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Abstract: Given the substantial impacts that are expected due to climate change, it is crucial that
accurate rainfall–runoff results are provided for various decision-making purposes. However, these
modeling results often generate uncertainty or bias due to the imperfect character of individual
models. In this paper, a genetic algorithm together with a Bayesian model averaging method are
employed to provide a multi-model ensemble (MME) and combined runoff prediction under climate
change scenarios produced from eight rainfall–runoff models for the Yellow River Basin. The results
show that the multi-model ensemble method, especially the genetic algorithm method, can produce
more reliable predictions than the other considered rainfall–runoff models. These results show that
it is possible to reduce the uncertainty and thus improve the accuracy for future projections using
different models because an MME approach evens out the bias involved in the individual model.
For the study area, the final combined predictions reveal that less runoff is expected under most
climatic scenarios, which will threaten water security of the basin.

Keywords: water security; climate change; rainfall–runoff models; multi-model ensemble method;
simulation; Yellow River Basin; genetic algorithms

1. Introduction

It is now widely acknowledged that climate change will produce significant effects on the
hydrological cycle [1–4]. In recent decades, with outputs from climate models made available,
hydrological impacts and responses amid a changing climate with respect to a number of river
basins in the world have been studied [5–8].

Recently, climate-change impact studies have started to systematically consider associated
uncertainties [7], and rainfall–runoff modeling is recognized as one of the most important sources of
uncertainty [9]. It has been reported that the multi-model ensemble (MME) strategy is an efficient
method to tackle the uncertainty of rainfall–runoff models [10,11].

All models are imperfect representations of real world processes. Different models have strengths
in capturing different aspects of such processes. It is therefore highly desirable, in order to reduce the
above-mentioned uncertainties and improve overall accuracy, that the best performing parts of various
individual models are combined so that a prediction consensus can be reached. With a multi-model
ensemble approach, more reliable runoff predictions can be made from multiple competing predictions
made from a number of rainfall–runoff models [11,12]. This method was discussed and used in the
pioneering works of [13–16] and others. Shamseldin et al. [12] promoted the concept of combining
outputs from various rainfall–runoff models to produce an overall combined output to be used as
an alternative to the output of a single individual rainfall–runoff model. A recent application of
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this concept to future climate projections can be found in [17,18], where surface air temperature and
precipitation are predicted.

The aim of this paper was to tackle the discrepancy of rainfall–runoff modeling in changing
climate scenarios. This was done by combining three climate scenarios with eight carefully selected
rainfall–runoff models. The final MME approaches were then applied to the Yellow River Basin (YRB)
for two selected future target periods. The paper is organized as follows: Section 2 describes the study
area and the available data, Section 3 presents the multi-model ensemble methods, Section 4 briefs
the selected rainfall–runoff models, Section 5 provides the criteria to evaluate model performance,
Section 6 discusses the results, and Section 7 presents the conclusions and the remarks.

2. Study Area and Data

2.1. Yellow River Basin

The Yellow River is the second longest river in Asia and the sixth longest in the world, with an
estimated length of 5464 km and a drainage area of 752,443 km2, and nourishes more than 110 million
people with drinking water and irrigation. The basin has an east–west expanse of about 1900 km and a
north–south expanse of about 1100 km as shown in Figure 1. The annual runoff of the Yellow River is
about 58 billion m3, and water resource per capita is only 500 m3/person, which implies that the basin
is under severe threats of water insecurity. Furthermore, the industrial, drinking, and irrigation water
demands are continuously increasing in line with expanding urbanization and intensified economic
development. The basin is therefore very sensitive to climate change, which could have an unfavorable
impact on its hydrological cycle and on water security. It is therefore vital that hydrological responses
to future climate change scenarios are understood so that workable decision-making data for the entire
catchment concerning the overall economy and environment can be provided.
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2.2. Data Availability

