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Abstract: Long records (1960–2013) of monthly streamflow observations from 8 hydrological stations
in the East Asian monsoon region are modeled using a nonstationarity framework by means of the
Generalized Additive Models in Location, Scale and Shape (GAMLSS). Modeling analyses are used to
characterize nonstationarity of monthly streamflow series in different geographic regions and to select
optimal distribution among five two-parameter distributions (Gamma, Lognormal, Gumbel, Weibull
and Logistic). Based on the optimal nonstationarity distribution, a time-dependent Standardized
Streamflow Index (denoted SSIvar) that takes account of the possible nonstationarity in streamflow
series is constructed and then employed to identify drought characteristics at different time scales
(at a 3-month scale and a 12-month scale) in the eight selected catchments during 1960–2013 for
comparison. Results of GAMLSS models indicate that they are able to represent the magnitude and
spread in the monthly streamflow series with distribution parameters that are a linear function of time.
For 8 hydrological stations in different geographic regions, a noticeable difference is observed between
the historical drought assessment of Standardized Streamflow Index (SSI) and SSIvar, indicating that
the nonstationarity could not be ignored in the hydrological drought analyses, especially for stations
with change point and significant change trends. The constructed SSIvar is, to some extent, found
to be more reliable and suitable for regional drought monitoring than traditional SSI in a changing
environment, thereby providing a feasible alternative for drought forecasting and water resource
management at different time scales.

Keywords: hydrological drought; Standardized streamflow index; nonstationarity; GAMLSS

1. Introduction

Drought is an insidious natural hazard that has damaging and costly impacts on agriculture,
water resources, ecology, and society [1,2]. Due to global climate change and rapid socio-economic
development, drought disasters have occurred more frequently and extensively in recent decades [3].
Drought is commonly defined as below-normal water availability [4] and can be subdivided
into different types of drought related to the variables of the hydrological cycle, precipitation
(meteorological drought), soil moisture (agricultural drought), and streamflow (hydrological
drought) [5].

Hydrological drought is defined as a significant shortage of availability of water in all its forms
appearing in the land phase of the hydrological cycle (e.g., streamflow, groundwater level and lake
level) [6]. It is traditionally detected using field observations of streamflow, surface water and
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groundwater levels, thereby providing direct evidence of any below-normal water availability [6,7].
Below-normal water availability in rivers, lakes and reservoirs can cause water scarcity in combination
with water demand, threating water supply and associated food production [8]. Thus, it is important
to identify hydrological drought characteristics and assess the effects of hydrological drought
quantitatively. The Standardized Streamflow Index (SSI), proposed by Shukla and Wood [9], has been
used as a useful index for characterizing hydrological drought. It is constructed using streamflow data
based on the concept of the standardized precipitation index (SPI). Similar to SPI, with the advantages
of computational simplicity, the SSI is capable of characterizing hydrological drought condition at
different time scales [3,10], and it enables the severity of hydrological drought in different locations
to be compared independently of the local characteristics [11]. In addition, the SSI is sensitive to the
factors and assumptions that govern probabilistic hydrology, since it is a probability-based drought
index [6].

Generally, statistical inferences and statistical analyses for hydrologic time series have relied
heavily on the assumption of stationarity in hydrology [12,13]. Under the stationarity assumption,
hydrological series keep their distributional properties invariant with time, implying lack of
trends and shift [14]. However, the stationarity assumption has been widely questioned and
should no longer serve as a central, default assumption, as a result of global climatic change
and man-induced disturbance [15–17]. In recent years, hydrological nonstationarity has drawn
considerable attention [14,18]. Coulibaly and Baldwin [18] developed an optimal dynamic recurrent
neural networks method to directly forecast hydrological series under nonstationarity conditions, and
they found that neural networks are good alternatives for modeling the complex dynamics of the
hydrological system. Villarini et al. [14] modeled a long record of seasonal rainfall and temperature in
a nonstationarity framework to characterize non-stationarities in hydro-climatic variables.

