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Abstract: Accurate soil moisture estimation plays a crucial role in agricultural management and
hydrological studies. Considering the scarcity of direct in-situ measurements, it is important to
evaluate the consistency of soil moisture data acquired in indirect ways, including both satellite
products and simulation values obtained via hydrological models. In this study, two types of high
spatial-resolution remotely sensed values, namely the surface soil moisture (SSM) and the profile
soil water index (SWI), are estimated from each of the ASCAT-A, ASCAT-B, SMAP and SMOS
microwave satellites. They are compared with two groups of model-simulated daily soil moisture
values, which are obtained by implementing the lumped Xinanjiang (XAJ) model and the DEM-based
distributed hydrological model (DDRM) across the Qujiang catchment, located in southwest China.
The results indicate that for each satellite product, SWI values always show closer agreement with
model-simulated soil moisture values than SSM values, and SWI values estimated from ASCAT
products perform best in terms of correlation coefficient with the model-simulated soil moisture,
at around 0.8 on average, followed by the SMAP product, which shows a correlation coefficient of
0.48 on average, but the SMOS product shows poor performance. This evaluation of consistency
provides useful information on their systematic differences and suggests subsequent studies to ensure
their reconciliation in long-term records.
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1. Introduction

As a key component in the hydrological cycle, soil moisture plays a crucial role in atmosphere-land
surface interactions through controlling the available energy exchange among the hydrosphere,
the atmosphere and the biosphere [1]. Thus, continuous and accurate acquisition of soil moisture data
at local, regional and global scales is of vital importance for simulation of the climate system and the
Earth system. However, current ways to obtain soil moisture fail to satisfy all these needs.

Soil moisture information can be obtained in both direct and indirect ways. The direct field
measurements of soil moisture are thought to be fairly accurate, but are costly, with small coverage
areas, and only provide point-based measurements rather than areal values, which are of more
interest for practical applications. Indirect acquisition ways, including remote sensing (optical,
thermal infrared and microwave) and hydrological models (either the physically-based land-surface
models, or rainfall-runoff hydrological models), offer the possibility to provide the areal soil moisture
information on a low-cost basis, but with less accuracy than ground point measurements [2,3].

Remote sensing (optical, thermal infrared and microwave) techniques can generally measure
near-surface soil moisture contents [4]. The remotely sensed soil moisture of both optical and thermal
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techniques is thought to be vulnerable to easy contamination by weather conditions and many other
noise sources, and their precision can hardly satisfy the needs of practical applications. In contrast,
numerous studies have shown that microwave (passive and active) remotely sensed soil moisture has
good potential for applications in different fields [5]. Active microwave satellites, include the Advanced
Scatterometer (ASCAT) on the Meteorological Operational Satellite (Metop), emit a microwave signal
and then acquire the backscatter signal strength reflected by the surface soil to retrieve soil moisture
information [6,7]. These satellites provide soil saturation degrees ranging between zero (dry) to one
(wet) with high spatial resolution but low temporal repeat. The mean values of these products are
around 0.5. Passive microwave satellites, including the Advanced Microwave Scanning Radiometer for
Earth Observing System (AMSR-E) and the Microwave Imaging Radiometer with Aperture Synthesis
(MIRAS) on the Soil Moisture and Ocean Salinity (SMOS) satellite [8], receive natural microwaves
from the Earth and then retrieve soil moisture through analyzing the dielectric properties of soil
surfaces. These satellites provide soil moisture contents (m3 m−3) ranging between 0 and 0.6 with
high temporal repeat but low spatial resolution. The mean values of these products are around 0.3.
In addition, the National Aeronautics and Space Administration’s (NASA) Soil Moisture Active
Passive (SMAP) mission, launched in 2015, aimed to retrieve soil moisture information from both
active and passive microwave sensors [9]. All these microwave sensors can only acquire near-surface
soil moisture content. Researchers have tried to combine different remotely sensed soil moisture
products or proposed machine learning methods for better surface soil moisture estimations in recent
years [10,11].

Soil moisture simulated by hydrological models is to represent the moisture contents at different
layers or the total depth of the soil profile. Physically-based land-surface models, such as the
Community Land Model (CLM) and the Variable Infiltration Capacity (VIC) models, account for
both water and energy budgets to simulate multiple layers of surface soil moisture with complex
parametrization schemes [12,13]. Rainfall-runoff hydrological models, which mainly account for
only water budgets, can be further classified into lumped or distributed models, depending on
their degree of spatial discretization of the catchment area. Lumped hydrological models provide
catchment-averaged soil moisture contents of one or more upper layers of the soil profile, while the
distributed models can provide the spatial distribution of the vertically-integrated or layered soil
moisture information. For conceptual rainfall-runoff models, their soil moisture calculations vary
in complexity with different simplifications and assumptions about the hydrological processes [14].
For example, the Xinanjiang (XAJ) model can simulate water storages in the upper, lower and deepest
layer of the soil profile respectively [15]. TOPMODEL can simulate soil water storages at both the
root-zone layer and the underlying unsaturated layer [16]. The DEM-based distributed model (DDRM)
estimates the total soil moisture storage for the whole soil profile [17].

There have been some studies comparing microwave satellite soil moisture products with ground
measurements or with both the model-simulated soil moisture and ground measurements at coarse
spatial scales such as the catchment or sub-catchment scales [18–22] or at fine spatial scales such
as grid scales [23,24]. For example, Reichle et al. compared the monthly Scanning Multichannel
Microwave Radiometer (SMMR) soil moisture retrievals with the monthly soil moisture simulated by
the NASA Catchment Land Surface Model for the period of 1979–1987 to examine their consistency,
and validated these soil moisture values through the ground-based measurements [25]. Brocca et al.
validated the reliability of the daily ASCAT soil moisture product through the comparisons with
both the in-situ ground observations and the soil moisture simulated by a lumped hydrological (soil
water balance) model but considered no comparisons between the model-simulated soil moisture
and the ground measurements [26]. Albergel et al. used remotely sensed soil moisture to analyze
soil moisture in a numerical weather prediction system in Europe, and evaluated both of them using
global ground-based in situ observations from more than 200 stations located in Africa, Australia,
Europe and the United States [27]. Al-Yaari et al. applied regression analysis on SMAP L-band
temperature brightness observations by calibrating the regressions against SMOS soil moisture to
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obtain a new soil moisture dataset, and validated both of SMOS and SMAP soil moisture against
in-situ measurements spread over the globe [28]. Pan et al. assessed SMAP soil moisture retrievals
using high-resolution model simulations and in-situ observations [24]. Overall, in-situ soil moisture
measurements are thought to be more accurate, and are more likely to be involved in comparing soil
moisture information from different sources. However, comparing satellite soil moisture products
and the model-simulated soil moisture with the ground measurements is in fact a challenging task for
two reasons. One reason is that the in-situ ground measurements are not widely and easily available.
Another reason is that they are usually point-based measurements and are sensitive to the small-scale
land surface related components [29], compared to the satellite-based and the model-simulated soil
moistures that are more sensitive to the atmospheric-forcing variability.

In areas where in-situ soil moisture measurements are sparse or hardly available, the satellite soil
moisture products and the hydrological model-simulated soil moisture are two alternative sources of
the soil moisture information. Remotely sensed soil moisture data have been integrated with models for
different purposes. For example, calibrating hydrological models against remotely sensed soil moisture
has attracted a lot of attention in hydrology in the last decade. Parajka et al. compared the European
Remote-sensing Satellite (ERS) scatterometer soil moisture product with soil moisture simulations
from a semi-distributed dual layer hydrological model for different seasons and elevations in Austria,
and assessed the added value of satellite soil moisture estimates in the multiple objective calibration
of the model [29]. Wanders et al. used remotely sensed soil moisture in parameter identification
of large-scale lumped hydrological models to better simulate soil moisture content throughout the
catchment and better simulate discharge in upstream areas. Besides, remotely sensed soil moisture
products have also been used for updating the soil moisture states of models [13]. Grillakis et al.
estimated antecedent soil moisture by remotely sensed soil moisture to contribute to the understanding
of the importance of the initial soil moisture state for flash flood magnitudes simulated by a distributed
model [30]. Alvarez-Garreton et al. improved streamflow prediction of a lumped hydrological model
in data-scarce catchments by dual assimilation of remotely sensed soil moisture [31]. Tian et al.
improved water balance component estimates of a distributed water balance model through joint
assimilation of different remotely sensed soil moisture [32]. Once consistency between remotely sensed
and hydrological model-simulated soil moisture is well evaluated, better potential will be offered in
integrating remotely sensed soil moisture with models.