The Yellow River Basin (YRB) has a relatively long history of measurement and monitoring
starting from the 1950s. The China Meteorological Administration (CMA) has the responsibility of
operating and maintaining the national network and the quality control of the datasets. Courtesy of
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the CMA, the data used in this study were downloaded from the CMA (http://cdc.cma.gov.cn/).
In total, 79 meteorological stations in the YRB, with daily and monthly precipitation, air temperature,
and wind speed information, and six hydrological stations along the mainstream of the Yellow River,
with runoff records for the corresponding period, were selected to provide data for the study period
(1961–2000) (see Figure 2). The publication and availability of the drainage network as well as the field
data are under the authority of the CMA. Although datasets based on data collected after the year
2000 are not available, the data used in this study based on a period of 40 years are considered highly
reliable since they were quality-controlled by the CMA before publishing.
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General circulation models (GCMs) are widely used to produce future global climate change
scenarios. There are more than 30 GCMs with different assumptions and methodologies available,
and all of these models have been used by different academic communities and applied to different
countries and regions. In this study, the three following GCMs were considered to best represent the
study area and were therefore selected to produce monthly precipitation predictions: CSIRO:MK30,
(from the Commonwealth Scientific and Industrial Research Organisation Atmospheric Research,
Australia), INM:CM30 (from the Institute for Numerical Mathematics, Russia), and MRI-CGCM2.3.2
(from the Meteorological Research Institute, Japan). Hereafter, they will be referred to as CSIRO, INM,
and MRI, respectively. Two different target periods of 20 years—2046–2065 and 2081–2100—were set
up under selected emission scenarios of A1B, A2, and B1 based on the IPCC (Intergovernmental Panel
on Climate Change) from the IPCC-SRES (IPCC- Special Report on Emissions Scenarios) [19].

All input data were downloaded from the Data Distribution Centre (DDC) of the IPCC
(http://ipcc-ddc.cru.uea.ac.uk) for the above three GCMs with different spatial resolutions (ranging
from 1.9 to 5◦). To facilitate hydrological modeling in the following steps, data were downscaled using
an inverse distance weighted interpolation procedure, and the resulting values were populated evenly
over a 0.5 × 0.5◦ grid.

3. Multi-Model Ensemble Methods

The concept of combining the forecasts obtained from different models or methods was discussed
and used in the pioneering works of [13–16] and others. The essence of the concept of these methods
is that each model output captures certain important aspects of the information available about the
process being modeled, thereby providing a source of information that may be different from that
of other models [12]. Combining these various sources of information may enable the user to gain a

http://cdc.cma.gov.cn/
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merged, all-inclusive picture for a given study area. Furthermore, the judicious combination of outputs
of different models may assist in understanding the underlying physical processes involved and thus
in developing improved individual models. As such, it might be possible to develop a new individual
model that can effectively utilize the different types of information reflected in the estimated outputs
of each of the models included in the combination [20].

Several methods of combining model outputs have been reported: the simple average method,
the weighted average method [12], the neural network method [21] (which is based on a learning
procedure through a black box), the first order Takagi–Sugeno method [22] (which is based on a special
class of fuzzy system), and the Bayesian model averaging method (BMA) [11]. Compared with more
traditional averaging methods, BMA is becoming popular due to its ability to optimize weights based
on performance and thus providing a superior choice in modeling. In this paper, we are interested
in comparing the results of a genetic-algorithm-based weighting average method with the results of
Bayesian model averaging and simple average methods.

3.1. Genetic Algorithms

Genetic algorithms (GAs) are known as global search heuristics for finding exact or approximate
solutions to optimization and search problems based on the evolutionary ideas of natural selection.
They are often implemented in a computer simulation in which a population of abstract representations
of candidate solutions to an optimization problem evolves toward improved solutions. The evolution
starts from a population of randomly generated individuals and occurs in generations. In each
generation, the fitness function of every individual in the population is evaluated, multiple individuals
are stochastically selected from the current population (based on their fitness), and modified to form a
new population through genetic operators of crossover (recombination) and mutation. For each new
solution to be produced, a pair of “parent” solutions is selected from the pool for breeding. A new
solution shares many of the characteristics of its “parents.” New parents are selected for each new
child, and the process continues until a new population of solutions of appropriate size is generated.
The new population is then used in the next iteration of the algorithm. The algorithm terminates when
a termination condition has been reached, commonly a maximum number of generations has been
produced [23]. In this paper, a genetic algorithm based on [23] is employed to optimize the set of
weights for eight individual rainfall–runoff models.