In the traditional calculation of SSI values, the streamflow sample series are firstly fitted to
a suitable stationary probability distribution on the basis of stationarity assumption [11]. This means
that historical features of streamflow series can be used to derive SSI values in the future. However,
changing environments (e.g., climate change and human activities) might alter the statistical
characteristics of hydroclimate time series [19], resulting in so-called nonstationarity. With respect to
streamflow, there have been numerous studies on individual impacts of climate change (mainly changes
in precipitation and temperature) and human activity (mainly water construction and building of
dams) on it [20], implying clear violations of the stationarity assumption. Ignoring the nonstationarity
would therefore most likely diminish the availability and validity of traditional SSI in hydrological
drought analysis and could lead to the underestimation or overestimation of the drought severity [21].
Thus, it is essential to incorporate the nonstationarity of streamflow sample series in constructing
an appropriate variant SSI (SSIvar) under nonstationarity conditions, thereby providing significant
information for evaluation and mitigation of risk of hydrological drought hazards and management
of water resources. From this point of view, although some researchers have attempted to consider
nonstationarity in developing drought index for drought monitoring, most research has only focused
on mean time variance of precipitation time series for meteorological drought (e.g., [22,23]). However,
to date, relatively few studies have addressed the stationarity or nonstationarity of streamflow series for
hydrological drought using a nonstationarity framework in different geographic regions considering
both trends and change points in the parameters. This constituted the major motivation of this study.

Several methods have been proposed to model nonstationarity time series in the previous
literature (e.g., [24,25]), each having their own strengths and weakness. The Generalized Additive
Models for Location, Scale and Shape (GAMLSS), proposed by Rigby and Stasinopoulos [26],
has recently gained popularity in modeling nonstationarity time series in hydrology [27]. This model
provides a high degree of flexibility in addressing nonstationarity probabilistic modeling. In GAMLSS,
the assumption that the variable of interest follows a distribution from the exponential family is
relaxed, allowing the use of more general distributions, such as highly skewed or kurtotic distributions,
which may be more appropriate for modeling the record of interest. This makes it an appealing
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framework for nonstationarity modeling of hydrometeorological variables to improve the existing
drought index.

In this study, the GAMLSS was used to model streamflow with nonstationarity distribution to
construct a variant SSI index (SSIvar) in eight catchments in the eastern region of China. The main
objectives of this study are: (1) to analyze whether streamflow series are stationary in the eastern region
of China, and (2) to construct an appropriate variant SSI that accounts for the changes in the parameters
of the selected distribution under nonstationarity conditions. The results of this study could provide
important information for the management of water resources and evaluation of hydrological drought
hazards under a changing environment.

2. Methodology

2.1. Traditional Standardized Streamflow Index (SSI)

The Standardized Streamflow Index (SSI) was used as the useful counterpart for depicting
hydrological aspects of drought. This index has the same theoretical background, transforming
monthly streamflow into z-scores. The procedure of traditional SSI calculation is statistically similar to
the well-known Standardized Precipitation Index (SPI).

The long-term streamflow series were first fitted to the lognormal distribution (Table 1),
as suggested by Nalbantis and Tsakiris [6]. Once the distribution is determined, the SSI (in z-scores)
can easily be calculated by following the classical approximation of Abramowitz and Stegun [28].
For example

SSI =

 −(W −
C0+C1t+C2t2

1+d1t+d2t2+d3t3 ), W =
√

ln( 1
F(x)2 ), 0 < F(x) ≤ 0.5

W − C0+C1t+C2t2

1+d1t+d2t2+d3t3 , W =
√

ln( 1
1−F(x)2 ), 0.5 < F(x) ≤ 1

(1)

where F(x) is the cumulative distribution function. The constants are C0 = 2.515517, C1 = 0.802853,
C2 = 0.010328, d1 = 1.432788, d2 = 0.189269, d3 = 0.001308.

Table 1 shows the range of SSI values along with their classifications [6].

Table 1. Drought classifications based on the traditional SSI.

