evaluated in PDA or demand driven
analysis (DDA).

• drequ is the required customer demand varying over time;
• pnormal is the nodal pressure in normal conditions computed varying over time;
• nn and ne are the number of nodes and events, respectively.

It is clear that in normal condition dact and pact are equal or close to drequ and pnormal. Thus,

the corresponding fractions dact

drequ and pact

pnormal are close to unity, given the indicators UN and PR are
equal to or close to zero. This means that there is small or no deficiency between the supplied and
required values and the condition of the i-th node are ‘good’. If a failure is imposed, the values of

dact and pact are no longer equal or close to drequ and pnormal. Thus, dact

drequ and pact

pnormal give a value that are
less than unity. This means there is a deficiency between the supplied and required values. Therefore,
UN and PR values would be larger than zero. The larger values of UN and PR represent the worse
condition of unsupplied demand and pressure deficit. Note that for isolated nodes, for example, due
to valve shutdowns, dact and pact are null and the corresponding fraction UN and PR are unitary.

Based on UN and PR evaluated by WDNetXL, the results are then elaborated in a risk analysis for
the nodes in the network affected by each failure event. This enables classification of pipes based on
the risks they impose to the performance of WDS should a failure occurs to them. The EPS is done on
an hourly basis for the 24-h simulation period. Considering each node for the specific failure event,
the maximum value that represents the worse condition for that node in the day is registered. A value
of UN and PR ≥ 0.5 is chosen to define a critical situation in which the demand and pressure are less
than the 50% of the normal condition. This value is arbitrary and can be chosen specifically by the
decision makers. Figure 2 depicts a visualization of critical nodes after each failure event. At this stage,
the methodology ranks failure events in term of the number of affected nodes from two indicators,
UN and PR.
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The use of IVS helps isolate parts of the network creating segments, that is, the smaller portions of
a distribution system. By performing network segmentation, one can assume that a failure event related
to a specific pipe segment deals with all pipes belonging to the same pipe segment and, therefore,
the same hydraulic importance is assigned to these pipes belonging to that specific pipe segment.

2.2. Risk Assessment Approach

Risk methodologies are intended to evaluate risks associated with the existing system and possible
intervention options, and to contribute to the understanding of how decisions can contribute to meeting
performance targets. Multicriteria decision analysis (MCDA) methods need to be used for aggregation
and ranking tasks. Decision criteria can be used in parallel metrics of risk as well as of performance
and cost. Risk values, crossing probability scenario and their consequences, will be passed to the
MCDA to provide a possible ranking for competing alternatives.

There are many definitions of risk and risk management. ISO 31000:2009—Risk Management [30]
and ISO Guide 73:2009—Risk Management—Vocabulary [31], define risk as the “effect of uncertainty
on objectives”. ISO Guide 73 also states that an effect may be positive, negative or a deviation from
the expected. The risk is often described by an event related to a change in circumstances or a
consequence and by the associated likelihood of occurrence. It is important to underline that the term
likelihood refers to the probability of an event occur. Such a probability can be defined, measured or
determined objectively or subjectively, and is described using general terms or mathematically (such
as a probability or a frequency over a given time period). For example, Kanakoudis [11] associated
the probability of a failure with the magnitude of the failure impacts in the Significance Index. In this
study, the risk assessment is performed by combining the probability for each pipe to break with the
consequence induced in terms of UN and PR. Therefore, the risk associated to p-th pipe after a failure
event is defined as:

riskp = λ × Ctotp = f requency × consequence (3)

where:

• λ represents the frequency of break in a year;
• Ctotp is the overall consequencep = CUN dem

p × CPR
p ;

• CUN dem
p is the consequence in term of UNdem = break ratenorm p × ncritical nodes UN ;

• CPR
p is the consequence in term of PR = break ratenorm p × ncritical nodes PR;

• p subscript indicating the p-th pipe.

The combined probability and consequence for each pipe for all failure events is depicted in a
risk matrix as in Figure 3. Figure 4 is another example in which the pipes are ranked according to risk
value sorted in descending order. The visualizations help support decision makers to decide the risk
reduction measure to adopt should be more preventive (reduce the probability for the event to happen)
or protective (mitigate consequences).
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2.3. Replacement Planning

The prioritization and selection of the intervention options require the adoption of a MCDA
methodology. The objective is to minimize the residual risk, after rehabilitation of a given pipe to
ensure maximum reliability for example for a given annual investment. The proposed methodology
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ranks pipes with the objective to minimize residual risk and maximize reliability to meet the available
budget. The cumulative direct cost is defined as:

cum costp = costp +
p−1

∑
k=1

cum costk. (4)

where:

• p depicts the p-th pipe
• costp is the direct cost of the p-th pipe

•
p−1
∑

k=1
cum costk is the cumulative sum of the direct costs of pipes until pipe p − 1