3.2. Bayesian Model Averaging Scheme

Bayesian model averaging (BMA) is a statistical procedure that infers consensus predictions
by weighing individual predictions based on their probabilistic likelihood measures, with the
better performing predictions receiving higher weights than the worse performing predictions.
Furthermore, BMA provides a description of the total predictive uncertainty that is more reliable
than the original ensemble, leading to a sharper and better-calibrated probability density function for
the probabilistic predictions [10,24]. A detailed description of BMA scheme implementation is given
in [11]. The same procedure from [11] is employed in this study.

4. A Brief Description of the Selected Rainfall–Runoff Models

In climate-change-related hydrological modeling, monthly water balance models are becoming
more popular thanks to their flexibility and ease of use [25–27]. In favor of using conceptual water
balance models instead of physically based models or black box models, the authors of [26] stated
that the detailed realism of a physically based model posed a different set of complications. First, the
physically based models require a high resolution, in both space and time, of climatic input data that
may not be available; second, it is possible that model parameters may need to change as climate
evolves: soil structure may change, for example, as summers become drier, and, more importantly,
the distribution and composition of catchment vegetation will probably alter. There are at present too
many unknowns for detailed physically based models to be used in climate impact studies [27].



Water 2018, 10, 301 5 of 15

Based on the above considerations, eight numerical models, including five lumped conceptual
models, i.e., GR5M, AWBM, SIMHYD, TRPWB, VWBM, one local distributed model (the Yellow River
Water Balance model, YRWBM), one physically based model (VIC), and one black-box model (the
artificial neural network model, ANN), were employed in this study for comparison (see Table 1 for
details). A brief summary of these eight models is given in Table 1. It should be pointed out that,
being the only physically based model, the VIC’s performance might be affected due to the fact that
only averaging parameters were used in the VIC on the sub-basin scale. The outputs of the eight
different rainfall–runoff models were then combined using different BMA strategies to find the best
fitted ensemble strategy for the YRB.

Table 1. Brief description of the employed rainfall–runoff models.

Model Type Reference

Australian Water Balance
Model (AWBM)

Conceptual
rainfall–runoff model

Boughton, 1993 [28]; Boughton and Carroll, 1993 [29]; Boughton,
2004 [30]; Boughton and Chiew, 2003 [31].

GR5M model Conceptual
rainfall–runoff model

Mouelhi et al., 2006 [32]; Makhlouf and Michel, 1994 [33];
Perrin et al., 2003 [34].

SIMHYD model Conceptual
rainfall–runoff model

Porter and McMahon, 1976 [35]; Chiew and McMahon, 1990,
1991 [36,37]; Chiew et al., 2002 [38].

TRPWB model Conceptual
rainfall–runoff model Xiong and Guo, 1999 [39]; Hu et al., 2008 [40].

VWBM model Conceptual
rainfall–runoff model

Xu, 1992 [41]; Vandewiele et al., 1992 [42]; Xu and Vandewiele,
1994 [43].

YRWBM model Conceptual
rainfall–runoff model Guo and Wang, 1994 [44]; Wang et al., 2001 [45]

VIC model Distributed
hydrological model Liang et al., 1996 [46]; Liang and Xie, 2001 [47].

ANN model Black-box model Box, G.E.P. and Jenkins, G.M. [48]; Govindaraju, R.S. and
Rao, A.R. [49].

5. Evaluation of Model Performance

The overall performance of these eight models was evaluated using seven selected performance
criteria as shown in Table 2 together with the measured parameter for each criteria. The combined
performances of these criteria were then used as the objective functions to examine the general
model performances.

Table 2. Description of criterions for selected models.