However, scarce studies have focused on evaluating consistencies between the remotely sensed
and the model-simulated soil moisture. Wagner et al. evaluated the agreement between the
scatterometer-derived monthly soil moisture and monthly soil moisture modeled by a global vegetation
and water balance model at a spatial resolution of 28 km for 1992–1998 [1]. Sinclair et al. (2010)
compared ASCAT and modelled soil moisture at a spatial resolution of 12.5 km for 5 months during
1 August to 31 December 2008 over South Africa, using Topographic Kinematic Approximation and
Integration (TOPKAPI) in land surface module [33]. Hain et al. compared available soil moisture
estimates from thermal infrared, passive microwave remote sensing and distributed land surface
modeling during 2003–2008 at a resolution of 25 km [34]. More researchers tended to integrate
remotely sensed soil moisture with lumped or distributed models directly, rather than evaluating their
consistency in first place. In this study, multi-comparisons are involved. Considering different
temporal coverages of satellites, four kinds of latest satellite soil moisture products, including
ASCAT-A, ASCAT-B, SMAP and SMOS products, are selected in this study to compare with soil
moisture simulations from two rainfall-runoff models, a lumped XAJ model [15] and a DEM-based
distributed hydrological model [17], at both the large spatial scale (i.e., the whole catchment) and fine
spatial scales (i.e., grids) for different seasons during 2010 to 2016 across the Qujiang catchment in
southwestern China.

The rest of the paper is organized as follows: firstly, the study area and datasets section includes
the description of the background of the Qujiang catchment, the hydrologic and climatic datasets
used for hydrological modelling, and the remotely sensed soil moisture products. Secondly, the
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methodology section presents the two hydrological models used to simulate the soil moisture, as well
as the methodology of comparisons and indexes for assessing soil moisture. Thirdly, the results of both
the remotely sensed and the hydrological model-simulated soil moistures are analyzed and compared.
Finally, in the conclusions section the potential of different soil moisture products in regard to their
application in the study catchment is discussed and some conclusions are drawn.

2. Study Area and Datasets

2.1. Study Area

The Qujiang catchment, located between 106◦00′ E–109◦00′ E and 30◦00′ N–33◦00′ N, is a typical
humid catchment in southwestern China [35] with a drainage area of 39211 km2 (Figure 1). It originates
at Tiechuan Mountain situated at the juncture of the Shanxi and Sichuan Provinces of China and flows
southwest to the Jialing River at the north of Chongqing. The catchment is divided into seven
sub-catchments (circled by red lines in Figure 1b) based on the river networks, which are in accordance
with the sub-catchments divided by DDRM when modelling the Qujiang catchment. The northern
part of the catchment contains the Daba Mountain and Michang Mountain while the southern part is a
plateau. The elevation within the Qujiang catchment ranges from 128 to 2684 m a.s.l., and decreases
from northeast to southwest.
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Figure 1. Topography (b) and land use (c) in 2010 of the Qujiang catchment in China (a): (a) the location
of the Qujiang catchment (blue-shaded); (b) river networks (blue lines) and sub-catchments (circled by
red lines), as well as meteorological stations (blue dots) and a hydrological station (red triangle) at the
outlet of the Qujiang catchment.
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The Qujiang catchment is characterized by a subtropical monsoon climate. The middle and
lower reaches of the catchment have moderate temperatures and abundant precipitation, while the
temperature of the upper reaches is relatively low. The annual rainfall of the catchment ranges from
1014 to 1253 mm, and the annual rainfall in areas of Michang Mountain and Daba Mountain ranges
from 1014–1500 mm. The rainy season in this catchment generally starts in April and ends in October.
The annual runoff at the outlet station (Luoduxi station) is 23 billion m3, contributing about 30% of the
Jialing River’s total discharge.

Vegetation covering varies greatly over time across the Qujiang catchment, as shown in Figure 2.
The middle and lower reaches are covered mostly by cultivated and dry land, while the upper reaches
are covered mostly by forest land, as shown in Figure 1b. According to the Harmonized World Soil
Database (HWSD) [36], the soil texture across Qujiang catchment encompasses loamy, silt loamy, light
clayey and loamy sand, and the great majority of the catchment has a loamy texture. The soil porosity
values and soil (root-zone) depth values across Qujiang catchment are estimated by results of Saxton
and Rawls, at around 0.46 and 100 cm, respectively [37].
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Figure 2. Normalized Difference Vegetation Index (NDVI) in different months of the year 2016 for the
Qujiang catchment.

2.2. Hydro-Meteorological Data

The hydro-meteorological data used in this study for hydrologic modelling include the daily
discharge data from the Luoduxi hydrological station and daily meteorological data for the period
of 2010–2016 (precipitation and mean air temperature data) from 53 meteorological stations, which
are evenly distributed in the Qujiang catchment (Figure 1b). The daily meteorological data from
53 meteorological stations are obtained from the China Meteorological Data Sharing Service System
developed by the National Climate Centre of China Meteorological Administration.

The Blaney-Criddle method is used to calculate potential evaporation, PET from daily mean air
temperature data from the 53 meteorological stations [37]. The input data for DDRM are grid-based
precipitation and PET. The Inverse Distance weighted method (IDW) is used for spatial interpolation
of precipitation and PET to fit the discrete grids of DDRM [38]. In this study, the resolution of grids
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applied in DDRM is 1 km. The inputs of XAJ model are areal mean precipitation and PET data of
Qujiang catchment, which are calculated as the overall averages from 53 stations. The output data of
XAJ model are areal soil moisture averages across the Qujiang catchment from 2010 to 2016.

2.3. Remotely Sensed Soil Moisture Products

Four remotely sensed soil moisture products are used in the study, i.e., ASCAT-A, ASCAT-B,
SMAP and SMOS. This study considers only ascending overpasses of satellites, which have a better
spatial coverage of the study area.

The ASCAT, flying on the board of the polar-orbiting Meteorological Operational (MetOp) satellite
series and using active microwave at a frequency of 5.255 GHz (C-band), was initially designed for
monitoring winds over the oceans and was thought to be sub-optimal for soil moisture detection [39],
but recent studies have shown that ASCAT soil measurements can be well suited for tracking changes
on soil moisture [40] and have a positive impact in practical applications [41]. There are two available
ASCAT products currently: the ASCAT-A was launched on the MetOp-A satellite in October 2006,
which then became fully operational in May 2007 and continues to operate today, while the ASCAT-B
instrument on the MetOp-B satellite became operational in September 2012. In the study, the raw
ASCAT Surface Soil Moisture Level-2 (L2) products (ASCAT-A and ACAT-B) given in swath geometry
are available from European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)
with a spatial sampling resolution of 12.5 km [41]. Retrievals are available at least once a day
(in descending orbit and/or in ascending orbit), and a time-series based change-detection method to
remove the adverse influence of surface roughness and eliminate the contribution of vegetation is used.
ASCAT products provide a relative measurement of the soil moisture contents in the top 0.5–2 cm
of the soil profile. The soil moisture information is derived and expressed as the saturation degree
(%) of surface soil moisture, denoted by ωASCAT

SSM , whose values for the historical highest and lowest
measurements are 100% and 0% respectively. The porosity values are required to convert saturation
degree ωASCAT

SSM to soil moisture contents given in m3 m−3, which are denoted by θASCAT
SSM . ASCAT-A

product used in this study covers the period of January 2010 to December 2016, while ASCAT-B
product covers the period of May 2013 to December 2016. In the study, the soil moisture data with a
noise error (ERR) greater than 14% were screened out [42].

Launched in 31 January 2015, NASA’s SMAP satellite, which was specially designed for providing
high tempo-spatial resolution global maps of soil moisture and landscape thaw/freeze state, is the
newest L-band soil moisture dedicated satellite in orbit. It was initially designed to incorporate an
L-band (1.26 GHz) active radar and an L-band (1.41 GHz) passive radiometer over large domains [9].
However, its active radar broke down in July 2015. In this paper, the SMAP enhanced Level-3 (L3)
radiometer global surface soil moisture (θSMAP

SSM ) product (version 1) sourced from the National Snow
and Ice Data Center (NSIDC) is used [43]. This soil moisture product is based on the Single Channel
Algorithm V-pol (SCA-V) [44]. It has an initial spatial resolution of nearly 36 km and is subsequently
resampled to 9-km resolution by NSIDC with a sensing depth of the top 5 cm of the soil profile and
covers the period after April 2015. In the study, only the SMAP soil moisture data that the Retrieval
Quality Flag (RQF) recommended were used.