State Categories SSI Values

D0 Extreme Drought (−∞, −2)
D1 Severe Drought [−2, −1.5)
D2 Moderate Drought [−1.5, −1]
D3 Slight Drought [−1, 0)
D4 Normal [0, +∞)

2.2. Change Point and Trend Analysis

2.2.1. Change Point Analysis

As a nonparametric statistical test that allows detection of changes in the mean when the change
point time is unknown, the Pettitt test [29] has been suggested by Villarini et al. [12] for analyzing the
change point in this study. Mathematically, when a sequence of random variables is divided into two
segments represented by X1, . . . , Xm and Xm+1, . . . , Xn, if each segment has a common distribution
function, then the change point is identified at m. The Pettitt test uses a version of the Mann-Whitney
statistic (Ut,n). The breakpoint is defined to be where |Ut,n| reaches its maximum value:

Kn = max1≤t≤n|Ut,n| (2)
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The significance level associated with Kn is calculated as

P ∼= 2 exp
[
−6(Kn)

2/(n3 + n2)
]

(3)

This test is valid for continuous variables, and its null hypothesis is the absence of a change point.
If p < 0.05, a significant change point exists.

2.2.2. Temporal Trend Analysis

The Mann-Kendall (M-K) statistical test [30,31] is commonly used for general use in temporal
trend analysis due to its robustness for non-normally distributed and censored data, which are
frequently encountered in hydro-climatic time series [32]. However, the presence of serial correlation
can complicate the identification of trends, in that a positive serial correlation can increase the expected
number of false positive outcomes for the Mann-Kendall test. Any serial correlation should be
removed before conducting the M-K trend test. Following Zhang et al. [33], the significant trend for
the streamflow records was identified using the following steps: (1) compute the lag1 serial correlation
coefficient (ρ1); (2) if ρ1 < 0.1, the M-K test was applied to the streamflow series directly; otherwise
(3) the M-K test was applied to the preprocessed time series (x2 − ρ1x1, x3 − ρ1x2, · · · , xn − ρ1xn−1).
The 95% confidence level was used to evaluate the significance of trends.

2.3. GAMLSS Model

The Generalized Additive Models for Location, Scale and Shape (GAMLSS), proposed by
Rigby and Stasinopoulos [26], have been used in our study to model the streamflow series with
nonstationarity probability distribution. The GAMLSS assume a parametric distribution for the
response variable y (streamflow in our study) and model the parameters of the distribution as linear
and/or nonlinear, parametric and/or additive nonparametric functions of explanatory variables [12].

A brief description of the GAMLSS model is provided below, with more detailed information
available from Rigby and Stasinopoulos [26] and Stasinopoulos and Rigby [34]. In a GAMLSS model,
it is assumed that there are independent random variables yi, for i = 1, . . . , n, which are fitted to
a distribution function of f

(
yi
∣∣θi) conditional on θi = (θi

1, . . . , θi
p), a vector of p distribution parameters

accounting for location, scale, and shape. Generally, p is less than or equal to four, since one, two,
three and four parameter distribution families could provide enough flexibility for most applications
in hydrology [35]. The GAMLSS allow for a general distribution function, including highly skewed
and/or kurtotic continuous or discrete distributions. The distribution parameters are related to the
design matrix of explanatory variables by monotonic link function gk(·), for k = 1, . . . , p. Similar to
Villarini et al. [12], five commonly used two-parameter distributions, i.e., Gamma distribution (GA),
Lognormal distribution (LOGNO), Gumbel distribution (GU), Weibull distribution (WEI) and Logistic
distribution (LO), were used in this study to model the streamflow series (Table 2). In this study, taking
the time as the explanatory variables, the linear functions relating t and parameters θ1 (for mean µ)
and θ2 (for variance σ) were constructed in the form of:

g1(θ1) = β1ti + a1 (4)

g2(θ2) = β2ti + a2 (5)

where β1 and β2 denote the vectors of coefficients of the linear function respectively, and the a1 and a2

is the corresponding constant term.
The Akaike Information Criterion (AIC) [36] was used to select the optimal nonstationarity

model with the highest goodness-of-fit, and the model with the minimum AIC value was selected.
Additionally, to further assess the performance of the selected optimal model, the residuals of each
model was checked by the statistics of the Filliben correlation coefficient (denoted by Fr) [37], together
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with the worm plot [38] as a visual inspection of diagnostic plots of the residuals. AIC and Fr are
calculated as

AIC = −2 ln(ML) + 2k (6)

Fr = Cor(S, B) =

n
∑

i=1
(Si − S)(Bi − B)√

n
∑

i=1
(Si − S)2 n

∑
i=1

(Bi − B)2
(7)

where ML is the maximum likelihood function of models and k is the number of independently
adjusted parameters within the model; Si are the ordered residuals; n is the length of the observation
period and Bi are the standard normal order statistic medians.