Criterion Abbreviation Equation What It Measures

Nash–Sutcliff Measure NS 1− ∑T
t=1(yobs

t −yest
t )

2

∑T
t=1

(
yobs

t −yobs
)2 Overall average precision

Root Mean Square
Deviation RMSD

√
∑T

t=1(yobs
t −yest

t )
2

T

Average error, but a greater
focus on high flow

Relative Error RE ∑T
t=1 (yest

t −yobs
t )

∑T
t=1 yobs

t
Water balance

Mean Absolute Error ABSERR ∑T
t=1|yobs

t −yest
t |

T
Average error

Maximum Absolute
Error ABSMAX max

1≤t≤T

∣∣∣yobs
t − yest

t

∣∣∣ Maximum flood peak at
measured flood peak time

Peak Difference PDIFF max
1≤t≤T

{
yobs

t

}
− max

1≤t≤T

{
yest

t
} Maximum flood peak

difference (may not be at the
same time)

First Lag Autocorrelation RCOEF
∑T

t=1 yobs
t ·yest

t −
∑T

t=1 yobs
t ·∑T

t=1 yest
t

T√√√√(∑T
t=1 yobs

t
2− (

∑T
t=1 yobs

t )
2

T

)(
∑T

t=1 yest
t

2− (∑T
t=1 yest

t )
2

T

) Correlation

6. Results and Discussion

For optimal comparison results, all model simulations were performed with the same calibration,
validation, and the simulation periods. The years from 1962 to 1980 was selected as the calibration
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period, while the years from 1981 to 2000 were used as the validation period. Two future target
simulation periods were chosen: 2046–2065 and 2081–2100. The performance of the seven objective
functions were then calculated for each of them and subsequently compared.

6.1. Model Performance during the Calibration Period (1962–1980)

Table 3 lists the performance results of the eight rainfall–runoff models referring to the seven criteria.
It can be found that (1) the best benchmark values are achieved by the ANN, (2) all water balance (RE)
values are less than 10%, with the best performance by the GR5M, and (3) six of the worst performance
values belong to the VIC followed by the TRPW. It can also be noted that, for the Nash–Sutcliff criterion
(NS), all models performed well, around or above 0.8, except for the VIC (NS = 0.51).

Table 3. Rainfall–runoff model performance during the calibration period (the best value for each
criteria is in bold and the worst values are in *).

Model NS RMSD RE ABSERR ABSMAX PDIFF RCOEF

ANN 0.85 12.73 −6.14 8.79 50.61 6.31 0.86
AWBM 0.8 14.65 −9.34 10.86 56.28 −8.6 0.82
GR5M 0.82 13.82 −5.28 9.89 55.35 −9.03 0.83
SIMH 0.77 15.73 −9.91 * 11.4 62.65 1.4 0.79
TRPW 0.8 14.57 −6.6 11.08 45.35 −7.5 0.82
VWBM 0.75 16.6 −8.23 12.02 65.35 8.06 0.76
YRWB 0.84 13.32 −8.87 9.61 61.03 −5.02 0.86

VIC 0.51 * 22.97 * −5.45 16.93 * 79.48 * 20.14 * 0.58 *

The RMSD and the RE are two typical objective functions in validating rainfall–runoff model
results. Table 4 presents the RMSD and RE variations of the eight models for different seasons (spring,
summer, autumn, and winter). It can be observed that, for both RMSD and RE, (1) the ANN performs
well in summer, and the TRPW performs well in autumn; (2) the ANN and VIC respectively have
the best RMSD and RE in spring, and the YRWB and ANN respectively have the best RMSD and RE
in winter. Although the results among the models are scattered, it is clear that the ANN showed the
overall best performance in terms of seasonal modeling.

Table 4. Rainfall–runoff model performance in different seasons during the calibration period (the best
value for each criteria is in bold, and the worst ones are in *).

Model RMSDSPR RESPR RMSDSUM RESUM RMSDAUT REAUT RMSDWIN REWIN

ANN 9.49 −10.73 12.81 0.8 18.94 −11.22 5.97 −2.25
AWBM 12.63 −26.36 17.2 −6.14 * 18.96 −13.21 6.57 30.67
GR5M 10.41 −22.52 14.89 1.52 19.81 −10.41 6.41 26.35
SIMH 15.64 −35.31 14.08 1.84 22.65 −16.03 * 5.83 23.89
TRPW 16.16 * −37.56 * 15.47 −3.17 17.05 −3.38 7.61 32.59 *
VWBM 14.14 −33.05 17.97 1.23 22.89 −13.32 7.46 28.95
YRWB 9.96 −19.55 14.87 −3.58 18.83 −6.98 5.85 −14.73