The SMOS, which is the first satellite designated for soil moisture acquisitions using fully polarized
passive microwave observed at multiple angles, was launched in November 2009 by European Space
Agency (ESA) [45]. The Microwave Imaging Radiometer uses Aperture Synthesis extracts L-Band
microwave emissions (1.400–1.427 GHz) from Earth’s surface (0–5 cm of the soil) to map levels of soil
moisture. The SMOS provides regular observations of a revisit time of nearly 3 days with a spatial
resolution of 35–50 km. In this study, the surface soil moisture contents (θSMOS

SSM ) given in percentage
volumetric units (m3 m−3) are sourced from the ESA Level 2 processor based on the L-Band Microwave
Emission of the Biosphere (L-MEB) model [46], namely SMOS operational Soil Moisture User Dara
Product 2, version 6.50 (SMUDP2) and cover the period from June 2010. The product is available
on hexagon grids of 15 km resolution over the Discrete Global Grid (DGG) [18]. For SMOS product,
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the soil moisture data were masked out if the Data Quality Index (DQX) is equal to 0 (filled value) or
larger than 0.06, or the radio frequency interferences (RFI) are larger than 30% [47].

Before comparisons, raw ASCAT swath soil moisture products and SMOS DGG soil moisture
product are resampled to gridded soil moisture through nearest resampling technique via ArcGIS
without changing their spatial resolutions. The output grid value of the overlapping is the average of
the overlapping grids. The spatial resolution of gridded soil moisture from ASCAT, SMAP and SMOS
are 12.5 km, 9 km and 15 km respectively. Table 1 presents the time periods of data chosen in the study
of each remotely sensed soil moisture product.

Table 1. Periods of satellite products chosen for this study.

Satellites ASCAT-A ASCAT-B SMAP SMOS

Period 2010.1–2016.12 2013.5–2016.12 2015.4–2016.12 2010.6–2016.12

The exponential filter proposed by Wagner et al. is adopted to define a soil water index (SWI)
to represent the profile soil moisture contents for each remotely sensed soil moisture product. It is
denoted by θRS

SWI with a unit of m3 m−3, under the assumption that the variation in time of the profile
soil moisture is linearly related to the difference between the surface soil moisture and the profile soil
moisture [48]. The recursive formulation is represented as follows:

θRS
SWI(tn) = θRS

SWI(tn−1) + Kn

[
θRS

SSM(tn)− θRS
SWI(tn−1)

]
(1)

where time tn indicates the acquisition time of surface soil moisture contents acquired from satellites,
which are denoted by θRS

SSM, and tn−1 indicates the previous acquisition time. Kn is the gain term at the
acquisition time tn varying between 0 and 1 as follows:

Kn =
Kn−1

Kn−1 + e−(
tn−tn−1

T )
(2)

where T is the characteristic time length representing the timescale of soil moisture variation, which is
calculated by maximizing the correlation between the soil water index and the model-simulated soil
moisture. For the initialization of the filter, K1 is set to 1.

3. Methodology

In this section, the XAJ model and the DDRM are first presented in details to explain how to
simulate catchment-averaged soil moisture values as well as the spatial distribution of soil moisture
values. Then, methodology of comparisons, the correlation coefficient R and the root mean square
difference RMSD used in comparison study are described.

3.1. The Xinanjiang (XAJ) Model

3.1.1. Model Structure

The XAJ model is a widely-used conceptual hydrological model for flood forecasting in China [15].
It can provide accurate flow predictions in humid and semi-humid regions where saturation
excess runoff dominates [49]. This model consists of four calculation components, including
evapotranspiration, runoff generation, runoff separation and flow concentration. As Figure 3 shows,
the XAJ model divides the vertical soil depth into three layers, i.e., upper layer, lower layer and deepest
layer. In the runoff producing area, three soil layers will generate the respective runoff components, i.e.,
surface runoff, interflow and groundwater. For each of three layers, its soil moisture content changes
due to evapotranspiration and possible runoff. For this model, runoff production occurs only at points
where the tension water storage is replete, thus a distribution curve of tension water capacity across
the catchment is built to calculate the spatial distribution of the tension water storage. The calculation
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of the interflow and the groundwater flow is based on the linear reservoir method. A unit hydrograph
is used to calculate runoff concentration. More details of the XAJ model are shown in [15].
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Figure 3. Flow chart for the Xinanjing model. This model is driven by precipitation and potential
evapotranspiration, and the main outputs are actual evapotranspiration, total outflow, and soil moisture
content. It generates runoff from both pervious area (FR) and impervious areas (1-FR). This paper
choses areal mean tension water storage (W) (purple-shaded) as the XAJ model-simulated soil moisture
content. The symbols in square brackets such as [K] represent the model parameters, while the symbols
in brackets such as (EW) represent state variables.

3.1.2. Model Parameters

The lumped XAJ model has 13 parameters and a dimensionless unit hydrograph UH. They can
be classified into evapotranspiration parameters (K, WUM, WLM, C), runoff generation parameters
(WM, B, IMP, SM, EX, KI, KG) and routing parameters (KKI, KKG).

All the parameters are estimated by the Shuffled Complex Evolution (SCE-UA) method, which
combines the strengths of multiple methods and has good performance in parameter calibration [50].
A widely used performance criterion Nash-Sutcliffe Coefficient of Efficiency (NSE) is chosen as the
objective function. More details about XAJ model parameters are shown in Table 2.

Table 2. Descriptions of the XAJ model parameters.

Parameters Unit Prior Ranges Description Optimized Values

K - 0.5–1 The ratio of potential evapotranspiration to pan evapotranspiration 0.52

IMP - 0–0.3 The fraction of the impervious area of the catchment 0.01

B - 0–0.5 A parameter relating to the distribution of tension water capacity 0.40

WM mm 100–700 Areal mean free water storage capacity 272.32

WUM mm 30–100 Upper layer water storage capacity 10.01

WLM mm 10–90 Lower layer water storage capacity 62.29

C - 0.08–0.3 A factor of remaining potential evaporation in the deepest layer 0.24

SM mm 10–50 Areal mean free water storage capacity 34.76

EX - 0.5–2 A parameter relating to the distribution of free water storage capacity 0.99

KG - 0–0.45 A coefficient relating to a contribution to groundwater storage 0.08

KI - 0–0.35 A coefficient relating a contribution to interflow storage 0.13

KKG - 0–1 The groundwater reservoir constant 0.99

KKI - 0–0.9 The interflow reservoir constant 0.86
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3.1.3. Calculation of Soil Moisture

In the XAJ model, the variable W (purple-shaded in Figure 3) is the sum of soil moisture
storage depths of three soil layers, i.e., W = WU + WL + WD, and is more likely to represent the
profile soil moisture. This variable is given in a single storage depth (mm), representing the daily
catchment-averaged soil moisture, and can convert to the soil moisture content θXAJ (m3 m−3) when
catchment-averaged soil depth (D) is given, which can be represented as:

θXAJ =
W · A
D · A =

W
D

(3)

where A (m2) represents the whole catchment area.

3.2. The DEM-Based Distributed Hydrological Model

The DEM-based distributed hydrological model (DDRM) was proposed by Xiong et al. and has
been used in the humid and semi-humid regions for flood forecasting in southern China [17,51–53].
In the model, a big catchment will be divided into a number of sub-catchments, and each sub-catchment
is represented by a number of DEM grids, with the outlets of each sub-catchment are connected to
constitute the river networks of the total catchment, as demonstrated by Figure 4. The DDRM has three
calculation components: grid excess rainfall calculation, sub-catchment outlet streamflow calculation,
and streamflow routing through the river network.
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Figure 4. Discretization of catchment into sub-catchments and grids, and also delineation of streamflow
routing (represented by blue lines) in the DEM-based rainfall-runoff model (DDRM). d, e, f represent
the outlet of sub-catchments 1 (grey-shaded), 2 (light blue-shaded) and 3 (yellow-shaded), respectively.