Then, based on the GAMLSS, nonstationarity models with different probability distributions,
trends in the parameters and the changes point in the time series of streamflow were compared
to select an optimal model to construct a newly Standardized Streamflow Index (SSI) for drought
monitoring and quantification. Analysis and calculations related to the GAMLSS model in this study
were performed with R-based GAMLSS package [34].
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Table 2. Summary of the distributions used to model the streamflow series at different time scales in our study.

Distribution Probability Density Function Distribution Moments Link Functions

Gamma
fY( y|µ, σ) = 1

(µσ2)1/σ2
y(1/σ2−1) exp[−y/(σ2µ)]

Γ(1/σ2)

y > 0, µ > 0, σ > 0

E(Y) = µ
SD(Y) = µσ

g1(µ) = In(µ)
g2(σ) = In(σ)

Lognormal fY( y|µ, σ) = 1√
2πσ

1
y exp

{
− [log(y)−µ]2

2σ2

}
y > 0, µ > 0, σ > 0

E(Y) = w1/2eµ

SD(Y) =
√

w(w− 1)eµ

w = exp(σ2)

g1(µ) = µ
g2(σ) = In(σ)

Gumbel fY( y|µ, σ) = 1
σ exp

{
− (y−µ)

σ − exp
[
− (y−µ)

σ

]}
−∞ < y < ∞,−∞ < µ < ∞, σ > 0

E(Y) = µ + γσ

SD(Y) = πσ/
√

6
g1(µ) = µ
g2(σ) = In(σ)

Weibull fY( y|µ, σ) =
σyσ−1

µσ exp
[
−( y

µ )
σ
]

y > 0, µ > 0, σ > 0

E(Y) = µΓ(1/σ + 1)

SD(Y) = µ

√
Γ( 2

σ + 1)−
[
Γ( 1

σ + 1)
]2

g1(µ) = In(µ)
g2(σ) = In(σ)

Logistic fY( y|µ, σ) = 1
σ

{
exp

[
− (y−µ)

σ

]}{
1 + exp

[
− (y−µ)

σ

]}−2

y > 0, µ > 0, σ > 0

E(Y) = µ
SD(Y) = π√

3
σ

g1(µ) = µ
g2(σ) = In(σ)
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2.4. Construction of the Time-Dependent Standardized Streamflow Index (SSIvar)

In our study, to construct a time-dependent Standardized Streamflow Index (SSIvar), the different
nonstationarity probability distributions with their parameters changing over time were compared by
using GAMLSS, as described in Section 2.3. Considering the long-term trends and abrupt changes
can reveal the presence of the nonstationarity in streamflow series. The change points and trends
were also included in the analysis by GAMLSS and AIC scores were used to select the optimal models
for the Standardized Streamflow Index. Here, synthetic experiments were designed to construct the
time-dependent SSI (SSIvar) drought index. Firstly, to select the optimal model for the hydrological
stations with no change point, four different models have been analyzed that: (1) stationary model;
(2) nonstationarity model in parameter for mean; (3) nonstationarity model in parameter for variance;
(4) nonstationarity model in mean and variance. Likewise, for the streamflow series with change
points, the study period could be divided into two periods by the change point and four different
models are discussed: (1) stationary model; (2) change point only exists in mean; (3) change point only
exists in variance; (4) change point exists in both mean and variance.

The constructed SSIvar is calculated in the following steps: (1) calculate the monthly average
streamflow (Yt) for a given k-month scale (3-month scale and 12-month scale in this study) with respect
to time t; (2) within the GAMLSS framework, the nonstationarity model is developed by fitting the
streamflow series (Yt) to a nonstationarity optimal distribution which is selected by minimizing AIC,
then obtaining the corresponding cumulative probability F(x)k. The parameters of the distribution is
described as a linear function of time; (4) the cumulative probability F(x)k is converted to a standard
normal deviate (with zero mean and unit variance), which also using the approximate conversion
provided by Abramowitz and Stegun [28]. This standard normal value is the SSIvar index.