VIC 15.17 −7.72 24 * 2.46 34.16 * −10.45 11.73 * −10.72

6.2. Model Performance during the Validation Period (1981–2000)

Similar to the calibration period, the same comparison is done for the validation period. The results
of the performance values are summarized in Table 5. For easy comparison, the corresponding values
from calibration (Table 3) are displayed in the line below in parentheses. As can be seen in Table 5,
most of the model performance is similar to that of the calibration period, except NS values for ANN
and VIC, which decreased slightly. The AWBM performed best in terms of the NS, RMSD, and RCOEF,
while the ANN’s performance dropped remarkably. This fact indicates the risks of using individual
models and the need for a multi-model approach.
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Table 5. Rainfall–runoff model performance during the validation period (the best value for each
criteria is in bold, and the worst ones are in *).

Model NS RMSD RE ABSERR ABSMAX PDIFF RCOEF

ANN 0.79 (0.85) 13.92 (12.73) −0.4 (−6.14) 10.63 (8.79) 54.75 (50.61) 2.12 (6.31) 0.79 (0.86)
AWBM 0.83 (0.80) 12.62 (14.65) −4.53 (−9.34) 9.46 (10.86) 58.47 (56.26) 0.29 (−8.6) 0.83 (0.82)
GR5M 0.81 (0.82) 13.15 (13.82) 3.81 (−5.28) 9.64 (10.86) 66.44 (56.26) 5.02 (−9.03) 0.82 (0.83)
SIMH 0.78 (0.77) 14.14 (15.73) −4.67 (−9.91) 10.46 (11.4) 67.47 (62.65) 19.29* (1.4) 0.79 (0.79)
TRPW 0.79 (0.80) 13.89 (14.57) −1.47 (−6.6) 10.92 (11.08) 52.28 (45.35) 0.18 (−7.5) 0.8 (0.82)
VWBM 0.77 (0.75) 14.59 (16.60) 1.1 (−8.23) 11.0 (12.02) 63.58 (65.35) 18.85 (8.06) 0.77 (0.76)
YRWB 0.82 (0.84) 12.67 (13.32) 4.16 (−8.87) 8.53 (9.61) 64.75 (61.03) 0.73 (−5.02) 0.83 (0.86)

VIC 0.44 * (0.51 *) 22.55 * (22.97 *) −17.46 * (−5.41) 16.39 * (16.93 *) 92.54 * (79.48 *) −12.62 (20.14 *) 0.52 * (0.58 *)

Again, there is a need to compare RMSD and RE variations in the eight models for different
seasons of the validation period. As displayed in Table 6, the results of these two parameters show
a spread pattern over the four different seasons. The best performers are the GR5M, the TRPW, the
AWBM, and the YRWB for the spring, summer, autumn, and winter, respectively, which is clearly
different compared to that of the calibration period.

Table 6. Rainfall–runoff model performance during the validation period (the best value for each
criteria is in bold, and the worst ones are in *).

Model RMSDSPR RESPR RMSDSUM RESUM RMSDAUT REAUT RMSDWIN REWIN

ANN 8.8 −11.07 18.28 −5.2 17.34 1.58 7.9 39.58
AWBM 10.35 −23.17 17.44 −7.29 13.24 −0.35 7.09 35.82
GR5M 8.7 −14.14 17.38 4.61 16.16 5.23 7.29 36.44
SIMH 13.42 −33.69 17.18 4.16 17.04 −5.53 5.81 24.72
TRPW 13.47 −34.38 * 16.71 −2.84 15.83 10.94 7.81 33.57
VWBM 11.49 −25.31 18.94 3.29 16.87 3.47 8.7 43.2 *
YRWB 8.94 6.5 16.9 4.44 15.92 3.22 4.78 0.97

VIC 15.83 * −14.25 31.38 * −23.34 * 26.05 * −14.84 * 10.97 * −7.34

6.3. The Performance of Multi-Model Ensemble

6.3.1. Model Performance

All models are imperfect. This is generally true and has been shown in particular by the above
examples. It is therefore interesting to see whether the ensemble approach and/or any other averaging
methods can improve the objective function. In the following section, we compare the best individual
model with three different methods:—the simple average method (SAM), a genetic algorithm (GA),
and Bayesian model averaging (BMA)—to investigate the differences between them.