3.2.1. Grid Excess Rainfall Calculation

Grid excess rainfall is largely influenced by soil water storage in each grid. For the DDRM, soil
water storage capacity (Smc) differs from grids to grids. The DDRM establishes linkages between Smc

and the corresponding topographic index ln(α/tanβ) at grid i by the following relationship:

Smc,i = S0 + SM ·


ln(α/tan β)i −min

j

[
ln(α/tan β)j

]
max

j
[ln(α/tan β)]−min

j

[
ln(α/tan β)j

]


a

(4)
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where S0 and SM respectively represent the minimum water storage capacity of the catchment and
the range of water storage capacity across the catchment, a denotes as an empirical index that can be
acquired by calibration.

For grid i of DDRM, the actual evapotranspiration ETi is calculated by:

ETi =
Si

Smc,i
PETi (5)

where Si is the actual soil moisture storage, and PETi represents potential evapotranspiration.
The inflow of groundwater QSin,i and the outflow of groundwater QSout,i for grid i can be

calculated as:
QSin,i = ∑ QSout,j (6)

QSout,i =
max{(Si − STi), 0}

Ts
·
[
tan
(

βi
)]b

(7)

where QSout,j represents the groundwater outflow from the surrounding upstream grids j of grid i.
STi is the residual groundwater and can be considered as a constant portion a of Smc,i, where a is an
empirical parameter. Ts is a time constant reflecting the underground flow properties of grid i. tan

(
βi
)

stands for the average slope across the study area. Ts and b are model parameters acquired by model
calibration. Soil moisture storage Si can be calculated as:

Si(t) = Si(t− ∆t) + [Pi(t)− ETi(t)] · ∆A · ∆t + [QSin,i(t)−QSout,i(t)] · ∆t (8)

where t denotes time, ∆t denotes time step, Pi is precipitation, and ∆A is the grid area. Runoff
generation in each grid of DDRM is based on saturation excess runoff mechanism. Where the soil is
unsaturated, i.e., Si < Smc,i, there is no excess rainfall generated to replenish the surface ponding water
storage Sp,i (Figure 5a). When Si > Smc,i (Figure 5b), Sp,i will be replenished and updated as follows:

Sp,i(t) = Sp,i(t− ∆t) + max{Si(t)− Smc,i, 0} (9)

Then the grid excess rainfall generation rate Qp,i is generated from Sp,i and calculated under the
linear reservoir assumption as:

Qp,i = Sp,i/Tp (10)

where Tp is a time constant estimated by model calibration.
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Figure 5. Hydrological processes involved in a grid where there is no excess rainfall generation (a) and
a grid where there is the excess rainfall generation (b), and streamflow movement across both kinds of
grids in DDRM.

3.2.2. Sub-Catchment Outlet Streamflow Calculation by Grid Channel Routing

As shown in Figure 4, DDRM divides catchment into a number of sub-catchments according to
requirements. Within each sub-catchment, the Muskingum method is used to route the grid excess
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rainfall generation rate Qp,i through grids one by one from upstream to downstream in order to finally
get the streamflow values at the sub-catchment outlet. For grid i, the routed streamflow is denoted as
Qout,i, which is expressed as:

Qout,i(t) = c0
[
Qin,i(t) + Qp,i(t)

]
+ c1

[
Qin,i(t− ∆t) + Qp,i(t− ∆t)

]
+ c2Qout,i(t− ∆t) (11)

where c0, c1 and c2 are grid channel parameters of the Muskingum method, which are all between 0
and 1, and their sum equals 1. The D8 algorithm, which is probably the most popular algorithm for
automated drainage recognition, is used in this model to determine the sequence of channel routing
across all the grids within the sub-catchment [54].

3.2.3. Streamflow Routing through River Networks

Streamflow from all sub-catchment outlets is further routed through the river networks also by
the Muskingum method. As Figure 4 shows, a big catchment consists of multiple sub-catchments.
The discharge at the outlet f of the whole catchment, denoted by Of, contains three components, i.e.,
Odf, the discharge routed from the streamflow at the sub-catchment outlet d; Oef, the discharge routed
from the streamflow at the sub-catchment outlet e; and Oout,f, the discharge at the sub-catchment
outlet f that is generated only from the rainfall falling on the sub-catchment 3. Thus Of is expressed
as follows:

O f (t) = Od f (t) + Oe f (t) + Oout, f (t) (12)

Od f (t) = hcd f
0 Od f (t− ∆t) + hcd f

1 Qout,d(t) + hcd f
2 Qout,d(t− ∆t) (13)

Oe f (t) = hce f
0 Oe f (t− ∆t) + hce f

1 Qout,e(t) + hce f
2 Qout,e(t− ∆t) (14)

where Oout,d and Qout,e represent streamflow at sub-catchment outlets d (sub-catchment 1) and e
(sub-catchment 2) respectively, while hcm

0 , hcm
1 and hcm

2 (m represents df or ef ) are the river network
routing parameters of Muskingum method.

3.2.4. Model Parameters

The DDRM has 10 parameters, including runoff generation parameters (S0, SM, Ts, Tp, a, b),
grid channel routing parameters ci (i = 0,1), and the river networks routing parameters hcm

i (i = 0, 1),
m represents the routing processes of streamflow from the outlets of different sub-catchments. In the
study, only one set of river networks’ routing parameters is used. Like in the XAJ model, all the
parameters are calibrated by SCE-UA method. More details about DDRM model parameters are shown
in Table 3.

Table 3. Descriptions of the DDRM parameters.

Parameters Unit Prior Ranges Description Optimized Values

S0 mm 5–100 Minimum water storage capacity 96.35

SM mm 5–500 Range of water storage capacity across
the catchment 498.49

Ts h 2–200 Time constant, reflecting the
characteristic of groundwater 112.89

Tp h 2–200 Time constant, reflecting the
characteristic of surface flow 27.70

a - 0–1 Empirical parameter, reflecting the
characteristic of ground outflow 0.10

b - 0–1
Empirical parameter, reflecting the

relationship between Smc and
corresponding topographic index

0.98
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Table 3. Cont.

Parameters Unit Prior Ranges Description Optimized Values

c0 - 0–1 A grid channel parameter of the
Muskingum method 0.98

c1 - 0–1 A grid channel parameter of the
Muskingum method 0.01

hcm
0 - 0–1 River networks routing parameters of

Muskingum method 0.09

hcm
1 c1 - 0–1 River networks routing parameters of

Muskingum method 0.46

3.2.5. Calculation of Soil Moisture

For the DDRM, the soil moisture storage depth Si of grids (given in mm), which is comparable
to the profile soil moisture, is chosen to make comparisons with the remotely sensed gridded soil
moisture in the study. This variable plays an important role in simulating the runoff generation of each
grid of DDRM. Moreover, daily catchment-averaged soil moisture is also calculated based on gridded
soil moisture. Similar with the XAJ model, Si can be converted to the soil moisture contents θDDRM

i ,
which is calculated as:

θDDRM
i =

Si · Ai
Di · Ai

=
Si
Di

(15)

where θDDRM
i is the model-simulated soil moisture of grid i given in m3 m−3, and Di and Ai are the

soil depth and grid area of grid i.

3.3. Methodology of Comparisons

Although all remotely sensed and model-simulated soil moisture can be converted to soil
moisture contents (θ) when soil porosity values and soil (root-zone) depth values are given, the error
of estimation of θ is probably large, since soil texture characteristics are highly simplified due
to the scarcity of soil data. Thus, all soil moisture datasets are rescaled between 0 to 1 using a
minimum-maximum correction technique [42], showing as saturation degree (ω) to allow for robust
comparisons. There is no physical meaning for saturation degree in fact, it is only a relative value.
Previous studies have rescaled soil moisture using this technique when they used multiple remotely
sensed soil moisture datasets with different units [55,56].

Before comparing with the model-simulated soil moisture, catchment-wide averages of four
remotely sensed soil moisture products are directly compared with each other firstly, which can give
a preliminary assessment of their consistencies. The lumped XAJ model-simulated soil moisture
and DDRM catchment-wide soil moisture averages are compared with catchment-wide averages of
remotely sensed soil moisture for the whole period, the dormant seasons and the growing seasons
respectively. It aims to evaluate the overall consistencies over the whole study area, and also evaluate
the seasonal effect on the consistencies. Besides, direct comparisons of their time series have also been
attempted to check the soil moisture evolution with time.