Positive values of the SSIvar imply wet conditions, while negative values indicate dry conditions.
Since the SSIvar are developed based on the concept of SSI, the classifications listed in Table 2
can be also used for the SSIvar as well. Compared with the traditional SSI, the proposed SSIvar

recognize the nonstationarity in the streamflow series and thus it has the ability to capture and
model the nonstationarity to provide more reasonable and satisfactory for drought monitoring and
drought analysis.

3. Study Area and Dataset

The eastern region of China (the area to the east of 100◦ E), which is affected by the East Asian
monsoon, is usually referred to as the East Asian monsoon (EAM) region. Rainfall mainly occurs in the
summer season (June, July and August) in the EAM region. The EAM region is a critically important
zone in China, having the densest population and exhibiting the fastest economic development in
recent decades. In our study, we selected eight different catchments in the EAM region of China as the
case study areas (Figure 1), including Songhua River Basin (SHRB), Hai River Basin (HRB), Yellow
River Basin (YRB), Huai River Basin (HURB), Yangtze River Basin (YARB), Pearl River Basin (PRB).

Monthly streamflow records from 1960 to 2013, from eight hydrological stations in different
catchments, were analyzed. The data were provided by the Hydrology Bureau of the corresponding
River Conservancy Commission. Locations of these stations are shown in Figure 1. Information on the
data, such as the length of streamflow series and the drainage areas of hydrological stations, is given
in Table 3.
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Figure 1. The study area in EAM region.

Table 3. Information on the hydrological stations considered in this study.

River Basin Station Drainage Area (km2) Longitude Latitude Climatic Zone Mean (m3/s)

SHRB Liujiatun (LJT) 19,665 125.08 49.25 Humid and
semi-humid 115.09

HRB Luanxian (LX) 44,100 118.75 39.73 Semi-arid and
semi-humid 83.73

YRB Huaxian (HX) 106,498 109.76 34.58 Arid and semi-arid 204.90

HURB Wangjiaba (WJB) 30,630 115.60 32.43 Humid and
semi-humid 282.62

YARB
Danjiangkou (DJK) 159,000 111.51 32.58 Humid 1141.64

Waizhou (WZ) 80,948 115.84 28.63 Humid 2164.33

PRB
Tiane (TE) 105,535 107.16 24.99 Humid 1528.32

Boluo (BL) 25,325 114.30 23.17 Humid 737.71

4. Results and Discussion

4.1. Change Point Analysis

Pettitt’s test was used to detect change points in annual streamflow for the eight selected
hydrological stations. The results showed that the annual streamflow in three stations (Luanxian,
Huaxian and Tiane) have change points with a significance level of 5% (Figure 2), while the remaining
five stations showed no significant change points. The change points for Luanxian, Huaxian and Tiane
occurred in 1979, 1990 and 1986, respectively (Figure 2).
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Figure 2. Pettitt’s test for detecting a change in the mean of annual streamflow. Horizontal lines
represent the significance (solid line represent 1% and dotted line represent 5%).

4.2. Trend Analysis

Autocorrelation analysis was done first to detect the significant serial effects before trend detection.
Apart from Waizhou (lag1 = −0.073) and Boluo (lag1 = −0.066), the lag1 serial correlation coefficient
ρ1 for the other six stations were all beyond the threshold value (0.1) (Table 4), indicating significant
effects on trend analysis. The significant autocorrelations in the six stations were removed before the
M-K trend test. The results estimated by M-K test are exhibited in Table 4. Among the eight stations,
two stations showed an increasing trend and the other six stations demonstrated a decreasing trend.
The annual streamflow series at three stations (Luanxian, Huaxian and Tiane) showed significantly
decreasing trends. As for the other five stations, though the M-K trends were insignificant, they also
showed slight decreasing or increasing trends.
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Table 4. Results of analysis of trends in streamflow series for the eight hydrological stations at an
annual scale.

Stations ρ1 MK

Liujiatun (LJT) 0.198 0.142
Luanxian (LX) 0.475 −2.352
Huaxian (HX) 0.397 −1.992

Wangjiaba (WJB) −0.137 −0.691
Danjiangkou (DJK) 0.272 −1.155

Waizhou (WZ) −0.073 0.093
Tiane (TE) 0.202 −2.553
Boluo (BL) 0.066 −0.351

Note: MK denotes Mann-Kendall trend. The bold values denote significant trends
at 95% confidence level.