Table 7 illustrates the results of the four approaches for the same calibration period, with the
RMSD and RE broken down into four different seasons. From the table, it is apparent that the GA and
BMA approaches outperformed the best individual model for NS. Furthermore, for the seasonal cases,
GA and BMA results showed values that are clearly superior to those of the best individual model for
the RMSD for all seasons. Water balance (RE) is the only value where the best individual model had
some slightly improved results.

For the case of the validation period, the results are slightly different, as shown in Table 8.
In Table 8, the best individual model value for NS (0.826) is from the AWBM, which is still the lowest
compared to others. For the seasonal changes of the RMSD and RE, the GA showed the best results for
spring and summer seasons. The best individual model showed slightly improved results compared
with the others, indicating improved water balance estimation, especially for the winter.

It is worth pointing out that objective functions from the best individual models are weighted
through genetic and Bayesian treatment in order to produce a complementary objective function with
improved accuracy. The final weights are not lineally corresponding to the best single values based on
individual models. In other words, a higher NS function of an individual model may not necessarily
result in higher weights for the GA and BMA approaches.
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Table 7. Multi-model ensemble method performance compared with the best individual model during
the calibration period (the best values are in bold).

Averaging Method NS RMSDSPR RESPR RMSDSUM RESUM RMSDAUT REAUT RMSDWIN REWIN

SAM 0.849 10.98 −24.10 12.73 −0.63 18.63 −10.62 4.98 14.34
BMA 0.856 10.66 −23.18 12.55 −0.65 18.21 −10.54 4.86 12.90
GA 0.891 7.69 −12.09 12.36 4.97 15.41 −4.14 5.07 9.36

Best individual
model *

0.851
ANN

9.49
ANN

−7.72
VIC

12.81
ANN

0.8
ANN

17.05
TRPW

−3.38
TRPW

5.83
SIMH

−2.25
ANN

* Best value from Table 3.

Table 8. Multi-model ensemble method performance compared with the best individual model during
the validation period (the best values are in bold).

Averaging
Method NS RMSDSPR RESPR RMSDSUM RESUM RMSDAUT REAUT RMSDWIN REWIN

SAM 0.834 9.28 −18.68 16.54 −2.77 14.56 0.47 5.89 25.87
BMA 0.838 8.98 −17.6 16.33 −2.68 14.48 0.71 5.90 26.28
GA 0.840 7.16 −6.09 15.96 1.53 15.28 7.64 6.84 34.46

Best individual
model *

0.826
AWBM

8.7
GR5M

6.5
YRWB

16.71
TRPW

−2.84
TRPW

13.24
AWBM

−0.35
AWBM

4.78
YRWB

0.97
YRWB

* Best value from Table 5.

6.3.2. Rainfall–Runoff Simulation and Prediction

Based on the previous sections, it is clear that the genetic algorithm (GA) approach has the best
performance and accuracy within the comparison. The GA method was therefore selected to simulate
the runoff for the study area.

In Figures 3 and 4, the simulation results of the GA method are plotted against the observed monthly
runoff in calibration (1962–1980) and validation (1981–2000) periods, respectively, for the Huayuankou
station (the lower reach of the entire YRB). As can be deduced from the figures, the simulation accuracy is
satisfactory for most of the years in both periods (with NS = 891 and NS = 840, respectively).Water 2018, 10, x FOR PEER REVIEW  9 of 16 
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Figure 3. Observed and simulated monthly flows (109 m3) at Huayuankou station for the calibration period.
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Figure 4. Observed and simulated monthly flows (109 m3) at Huayuankou station for the validation period.

6.4. Runoff Prediction under Varying Climate Scenarios

As described in Section 2.2, future climate scenarios of A1B, A2, and B1 from the IPCC-SRES
are used by the selected GCMs with downscaled outputs to produce the input for our eight
rainfall–runoff models. The models are now furnished with the GA method for the best combination
of objective functions.