The cumulative risk reduction, cum risk reductionp, is evaluated considering the risk sorted in
descending order:

cum risk reductionp = riskp +
p−1

∑
k=1

cum risk k. (5)

where:

• riskp is the risk associated to the p-th pipe

•
p−1
∑

k=1
cum risk reductionk is the cumulative sum of the risks of pipes until pipe p − 1

The residual risk is evaluated as:

residual riskp = max(risk reduction)− cum risk reductionp (6)

Given a fixed annual investment budget for each intervention of rehabilitation, the remaining
budget is assessed and used to fit further interventions minimizing the actual residual risk and provide
maximum service. Figure 5 shows an example of the analysis of cumulative risk reduction evaluated
based on a specific budget. The cumulative residual risk curve is based on the pipe ranking expressed
in cumulative pipe cost. The red line represents cumulative risk reduced up to the point where the
direct cost of pipe replacement is covered by the investment budget (grey line).
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The cumulative residual risk value peaks at cumulative cost equal to zero, representing the
total risk if no replacement program is implemented. The cumulative risk starts decreasing if the
replacement program is executed and this is limited by the available budget or for example by a target
length of pipe replacement/rehabilitation. In theory, the cumulative risk is equal to zero if all pipes in
the network are replaced.

3. Case Study—Laives

The methodology described above has been applied to the Laives water distribution network,
a town in the province of Bolzano, Italy. It serves about 18,000 customers and spreads from the
districts of San Giacomo in the south of Bolzano until the industrial area of Laives (Figure 6). The three
interconnected districts subdivide the network are: San Giacomo, Pineta and Laives. Each of these
districts has a tank supplied by wells or springs.
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Pipe materials that characterize the network are ductile iron and mild steel that cover more less
58% and 37% of the network, respectively. Other pipe materials, such as Polyethylene (PE) (4%) and
Polyvinylchloride (PVC) (1%) are also installed. The Laives network is modelled using WDNetXL
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and is characterized by 375 nodes and 439 pipes of which 18 are valves and pumps. Some of the
pumps present in the network work with different regimes during the hours of the day to save energy.
To simulate this, parallel pumps are added working in a different range of hours and with distinct
levels in the tanks.

In this paper, the mechanical reliability analysis considered in WDNetXL “Management module”
is the ‘Pipe Failure’ type that evaluates the impacts of closure of a particular isolation valve system/pipe
segment to UN and PR. The mechanical reliability simulation considering an ‘N-rule’ valve system
that assumes two valves for each pipe trunk and results in 379 failure events; each corresponds to a
specific segment in the Laives Network.

4. Results and Discussion

The scatter plot of nodes that are affected by each failure event is reported in Figure 7. Some of the
nodes exhibit unsupplied demand (UN), pressure deficiency (PR), or both conditions simultaneously.
The results of the first simulation show that the most part of the worst condition registered at nodes are
of PR, rather than of UN. This is because PR takes a reference value of the nodal pressure in the normal
condition (pnormal) that for the Laives network is characterized by a generalized high level of pressure
distribution, much higher than 30–40 m. Therefore, a new simulation was performed by lowering the
reference value down to the minimum pressure level for users defined by regulation of the province of
Bolzano, which is of 40 m water column (see Figure 7). In the following, the PR indicator is presented
with subscript “ser” to indicate the reference value to service pressure (PRser).
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Table 1 reports the top 10 events ranked based on the number of affected nodes from the simulation
and the location of the five common failure events in the network is shown in Figure 8. It is interesting
to observe the different ranks of failure events that lead to highest number of nodes affected by UN
and PR. In addition, for example the last five failure events causing UN are absent on the list of failure
events causing PR.
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Table 1. List of top-10 failure events corresponding to the number of affected nodes.

UN PRser

Rank Failure Event Number of Affected Nodes Failure Event Number of Affected Nodes

1 48 34 306 54
2 59 29 321 54
3 321 29 59 45
4 306 28 101 42
5 101 20 85 40
6 347 16 87 37
7 348 16 90 37
8 335 14 88 35
9 26 13 93 35
10 310 13 48 34Water 2018, 10, x FOR PEER REVIEW  10 of 14 
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Figure 8. Locations of the five common failure events in Laives water distribution network.

Table 2 shows an extract of risk calculation for some pipes of the network. One can observe that
the number of affected nodes with UN are lower than that with PR. Consequently, the consequence in
term of unsupplied demand, Cp

UNdem and consequence in term of pressure deficit, Cp
PRser are affected

by these differences.

Table 2. An extract of risk calculation based on Equation (3).