Only DDRM model-simulated soil moisture can compare with distributed remotely sensed soil
moisture to evaluate consistencies of their spatial distributions. Since satellite products have different
spatial resolutions (SMAP-15 km, ASCAT-12.5 km, SMOS-15 km), while the study area is divided into
1 km grids with DDRM modelling, gridded DDRM soil moisture of 1 km is resampled to match the
resolution of each satellite product before comparisons. The consistency of soil moisture in each grid
has been evaluated for the whole period, the dormant seasons and the growing seasons, while regional
effect on their consistencies can also been shown. This kind of comparisons provides more details
about their consistencies than only comparing their catchment-wide averages. For each remotely
sensed soil moisture product, the highest, mean and lowest correlations across the study area have
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been shown and their corresponding soil moisture time series are compared to check the soil moisture
evolution of characteristic grids with time.

3.4. Indexes for Soil Moisture Comparisons

In this study, two widely used indexes, the correlation coefficient R and the root mean square
difference RMSD are used for comparisons. The first index R is defined as:

R
(

ωpro1, ωpro2
)
=

T
∑

t=1

(
ωpro1(t)−ωpro1(t)

)
×
(

ωpro2(t)−ωpro2(t)
)

√
T
∑

t=1

(
ωpro1(t)−ωpro1(t)

)2
×

T
∑

t=1

(
ωpro2(t)−ωpro2(t)

)2
(16)

where ωpro1(t) and ωpro2(t) are the saturation degrees on day t obtained from products pro1 and pro2,
respectively, T is the total number of days during the period of comparison. To investigate the statistical
significance of the correlation between products pro1 and pro2, the p-value (a measure of the correlation
significance) is also calculated.

The second index RMSD is defined as:

RMSD
(

ωpro1, ωpro2
)
=

√√√√ 1
T

T

∑
t=1

(
ωpro1(t)−ωpro2(t)

)2 (17)

Since both soil moisture datasets are not considered as actual soil moisture, this study uses the
RMS difference terminology instead of RMS error (RMSE).

4. Results and Discussion

4.1. Remotely Sensed SSM and SWI from Satellites

All surface soil moisture (SSM) information across the Qujiang catchment is acquired from
remotely sensed soil moisture products. The evaluation of SWI data is obtained from maximizing the
overall correlation coefficient R between catchment-wide remotely sensed averages and model-simulated
averages by varying the T parameter of the exponential filter from 1 to 100 days at a step of 1 day.
This T value, which equals to 20 days, is applied to different sensors (ASCAT, SMAP and SMOS) and
is used to calculate SWI to be compared to different models (the XAJ and DDRM). The estimated
parameter T value is similar to the results of Wagner et al. who found T was 20 days for the 0–100 cm
layer, and within the optimized characteristic time length obtained by Albergel et al. for soils with
lower depth (around 50 cm soil depth with T around 20 days) [48,57].

Figure 6 presents averaged gridded surface soil moisture contents θRS
SSM and gridded soil wetness

index θRS
SWI over the whole period of the different remotely sensed products. Figure 7 presents the

profile soil moisture contents θRS
SWI from satellites across the Qujiang catchment on three specific days

during a water-rising stage of 2016. It can be seen from Figure 6 that averaged θSMAP
SSM values are higher

than averaged θASCAT
SSM and θSMOS

SSM values, and soils of high altitudes are wetter than soils of lower
altitudes for SMAP and ASCAT products. In contrast, SMOS product may underestimate soil moisture
in mountain areas on these days, since soil moisture in high altitudes are significantly lower than those
in lower altitudes. This may due to the fact that mountain areas of the Qujiang catchment affected by
RFI experience either data loss or an underestimation in the retrieved geophysical parameters [58],
since there are only around 200 soil moisture retrievals in high altitudes and around 400 soil moisture
retrievals in lower altitudes, and the SMOS underestimates soil moisture due to the strong RFI in
southwest China [59].



Water 2018, 10, 291 14 of 27
Water 2018, 10, x FOR PEER REVIEW  14 of 27 

 

 
Figure 6. Averaged surface soil moisture contents (ߠௌௌெோௌ ) (top panel) and soil wetness index (ߠௌௐூோௌ ) 
(bottom panel) over the whole period of the different remotely sensed products. 

 

Figure 6. Averaged surface soil moisture contents (θRS
SSM) (top panel) and soil wetness index (θRS

SWI)
(bottom panel) over the whole period of the different remotely sensed products.

Water 2018, 10, x FOR PEER REVIEW  14 of 27 

 

 
Figure 6. Averaged surface soil moisture contents (ߠௌௌெோௌ ) (top panel) and soil wetness index (ߠௌௐூோௌ ) 
(bottom panel) over the whole period of the different remotely sensed products. 

 

Figure 7. Cont.



Water 2018, 10, 291 15 of 27
Water 2018, 10, x FOR PEER REVIEW  15 of 27 

 

 
Figure 7. Soil wetness index (ߠௌௐூோௌ ) given in m3 m−3 estimated based on ߠௌௌெோௌ  acquired from four 
remotely sensed soil moisture products on the fourth of May (left column), the thirteenth of June 
(middle column) and the twenty-seventh of June (right column) during a water-rising stage of 2016. 

4.2. Simulations of Runoff and Soil Moisture Content by Hydrological Models 

The observed discharge at the outlet of the Qujiang catchment during the period of 2010–2016 is 
used to calibrate parameters for both the XAJ model and the DDRM. Figure 8 presents the observed 
and simulated discharge time series acquired from the XAJ model and the DDRM respectively during 
the flood time period in 2016, as well as the daily flow duration curve of observed and simulated 
discharges for the whole time period of 2010–2016. 

 
Figure 8. Observed daily discharge (black lines) for the Qujiang catchment compared with simulated 
discharge from XAJ model (red lines) and DDRM (blue line) and corresponding precipitation (green-
shaded) during the flood period (6.15–8.15) of 2016 (a). (b) Observed and modelled daily flow 
duration curve during the whole period of 2010–2016. 

4.2.1. The XAJ Model 

Table 2 presents the optimized parameter values for the XAJ model, the catchment-averaged soil 
moisture storage capacity WM is 272.32 mm, and the variable W of the XAJ model ranges from 153.53 
mm to 272.32 mm. The NSE between the observed and simulated discharge for XAJ model during 
the whole period, the dormant season (from November to March) and the growing season (from May 
to October) of 2010–2016 is 0.85, 0.29 and 0.86 respectively. It reveals that XAJ model performs well 
during the growing seasons of 2010–2016, but poor during the dormant seasons, since the objective 
function NSE focuses more on high flows, which normally occur in the growing seasons rather than 
the dormant seasons in the Qujiang catchment. As shown in Figure 8, the XAJ model overestimates 
some flood peaks, and consistently underestimates some low flows. The prediction error for XAJ 
model may due to the error of input data and the lumped model structure, since the spatial 
heterogeneity of precipitation and soil moisture storage across the catchment is ignored when 
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Figure 7. Soil wetness index (θRS
SWI) given in m3 m−3 estimated based on θRS

SSM acquired from four
remotely sensed soil moisture products on the fourth of May (left column), the thirteenth of June
(middle column) and the twenty-seventh of June (right column) during a water-rising stage of 2016.

4.2. Simulations of Runoff and Soil Moisture Content by Hydrological Models

The observed discharge at the outlet of the Qujiang catchment during the period of 2010–2016 is
used to calibrate parameters for both the XAJ model and the DDRM. Figure 8 presents the observed
and simulated discharge time series acquired from the XAJ model and the DDRM respectively during
the flood time period in 2016, as well as the daily flow duration curve of observed and simulated
discharges for the whole time period of 2010–2016.

Water 2018, 10, x FOR PEER REVIEW  15 of 27 

 

 
Figure 7. Soil wetness index (ߠௌௐூோௌ ) given in m3 m−3 estimated based on ߠௌௌெோௌ  acquired from four 
remotely sensed soil moisture products on the fourth of May (left column), the thirteenth of June 
(middle column) and the twenty-seventh of June (right column) during a water-rising stage of 2016. 