Figures 5 and 6 demonstrate the simulation results for the target periods of 2046–2065 and
2081–2100, respectively.
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Figure 5. Simulated monthly flows (109 m3) during the period of 2046–2065.
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Figure 6. Simulated monthly flows (109 m3) during the period of 2081–2100.

Mean values of the annual runoff in the periods of 2046–2065 and 2081–2100 are shown in Table 9.
With a baseline mean annual runoff of 56.7 billion m3 (1961–2000), it is concluded that the greatest
mean annual runoff scenario under climate change scenarios downscaled from MRI and A2 would be
53.1 billion m3, while the smallest mean annual runoff driven by the CSIRO and B1 scenarios would
be 47.21 billion m3. In the period of 2081–2100, the greatest mean annual runoff scenario under climate
change scenarios downscaled from MRI and A2 would be 55.3 billion m3, while the smallest mean
annual runoff driven by the CSIRO and B1 scenarios would be 47.02 billion m3. It is interesting to note
that the greatest and smallest runoff scenarios would be under the combined scenarios of MRI-A2 and
CSIRO-B1 in both periods of 2046–2065 and 2081–2100.

Table 9. Quantile and mean values for annual runoff in the periods of 2046-2065 and 2081–2100 (Unit:
billion m3/annual).

SRES A2 B1

GCMs
CSIRO INM MRI CSIRO INM MRI

Periods Quantiles

2046–2065

Mean 52.59 51.86 53.10 47.21 48.76 51.66
R25 46.35 48.02 48.14 44.09 46.61 49.28
R50 52.78 52.74 52.74 46.36 48.29 50.47
R75 57.94 55.08 56.25 50.44 50.22 53.80

2081–2100

Mean 54.14 48.82 55.30 47.02 51.19 53.46
R25 48.38 45.42 50.80 42.63 47.72 52.13
R50 55.01 48.04 55.26 45.65 50.23 53.48
R75 59.57 51.65 59.32 50.67 54.26 55.64

The change rate of quantile and mean values for annual runoff in the periods of 2046–2065 and
2081–2100 compared with that in the baseline period of 1961–2000 is shown in Table 10. Overall, it
displays slight decreasing trends for runoff in the YRB in the simulated period. Average values of
mean annual runoff in the periods of 2046–2065 and 2081–2100 are 50.86 and 51.65 billion m3, which
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are remarkably smaller than runoff in the baseline period by 10.3 and 8.9%, respectively. Generally,
runoff under the A2 scenario is greater than that under the B1 scenario.

Table 10. Change rate of quantile and mean values for annual runoff in the periods of 2046–2065 and
2081–2100 compared with that in the period of 1961–2000 (Unit: %).

SRES A2 B1

GCMs
CSIRO INM MRI CSIRO INM MRI

Periods Quantiles

2046–2065

Mean −6.48 −7.78 −5.57 −16.05 −13.29 −8.13
R25 0.32 3.94 4.20 −4.57 0.89 6.67
R50 0.91 0.85 0.84 −11.36 −7.67 −3.50
R75 −14.02 −18.26 −16.53 −25.14 −25.47 −20.16

2081–2100

Mean −3.72 −13.18 −1.66 −16.38 −8.96 −4.93
R25 4.73 −1.68 9.96 −7.72 3.29 12.85
R50 5.19 −8.15 5.65 −12.71 −3.95 2.25
R75 −11.59 −23.35 −11.97 −24.81 −19.47 −17.43

The distributions of the simulated monthly runoff over the year for the two targeted periods are
plotted together with the baseline runoff in Figures 7 and 8, respectively. For both periods, it is clear
that the largest variations between climate scenarios are during May–June and August–October.