Failure Event Pipe ID Length UN PRser λ Break Break Norm Cp
UNdem Cp

PRser C_tot Risk

87 32 41.62 4 37 0.601 0.025 0.028 0.112 1.035 0.116 0.070
88 33 53.37 2 35 0.601 0.032 0.036 0.072 1.255 0.090 0.054
90 34 19.36 4 37 0.601 0.012 0.013 0.052 0.482 0.025 0.015
93 35 28.63 2 35 0.601 0.017 0.019 0.038 0.674 0.026 0.016

Figure 9 shows the ranking of portion of pipes in term of risk (the first twenty pipes exhibiting
highest risk), the corresponding risk values are reported in Table 3, with the relative values of λ and
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Ctot. By comparing the list of failure events in Table 1, with the list of the first twenty pipes ranked
following the risk evaluation in Table 3, only three of the predominant failure events in Table 1 appear
in the ranking list. This is due to the effect of λ acting as a weight ranking.Water 2018, 10, x FOR PEER REVIEW  11 of 14 
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Figure 9. Priority ranking of the pipes with highest calculated risk values.

Table 3. Ranking list of the pipes with highest risk values and the corresponding failure event number.

Rank Failure Event Pipe ID λ Ctot Risk

1 312 129 1.164698 42.71896815 49.75472
2 328 159 1.164698 29.4251172 34.27139
3 27 70 0.921421 21.52369527 19.83238
4 59 405 0.601952 31.91113549 19.20899
5 59 404 0.601952 31.12305147 18.7346
6 48 390 0.728958 19.76419825 14.40727
7 52 136 1.164698 8.184900227 9.532941
8 135 364 1.164698 7.065763846 8.229484
9 305 131 0.728958 9.332392247 6.802922

10 52 137 1.496754 4.497545577 6.731719
11 42 99 1.164698 5.14500632 5.992381
12 42 100 1.164698 4.966474288 5.784445
13 247 217 0.921421 6.021586638 5.548415
14 27 69 0.921421 5.53121004 5.096572
15 304 130 1.164698 4.058647449 4.7271
16 313 138 0.921421 4.96502344 4.574876
17 48 408 0.728958 5.395299548 3.932946
18 27 163 1.164698 3.258599588 3.795286
19 321 121 0.728958 5.067614029 3.694078
20 315 133 1.164698 2.94751094 3.432961

Figure 10 shows the cumulative risk calculated for all pipes in the network. By replacing
particular pipes in Table 3 will lead to reduction of risk proportional to the risk imposed by the pipes.
The cumulative value peak at zero represents the total risk if no replacement program is implemented.
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Figure 10. Cumulative risk calculated based on pipe ranking.

The ranking of pipes could be driven by other constraints than cost, as for instance the requirement
set by regional authorities on rehabilitation targets to be met. In the case of Laives, the target
replacement rate is 2.5% of pipe network/year [32], which corresponds to substitution of around
10 pipes a year.

Considering this alternative constraint, an additional analysis was performed and the results
are presented in Figure 11. The x-axis is a blow up of x-axis in Figure 10. This section is meant to
put emphasis on its potential application in the replacement-planning phase with respect to the risk
asset management principle discussed in previous section. The orange line represents cumulative
risk reduction up to the point where the number of pipes to replace is equal to 10. Following the
replacement program, as seen from the graph, the cumulative risk reduces by almost 66% from 313.41
to 106.34 (corresponding to cumulative risk reduction of 207.07).
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the masterplan calculated for the first year.
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5. Conclusions

Many factors, such as aging of infrastructure, population growth, increasing urbanization,
and including more recent factors such as climate change and environmental pollution, require a change
in the management of the WDS. This paper, part of a more comprehensive project of optimization of
the performance of a water supply system, presents an application of mechanical reliability analysis in
WDNetXL in pipe rehabilitation/replacement planning. The inclusion of statistical information of pipe
break rate allows risk assessment at an individual pipe level that can be used to develop a priority
ranking for pipe replacement. The proposed method is applied to the network of Laives, a town in
province of Bolzano. The effect of the break rate (λ) as the ranking weight is highlighted in this study.
This approach can also be extended to evaluate the risk reduction reached once the replacement plan
is executed.

Data availability for break rate calculation has been a limiting factor in this study. To develop a
good pipe replacement plan, the real break rate with a minimum of 10-year pipe break history should
be considered. Consequently, the ‘map’ of the pipes that need replacement must be updated owing
to the change of break rate once a pipe rehabilitation/replacement is commenced. At the same time,
inclusion of a break rate that considers also the pipe age and materials, not only pipe diameter as
in this study, will be more useful in representing the actual condition of the network. The ongoing
research considers the age factor and its influence on a long-term planning by observing the dynamics
of pipe-risk ranking over time.

For each replacement, the main constraint considered was the direct cost, but it is possible to
evaluate the energy consumption and the CO2 emissions connected using the integrated modeling
approach as will be addressed later by this study, that is, by incorporating MCDA.
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