4.3. Modeling with GAMLSS

It can be seen from Table 5 that the nonstationarity models performed best for fitting the
streamflow series at different time scales for the eight hydrological stations. At both 3-month and
12-month time scales, the gamma distribution was the optimal distribution for half of the selected
stations (4 stations), followed by the lognormal and Weibull distribution. With respect to testing
the stationarity, no models were found to be stationary with time-independent parameters (Table 5).
Among the 16 selected models at different time scales, 12 models exhibited nonstationarity in θ1

(for mean), and 4 models exhibited nonstationarity in θ2 (for variance). No models of nonstationarity
in mean and variance were selected. The statistic of Fr (Table 5) also indicated that the selected
nonstationarity model was an adequate fit for the streamflow series at different time scales at the
respective stations. The averaged streamflow series in August was taken as an example to show the
fitting of the GAMLSS model. Fitting of averaged streamflow series in August at different time scales
for the eight stations using GAMLSS is shown in Figure 3 (3-month scale) and Figure 4 (12-month scale).
The vast majority of the points were within the 0.05 and 0.95 quantiles (Figures 3 and 4), indicating
that the selected models were able to capture the variability of the data at both 3-month scale and
12-month scale. The centile curves of the GAMLSS modeling in eight stations exhibited temporal trend,
showing that the fitted models captured non-linear behaviors associated with the streamflow series.
For the three stations (Luanxian, Huaxian and Tiane) with change points, the 5% and 95% percentile
curves were significantly impacted by the abrupt changes. Visual inspections of worm plots were
also conducted to check the residuals. All the worm points were within the 95% confidence intervals
(Figures 5 and 6), indicating consistency between the selected nonstationarity model and the observed
data at different time scales. Thus, the results indicated the GAMLSS-based modeling was able to
capture the temporal variability of the streamflow series.
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Table 5. Summary of results for the GAMLSS models of eight hydrological stations in EAM region (the critical values of the Filliben correlation coefficient is Fα = 0.978
and the Fr bigger than Fα, indicating that the nonstationarity model passes the goodness-of-fit test).

Stations Optimal CDF Stationary Nonstationarity in θ1 (Mean) Nonstationarity in θ2 (Variance) Nonstationarity in both θ1 and θ2

Monthly averaged AIC values and Fr for stationary and optimal nonstationarity models (3-month scale)
AIC/Fr

Liujiatun (LJT) LOGNO 506.34/0.988 503.17/0.991 (Y) — —
Luanxian (LX) WEI 530.36/0.981 509.67/0.986 (Y) — —
Huaxian (HX) GA 636.00/0.985 627.37/0.989 (Y) — —

Wangjiaba (WJB) GA 676.77/0.980 675.63/0.981 (Y) — —
Danjiangkou (DJK) GA 783.77/0.992 780.92/0.994 (Y) — —

Waizhou (WZ) LOGNO 853.29/0.982 849.13/0.983 (Y) — —
Tiane (TE) GA 796.66/0.983 787.23/0.985 (Y) — —
Boluo (BL) LOGNO 727.17/0.991 — 725.74/0.992 (Y) —

Monthly averaged AIC values for stationary and optimal nonstationarity models (12-month scale)
AIC/Fr

Liujiatun (LJT) GA 558.34/0.992 553.36/0.993 (Y) — —
Luanxian (LX) GA 573.77/0.983 553.55/0.983 (Y) — —
Huaxian (HX) LOGNO 632.70/0.982 622.24/0.983 (Y) — —

Wangjiaba (WJB) WEI 683.71/0.975 — 680.13/0.979 (Y) —
Danjiangkou (DJK) LOGNO 781.23/0.989 778.44/0.991 (Y) — —

Waizhou (WZ) GA 828.92/0.991 — 825.65/0.993 (Y) —
Tiane (TE) WEI 770.24/0.985 763.67/0.988 (Y) — —
Boluo (BL) GA 707.72/0.987 — 702.34/0.991 (Y) —
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4.4. Construction of the SSIvar