4.2. Simulations of Runoff and Soil Moisture Content by Hydrological Models 

The observed discharge at the outlet of the Qujiang catchment during the period of 2010–2016 is 
used to calibrate parameters for both the XAJ model and the DDRM. Figure 8 presents the observed 
and simulated discharge time series acquired from the XAJ model and the DDRM respectively during 
the flood time period in 2016, as well as the daily flow duration curve of observed and simulated 
discharges for the whole time period of 2010–2016. 

 
Figure 8. Observed daily discharge (black lines) for the Qujiang catchment compared with simulated 
discharge from XAJ model (red lines) and DDRM (blue line) and corresponding precipitation (green-
shaded) during the flood period (6.15–8.15) of 2016 (a). (b) Observed and modelled daily flow 
duration curve during the whole period of 2010–2016. 

4.2.1. The XAJ Model 

Table 2 presents the optimized parameter values for the XAJ model, the catchment-averaged soil 
moisture storage capacity WM is 272.32 mm, and the variable W of the XAJ model ranges from 153.53 
mm to 272.32 mm. The NSE between the observed and simulated discharge for XAJ model during 
the whole period, the dormant season (from November to March) and the growing season (from May 
to October) of 2010–2016 is 0.85, 0.29 and 0.86 respectively. It reveals that XAJ model performs well 
during the growing seasons of 2010–2016, but poor during the dormant seasons, since the objective 
function NSE focuses more on high flows, which normally occur in the growing seasons rather than 
the dormant seasons in the Qujiang catchment. As shown in Figure 8, the XAJ model overestimates 
some flood peaks, and consistently underestimates some low flows. The prediction error for XAJ 
model may due to the error of input data and the lumped model structure, since the spatial 
heterogeneity of precipitation and soil moisture storage across the catchment is ignored when 
running a lumped hydrological model for the entire huge catchment. 
  

Figure 8. Observed daily discharge (black lines) for the Qujiang catchment compared with simulated
discharge from XAJ model (red lines) and DDRM (blue line) and corresponding precipitation
(green-shaded) during the flood period (6.15–8.15) of 2016 (a). (b) Observed and modelled daily
flow duration curve during the whole period of 2010–2016.

4.2.1. The XAJ Model

Table 2 presents the optimized parameter values for the XAJ model, the catchment-averaged
soil moisture storage capacity WM is 272.32 mm, and the variable W of the XAJ model ranges from
153.53 mm to 272.32 mm. The NSE between the observed and simulated discharge for XAJ model
during the whole period, the dormant season (from November to March) and the growing season
(from May to October) of 2010–2016 is 0.85, 0.29 and 0.86 respectively. It reveals that XAJ model
performs well during the growing seasons of 2010–2016, but poor during the dormant seasons, since
the objective function NSE focuses more on high flows, which normally occur in the growing seasons
rather than the dormant seasons in the Qujiang catchment. As shown in Figure 8, the XAJ model
overestimates some flood peaks, and consistently underestimates some low flows. The prediction error
for XAJ model may due to the error of input data and the lumped model structure, since the spatial
heterogeneity of precipitation and soil moisture storage across the catchment is ignored when running
a lumped hydrological model for the entire huge catchment.
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4.2.2. The DDRM

The optimized parameter values for the DDRM are presented in Table 3. The soil moisture storage
capacity of DDRM grids across Qujiang catchment ranges from 96.35 mm to 594.84 mm. The NSE
between the observed and simulated discharge for the DDRM during the whole period, the dormant
season and the growing season of 2010–2016 is 0.85, 0.63 and 0.82 respectively. Obviously, the DDRM
performs better than the XAJ model during dormant seasons. As shown in Figure 8, there are some
mismatches between calibrated DDRM and observed discharges. A key factor for prediction error in
the DDRM is the low density of rainfall gauges across the catchment, which can lead to low quality
gridded precipitation data. Another factor to consider is the simplification of runoff generation
processes across the catchment. Besides, both models use Blaney-Criddle methodology for calculating
PET, which has limitation and may result in uncertainty of the PET in the study area, and then leads to
over or under estimations of soil moisture.

The catchment-averaged soil moisture storage depth calculated based on gridded soil moisture
Si ranges from 112.37 mm to 277.17 mm during 2010 to 2016. This range is similar to that of XAJ
model, which means soil moisture simulated by the XAJ model and the DDRM probably represents
soil moisture of similar soil depth. Figure 9 presents overall soil moisture averages over the whole
period of DDRM modelling and soil moisture storage depth values simulated by DDRM on three
specific days during a water-rising stage of 2016.
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Figure 9. Overall averages of DDRM model-simulated soil moisture storage depth over the whole
period (a), and DDRM model-simulated soil moisture storage depth on the fourth of May (b),
the thirteenth of June (c) and the twenty-seventh of June (d) during a water-rising stage of 2016.
The resolution is 1 km.

According to HWSD, soil depth values across the Qujiang catchment can be simplified to 100 cm.
In this section, soil moisture storage depth S simulated by the DDRM is converted to θDDRM for the
preliminary comparison with θRS

SSM and θRS
SWI . A comparison of Figures 7 and 9 indicates that satellites

provide slightly higher soil moisture values than the DDRM, probably due to the over-simplified soil
depth values when estimating θDDRM across the Qujiang catchment. Besides, the DDRM simulates
wetter soil in lower altitudes, and this result conflicts with that of satellites. The reason for the difference
may be that gridded soil moisture storage capacity values of the DDRM depending on topographic
index tend to be higher in lower areas, similar to other models based on topographic index, such as
TOPMODEL-based Land-Atmosphere Transfer Scheme (TOPLATS) [60].

4.3. Comparisons of the Remotely Sensed and Model-Simulated Soil Moisture

4.3.1. Catchment-Wide Average Values

In this section, the remotely sensed and the model-simulated catchment-averaged soil moistures
across the Qujiang catchment are considered. Figure 10a–f present the correlations between the
catchment-averaged ωRS

SSM from different satellites. Since ASCAT-A and ASCAT-B soil moisture
products are based on the same retrieval algorithm, ωASCAT−A

SSM and ωASCAT−B
SSM show the highest
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correlation coefficient at 0.90 with low RMSD of 0.08 (Figure 10a). The correlation coefficient of
ωASCAT−A

SSM and ωSMAP
SSM , as well as that of ωASCAT−B

SSM and ωSMAP
SSM are both 0.58 with RMSD of around

0.2 (Figure 10b,d). Although both SMAP and SMOS soil moistures are acquired from passive sensors,
their correlation value is quiet low, at 0.12 with p-value is above 0.05. Other comparisons with SMOS
soil moisture also show respectively low correlations. This shows that large errors may occur for SMOS
soil moisture product over the study area, which is similar with the result of Peng et al. [59]. Besides,
high correlation-coefficient value is obtained between ωXAJ and ωDDRM, at 0.98 with low RMSD of
0.09, which indicates high consistency of catchment-wide soil moisture simulated by lumped and
distributed hydrological models.
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ASCAT-A and ASCAT-B; (b) between ASCAT-A and SMAP; (c) between ASCAT-A and SMOS;
(d) between ASCAT-B and SMAP; (e) between ASCAT-B and SMOS; (f) between SMAP and SMOS.

Table 4 presents the statistics for corresponding comparisons during the whole periods,
the dormant seasons and the growing seasons, configurations where the p-value is above 0.05 are
shown in brackets. For each satellite product, the comparisons with catchment-averaged ωXAJ and
ωDDRM present similar results in terms of R, this is due to the high consistency of catchment-averaged
ωXAJ and ωDDRM. The uptrend of correlation values is remarkable when SWI data are involved,
ranging from 0.06 to 0.34, while the downtrend of RMSD values ranges from 0.01 to 0.08, indicating
catchment-averaged SWI always fits better with modelled soil moisture than SSM, even though the
same T value is applied for different remotely sensed products. Besides, correlation-coefficient values
of the remotely sensed and the model-simulated soil moisture in dormant seasons are higher than
those in growing seasons for all satellite products, which is in contrast with previous studies that
showed there was no significant seasonal effect for these remotely sensed products [56,59]. On average,
ASCAT soil moisture shows the highest correlation coefficients with the model-simulated soil moisture
(0.68 for catchment-averaged ωASCAT

SSM , 0.86 for catchment-averaged ωASCAT
SWI ), followed by SMAP

(0.41 for catchment-averaged ωSMAP
SSM and 0.47 for catchment-averaged ωSMAP

SWI ), and poor values are
obtained with SMOS product. This result is consistent with preliminary comparisons between remotely
sensed products. The averaged correlation-coefficient value between ωSMAP

SSM and ωDDRM is similar
with the results of [24], which got averaged correlation-coefficient value of 0.5 between SMAP soil
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moisture product and soil moisture simulated by the VIC model. Besides, according to [61], SMAP
product performs better than ASCAT-A and ASCAT-B products when compared with in-situ networks,
thus the model-simulated soil moisture may be responsible for the low correlation values of SMAP
soil moisture and DDRM soil moisture.