Compared to the baseline runoff, it is quantified that average spring, summer, autumn, and
winter runoff of the Yellow River Basin would change −16.7–23.3%, −24.5–−13.9%, −28.7–−3.3%,
and 28.4–49.0% for the 2046–2065 time span and change −19.1–43.2%, −25.4–−12.4%, −36.1–−5.8%,
and 28.4–61.7% for the 2081–2100 time span.
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Figure 7. The average simulated monthly flows (109 m3) during the period of 2046–2065.
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Figure 8. The average simulated monthly flows (109 m3) during the period of 2081–2100.

7. Discussion and Conclusions

Three GCMs were employed to simulate future hydrological scenarios for the Yellow River Basin
in climate scenarios A1B, A2, and B1 from the IPCC-SRES. The GCM outputs were then downscaled to
a grid size of 0.5 × 0.5◦ for use with the eight rainfall–runoff models selected for this particular study.
These runoff outputs were then combined using a multi-model ensemble (MME), which, compared
with any individual model, can be expected to be more accurate and reliable. It should be noted
that the choice of these three GCMs, among many others, might not be representative. It would be
interesting to include other GCMs in a similar study in the future.

For regional scale modeling, GCMs involve high uncertainty due to the GCMs’ inter-model
uncertainty as well as the coarse spatial resolution. One way to reduce this uncertainty might be to
quantify the discrepancies by showing error bars for each case so that the inter-model uncertainty can
be addressed more easily. Similar to the current study for hydrological outputs, another way to increase
the reliability might be to employ an MME of GCM models, as described in [50]. The performance of
the VIC, the only distributed model, compared with other conceptual or black-box models, was worse
in many cases. This is partly due to the lack of detailed distributed parameter inputs and partly due
to the coarse averaging effects in the space and time domains. In a recent study, a long-term model
with the VIC was successfully applied [51]. One future step could be to incorporate the results of [51]
to an MME procedure so that the distributed model representation can be enhanced and inter-model
uncertainty can thus be reduced.

For the calibration and validation periods of the YRB, it was confirmed that the MBA and GA
approaches had an overall performance that was a substantial improvement in terms of rainfall–runoff
outputs compared with the individual models and the simple average method (SAM). This indicates
application potential for MME approaches in other areas. For example, more recent CMIP5 datasets
could be used in the future to generate more reliable scenarios.
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For cases of seasonal modeling, various individual models outperformed the MME approaches
(Tables 7 and 8). This might be because individual models are more sensitive to temporal variations
than those of an MME, where temporal variations may be evened out.

Based on the combined predictions for the two target periods (Figures 7 and 8), compared to the
baseline, average annual runoff of the YRB will, for the 2046–2065 time span, decrease 5.6~7.8% in
Scenario A2 and 8.1–16.1% in Scenario B1 and, for the 2081–2100 time span, decrease 1.7~13.2% in
Scenario A2 and 4.9–16.4% in Scenario B1. This will threaten the water security in the YRB.

Relative to the baseline runoff, average spring, summer, autumn, and winter runoff of the YRB
will change −16.7–23.3%, −24.5–−13.9%, −28.7–−3.3%, and 28.4–49.0% over the 2046−2065 period
and, for the 2081–2100 period, change −19.1–43.2%, −25.4–−12.4%, −36.1–−5.8%, and 28.4–61.7%
(Figures 7 and 8). This means that, from January to June, the runoff in most of the simulated scenarios
(4 of 6 cases) will be higher than the corresponding baseline period, while the opposite situation will
appear for the second half of the year, implying increased severity in the water supply since the first
half of the year is generally more vulnerable.

In summary, a multi-model ensemble (MME) using a genetic algorithm (GA) and a Bayesian
model averaging method (BMA) is concluded to enhance rainfall–runoff predictions by providing
a combined, better weighted parameter set compared to individual models. These results show
that it is possible to reduce the uncertainty and thus improve the accuracy for future projections
using MME-weighted models, because the MME approach will even out the bias and exploit the best
performances of the individual models. Three future tasks are expected to be undertaken: one is
the use of the same methodology in other river basins (e.g., the Yangtze River Basin) to confirm the
usefulness; another is the optimization of choice of GCMs and of more recent climate change scenarios;
a third is the optimization of the setup and composition of the rainfall–runoff models such that the
balance between conceptual, black-box, and distributed models, as well as other models such as those
reported by [52–54], is improved.
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