Based on the GAMLSS model, both the time-dependent SSI (SSIvar) and traditional SSI were
employed to identify drought characteristics in the selected eight basins during 1961–2013. It can
be seen from Figure 7 that noticeable differences existed in the values of cumulative probability F(x)
for calculating SSI and SSIvar. The deviations of F(x) for SSI and SSIvar for different hydrological
stations were varying in degree (Figure 7). Taking Luanxian and Wangjiaba stations as examples, the
matching points were distributed around 1:1 line in Wangjiaba while the points were deviated from
1:1 line in Luanxian. The root mean square error (RMSE) of Luanxian (0.189) was larger than that
in Wangjiaba (0.052). This may be because the streamflow series in Luanxian has change point and
significant variation trend. During the procedure of SSI calculation, the cumulative probability F(x)
was transformed to a standard normal deviation with a zero mean and unit variance, which is the
value of SSI. Thus, the deviations of F(x) for calculating SSI and SSIvar could result in the differences
between SSI and SSIvar.
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Figure 7. Comparison of the cumulative probability F(x) between SSI and time-dependent SSI (SSIvar)
for eight hydrological stations during 1961–2013.

Taking Luanxian, Huaxian, Danjiangkou and Tiane as examples, to show the influence of change
of parameter clearly, the SSIvar and traditional SSI during 1960–2013 in four basins are shown in
Figure 8 (3-month scale) and Figure 9 (12-month scale). From Figures 8 and 9, it can be seen that
similar differences between SSI and SSIvar were observed in four basins at different time scales. For the
selected basins, the drought severity shown by SSIvar was first more severe than traditional SSI, and
then it was subsequently milder than traditional SSI. The stations with change points and significant
trend changes (i.e., Luanxian, Huanxian and Tiane) have larger deviations between SSI and SSIvar than
the other stations. For instance, for the basin above Luanxian station at 3-month scale (Figure 8a),
obviously lower values were detected by SSIvar during 1961–1968 compared to traditional SSI, while
notably higher values were found for SSIvar during 1992–2013. For the basin above Huaxian station at
12-month scale (Figure 9b), we can also observe that the values of SSI were higher than SSIvar during
1961–1990 (e.g., moderate drought was detected by SSIvar-12 in May 1972 (−1.43), while slight drought
was characterized by SSI-12 (−0.76)), while being lower than SSIvar during 1991–2013. As the SSI is
a standardized variate, the average values of the SSI and the standardized deviation must equal 0
and 1, respectively. Meanwhile, the two-sample Kolmogorov-Smirnov (KS) test [39] was used to test
whether two indexes cons from same distribution. The KS test statistically showed that SSI and SSIvar
are statistically different in Luanxian, Huaxian and Tiane stations at 95% confidence level (p < 0.05)
(Figures 8 and 9). It is worth noting that the boxplots of two SSI series show that the symmetry of
the SSIvar is superior to that of the SSI at different time scales (Figures 8 and 9), and it is closer to the
standard normal distribution (zero mean and unit variance). Thus, compared to the traditional SSI,
the SSIvar is capable of modeling the nonstationarity of streamflow series and is more appropriate for
hydrological drought assessment within a changing environment.
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5. Conclusions

In this study, streamflow series at eight different stations in the EAM region of China were
modeled with nonstationarity distributions using GAMLSS. Based on the constructed nonstationarity
distributions, the SSIvar was developed and used to estimate regional drought characteristics in the
selected basin. The main conclusions can be summarized as follows:

(1) Generalized Additive Models in Location, Scale and Shape (GAMLSS) provide a flexible and
useful framework for modeling distributions of streamflow series considering both trend and
change point. In particular, they provide the capability for modeling the non-stationarities in
streamflow records.

(2) Based on the selected optimal distribution, the developed SSIvar is capable of taking the
nonstationarity of streamflow series into account; thus, it is likely to be more reliable and suitable
than the traditional SSI for drought assessment in a changing environment. The differences
between the SSIvar and SSI indicate that the presence of nonstationarity should be considered in
regional drought assessment. The SSIvar is proven to be a feasible alternative for drought forecast
and water resource management under changing environment.
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