Table 4. Correlation values R and the root mean square difference RMSD between remotely sensed
products (ωRS

SSM and ωRS
SWI) and model-simulated soil moisture values from XAJ (ωXAJ) and DDRM

(ωDDRM) for different periods of 2010–2016 (the whole period, the dormant seasons and the growing
seasons). R values are shown in brackets when p > 0.05.

Satellites
Whole Dormant Growing Whole Dormant Growing

R(ωRS
SSM,ωXAJ)/R(ωRS

SWI,ω
XAJ) RMSD(ωRS

SSM,ωXAJ)/RMSD(ωRS
SWI,ω

XAJ)

ASCAT_A 0.60/0.82 0.45/0.77 0.34/0.63 0.24/0.19 0.23/0.16 0.25/0.22
ASCAT_B 0.59/0.83 0.47/0.81 0.36/0.73 0.24/0.16 0.23/0.16 0.25/0.17

SMAP 0.35/0.45 0.47/0.60 0.26/0.32 0.31/0.30 0.25/0.23 0.37/0.36
SMOS −0.11/−0.32 −0.12/−0.28 (0.01)/−0.19 0.44/0.43 0.29/0.30 0.54/0.51

R(ωRS
SSM,ωDDRM)/R(ωRS

SWI ,ω
DDRM) RMSD(ωRS

SSM,ωDDRM)/RMSD(ωRS
SWI ,ω

DDRM)

ASCAT_A 0.67/0.85 0.51/0.82 0.49/0.65 0.21/0.15 0.23/0.14 0.19/0.17
ASCAT_B 0.68/0.87 0.55/0.87 0.52/0.74 0.22/0.16 0.24/0.18 0.18/0.14

SMAP 0.40/0.46 0.52/0.63 0.38/0.36 0.27/0.27 0.24/0.23 0.31/0.32
SMOS −0.12/−0.34 −0.12/−0.29 (−0.02)/−0.26 0.40/0.39 0.28/0.30 0.48/0.45

Figure 11 shows the catchment-averaged ωRS
SSM and ωRS

SWI time series and their corresponding
catchment-averaged ωXAJ and ωDDRM during 2016. For each satellite, the range of ωRS

SSM is wider
than that of ωRS

SWI , and ωRS
SWI fits better with the model-simulated soil moisture than ωRS

SSM. It can be
seen from Figure 11c that SMAP product is drying faster than the model-simulated soil moisture after
rainfall events, and all satellite products respond faster than the model-simulated soil moisture with
rainfall events. It is mainly because satellites observe the surface soil moisture, which usually responds
quickly to weather conditions, while there is a time delay in soil moisture simulations from models.
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Figure 11. Time series (a–d) of catchment-averaged ωRS
SSM and ωRS

SWI , and their corresponding
catchment-averaged model-simulated soil moisture (MSSM), which is denoted as ωXAJ for XAJ and
ωDDRM for DDRM, respectively, as well as corresponding precipitation (green-shaded) during a
one-year period (January 2016–December 2016).
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4.3.2. Spatial Distributions

In this section, ωRS
SSM and ωRS

SWI values derived from remotely sensed products are compared
with saturation degree simulated by DDRM (ωDDRM) at grid scale. Table 5 presents the statistics of
correlation-coefficient values between gridded saturation degree values from satellites with those
from DDRM during the whole period, the dormant season and the growing season. For all satellites,
the differences between the remotely sensed soil moisture and the model-simulated soil moisture tend
to be smaller for ωRS

SWI . This is because SWI is more likely to represent the profile soil moisture, which is
more comparable to the model-simulated soil moisture, but SSM represents the soil moisture for the
depth of about 0–5 cm of the soil layer. For each remotely sensed product, the regional influences on R
with ωDDRM are similar for ωRS

SSM and ωRS
SWI values, thus, for the sake of brevity, only parts of ωRS

SWI
data are chosen to show spatial distributions of comparisons with ωDDRM , as presented in Figure 12,
in which the grids where p-value is above 0.05 are highlighted by green lines. As Table 5 and Figure 12
show, correlation-coefficient values between ωRS

SSM and ωDDRM, as well as those between ωRS
SWI and

ωDDRM, are higher in dormant seasons than those in growing seasons.

Table 5. Statistics of grid correlation-coefficient values between saturation degree values acquired from
each remotely sensed product (ωRS

SSM and ωRS
SWI) with those from DDRM (ωDDRM) during different

periods of 2010–2016 (the whole period, the dormant seasons and the growing seasons). N represents
sample sizes used for comparisons. R values are shown in brackets when p > 0.05.

Satellite Period
R(ωRS

SSM,ωDDRM)/N R(ωRS
SWI,ω

DDRM)/N

Highest Mean Lowest Highest Mean Lowest

ASCAT-A
Whole 0.71/1912 0.61/1913 0.39/1887 0.88/1913 0.81/1913 0.67/1885

Dormant 0.62/1112 0.45/1105 0.27/1106 0.89/1110 0.79/1105 0.65/1105
Growing 0.57/802 0.43/802 0.31/802 0.71/802 0.61/802 0.36/802

ASCAT-B
Whole 0.75/1006 0.60/1007 0.41/990 0.89/1007 0.83/1007 0.68/990

Dormant 0.65/542 0.48/549 0.28/547 0.93/544 0.83/549 0.66/549
Growing 0.55/459 0.45/459 0.34/459 0.89/459 0.83/459 0.68/459

SMAP
Whole 0.66/305 0.33/305 −0.35/303 0.87/305 0.38/305 −0.48/303

Dormant 0.73/162 0.35/160 −0.30/160 0.96/162 0.42/160 −0.63/160
Growing 0.64/145 0.34/143 −0.28/138 0.76/144 0.37/143 −0.32/138

SMOS
Whole 0.36/280 (0.08)/358 (−0.12)/434 0.54/281 (0.13)/348 −0.27/445

Dormant 0.34/114 (0.06)/150 −0.24/226 0.56/114 (0.13)/151 −0.28/223
Growing 0.30/119 (0.06)/147 −0.25/215 0.40/119 (0.07)/148 −0.36/215
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period (left column), the dormant seasons (middle column) and the growing seasons (right column),
respectively. Grids where p-value is above 0.05 are highlighted by green lines.

This is different from results of Peng et al., who found that ASCAT and SMOS products have
small variations over different seasons in terms of R and RMSD values with ground measurements [59].
Thus, the seasonal difference of R is probably due to the relatively poor performance of DDRM in
dormant seasons than in growing seasons, so ωDDRM tends to be less reliable during dormant seasons.

Figure 13 depicts, for each satellite product and for three kinds of concerned grids (grids with
the highest, mean and the lowest correlation-coefficient values between ωRS

SWI and ωDDRM), three soil
moisture time series, i.e., the remotely sensed soil moisture (ωRS

SWI and ωRS
SWI) and the corresponding

ωDDRM over the whole year 2016. Similar to Figure 11, this figure indicates that grids with ωRS
SWI time

series of high fluctuant intensity show lower correlation-coefficient values with ωDDRM than those
with ωRS

SWI time series of low fluctuant intensity. For all remotely sensed soil moisture, the range of
ωRS

SWI values tends to be narrower than that of ωDDRM values, similar to the results of [26]. This may
related to the simple criterion used in the study to select the same T value applied to different remotely
sensed products.

Two ASCAT products (ASCAT-A and ASCAT-B) show similar patterns in terms of R with the
model-simulated soil moisture across Qujiang catchment. The average correlation-coefficient values of
ωASCSAT

SSM and ωDDRM range from 0.43 to 0.61, and those of ωASCSAT
SWI and ωDDRM range from 0.61 to

0.83. Compared to other satellite products, ωASCSAT
SWI show the highest correlation-coefficients with

ωDDRM. As shown in Figure 13, time series of soil moisture values from both ASCAT products also fit
quiet well with soil moisture values simulated by DDRM in three specific grids, which is consistent
with the results of catchment-wide averages (Figure 11). Moreover, the standard-deviation values of
correlation coefficient are notably low for ASCAT products, ranging from 0.04 to 0.08, which means
the agreement between ASCAT products and DDRM soil moisture does not notably change with land
use groups and altitudes. This result is in agreement with Peng et al. [59], who show different land use
groups have similar performance in terms of R for ASCAT products over southwest China. This is not
always the case in previous studies [42,62,63], which showed a strong connection between the quality
of ASCAT retrieves and vegetation density.
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Figure 13. Time series of remotely sensed soil moisture (ωRS
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SWI) and model-simulated soil
moisture (MSSM), which is denoted as ωDDRM in three kinds of grids (grids which show the highest,
mean and lowest correlation coefficient between ωRS

SWI and ωDDRM) over a one-year period of 2016.
For one given remotely sensed product (each row), locations of grids which show the highest, mean
and lowest correlation coefficient are different. For different remotely sensed products (each column),
locations of one given kind of grids, e.g., grids show the highest correlation coefficient (Grid_Highest_R),
are also different.

The reason for the discrepancy in southwest area of China may be that different land-use types do
not represent different vegetation densities in the study area. According to Figure 2, the Normalized
Difference Vegetation Index (NDVI) over the study area only changes with seasons, but not changes
obviously with land uses. On the other hand, the discrepancy may be due to the small variation of the
DDRM soil moisture with different land uses, since DDRM failed to consider the influence of land
uses on soil moisture estimations. Thus, the results of the comparison between ASCAT products and
the model-simulated soil moisture are reasonable.

SMAP product is with relatively higher standard deviation values than ASCAT products, from
0.17 to 0.44. The highest correlation-coefficient values of ωSMAP

SWI and ωDDRM are 0.87, 0.96 and 0.76
for the whole period, the dormant seasons and the growing seasons, respectively, while the lowest
values are −0.48, −0.63, −0.32. Figure 12 presents that the correlation-coefficient values of ωSMAP

SWI
and ωDDRM are high in higher grids with land use group of forest, at around 0.75, while lower grids
with land use group of dry and cultivated land show poor correlations, where correlation-coefficient
values are around or below 0. This difference is especially notable in dormant seasons. According
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to Figures 11 and 13, the poor correlations in the flat regions may partly due to the fact that SMAP
soil moisture is drying faster than the model-simulated soil moisture after rainfalls because of high
evaporation rates of dry and cultivated land in flat regions of Qujiang catchment. This result is similar
to the findings of Shellito et al. (2016), who found SMAP soil moisture differs from in situ observed
soil moisture in drying rate [64].

Both ωSMOS
SSM and ωSMOS

SWI show poor correlations with ωDDRM across the Qujiang catchment.
The grids with the highest correlation-coefficient values of SMOS soil moisture and the
model-simulated soil moisture, which are 0.36 for ωSMOS

SSM and 0.54 for ωSMOS
SWI during the whole

period, are situated at high altitudes. For this product, the p-value exceeds 0.05 for more than half
number of the total grids, most of which are situated in lower areas. This is largely due to the severe
effects of radio frequency interference (RFI) over southwestern China. This result is in agreement
with findings of previous studies [34], which found large errors occurred for SMOS soil moisture data
when they were compared with ground measurements over southwestern China. Another reason to
consider is the low temporal resolution for each grid, where available data of soil moisture from SMOS
are considerably less than that of the SMAP and ASCAT products.

5. Conclusions

This study evaluates the consistency between daily soil moisture acquired from four remotely
sensed soil moisture products, including ASCAT-A, ASCAT-B, SMAP and SMOS products, and two
hydrological models, including XAJ model and DDRM across the Qujiang catchment in southwest
China during 2010–2016. It compares: (i) the spatial distributions of daily remotely sensed and
model-simulated soil moisture and (ii) the daily catchment-averaged soil moisture from different
sources across the Qujiang catchment. Since surface soil moisture SSM acquired from satellites and the
soil moisture storage simulated by hydrological models represent different soil layers, the profile soil
moisture, which is represented by SWI and is rather comparable to the depth of the model-simulated
soil moisture, is estimated by the exponential filter to address this mismatch. The same T value
is used to calculate SWI from different sensors to be compared with different model-simulated
soil moisture. On the other hand, since the discrepancies in the way the remotely sensed and the
model-simulated soil moisture are obtained, they typically exhibit very different mean values and
variability. These discrepancies pose a severe obstacle to exploiting the useful information contained
in satellite retrievals through data comparisons or assimilation. In the study, soil moisture datasets
from all sources are rescaled between 0 and 1 in their long-term periods for error removals.

The following conclusions are drawn:

1. Soil moisture simulated by the XAJ model and DDRM tends to represent soil moisture of similar
soil depth, and each satellite soil moisture product shows similar correlations when compared
with soil moisture from XAJ model or DDRM.

2. The quantitative assessments of the different results between SSM and SWI values in this study
indicate that SWI is more likely to reveal the change of XAJ and DDRM model-simulated
soil moisture. The characteristic time length T of the exponential filter that maximizes the
overall correlation coefficient R between catchment-wide remotely sensed SWI averages and
model-simulated averages equals to 20 days in this study. Better results could be acquired for
SWI when optimal T values are applied to sensors measuring different soil depth to be compared
to different model-simulated soil moistures, since optimal T value is affected by a range of
environmental factors, such as soil depth, soil texture, and climatic conditions and other soil or
climatic variables.

3. SMAP soil moisture values are higher than ASCAT and SMOS soil moisture values across the
Qujiang catchment. ASCAT soil moisture products (ASCAT-A and ASCAT-B) show the highest
agreement with the model-simulated soil moisture at both high spatial resolutions (i.e., grids) and
large spatial scales (i.e., the whole catchment) for different seasons, followed by SMAP product.
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However, SMOS soil moisture product always shows low correlations with the model-simulated
soil moisture.

4. Correlation-coefficient values between the remotely sensed and the model-simulated soil moisture
are likely influenced by different land use types. Different remotely sensed soil moisture
products have different patterns in terms of correlation-coefficient values with model-simulated
soil moisture in alpine (forest land) and flat regions (dry and cultivated land). The regional
differences of correlations between the ASCAT products and model-simulated soil moisture are
generally smaller than the differences between the SMAP product and model-simulated soil
moisture. ASCAT products show similar correlations with the model-simulated soil moisture
in either alpine or flat regions of the Qujiang catchment, while the SMAP product shows high
correlation-coefficient values in the alpine regions, but dramatically lower figures in the flat
regions, especially in dormant seasons. The difference may be due to the different retrieval
algorithms between active and passive sensors.

5. Although all remotely sensed soil moisture products agree better with the model-simulated soil
moisture in dormant seasons, the consistency during these seasons might not be reliable because
of slight changes of low soil moisture values and poor performances of streamflow simulations
for models during these seasons.

Overall, the results are encouraging, and modelers can consider using these remotely sensed soil
moisture data for model validation, calibration, or input assimilation, but careful consideration
is also required when using soil moisture information acquired from indirect ways in ground
measurement-sparse areas. The same T value used may lead to uncertainty, since no clear criteria
are defined to maintain the T value as a general value. In fact, the different representativeness of soil
layers makes how to propagate remotely sensed surface soil moisture information to the root-zone
layer a well-recognized challenge. More sophisticated criteria are needed to be used to select suitable
T values for different sensors and models in the further study. Besides, the rescaling method used in
the study has its limitations as well, since when remotely sensed soil moisture products are compared
with the model-simulated soil moisture, non-linearity appears. Thus, non-linear rescaling methods,
i.e., Variance Matching (VM) or Cumulative Distribution Function (CDF), are needed to be considered
for bias removal in the future.

Considering that the currently employed objective function NSE focuses more on high flows than
on low flows thus leading to the worse performance of streamflow simulation for hydrological models
during dormant seasons, further study could choose other objective functions that are more capable
for simulating soil moisture during low-flow periods. In the study, both models use Blaney-Criddle
method for PET estimations. Since this methodology has its limitations and can result to significant
over or under estimations of the PET, more sophisticated estimation methods for the PET can be used
when simulating soil moisture by hydrological models. Besides, more satellite soil moisture products
and longer time series of soil moisture can be considered in the future research.
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