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Abstract: The present article investigates dry and wet periods in a large area of the Mediterranean
basin. First, a stochastic model was applied to a homogeneous database of monthly precipitation
values of 46 rain gauges in five regions of southern Italy. In particular, after estimating the model
parameters, a set of 104 years of monthly precipitation for each rain gauge was generated by means
of a Monte Carlo technique. Then, dry and wet periods were analyzed through the application of
the standardized precipitation index (SPI) over 3-month and 6-month timespan (short-term) and
12-month and 24-month period (long-term). As a result of the SPI application on the generated
monthly precipitation series, higher occurrence probabilities of dry conditions than wet conditions
have been detected, especially when long-term precipitation scales are considered.
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1. Introduction

Recently, the adverse impacts of climate change have become a main focus of the scientific
community, due to the possible intensification of extreme phenomena such as heat waves, forest
fires, flood and droughts [1]. In fact, given the changes in the precipitation patterns triggered
by anthropogenic climate change, several cities in the world are registering an increase in their
vulnerability to flooding, also due to rapid urbanization [2,3]. Moreover, a warmer climate could cause
an increase in the burned area and an extension of the fire season in the next decades [4]. In particular,
the Mediterranean region has recently suffered from a temperature increase faster than the global
mean and, with the warming and drying projections, this area could be affected by more frequent heat
waves and dry spells [5]. In this scenario, the knowledge of drought phenomena plays an important
role for an appropriate planning and management of water resources [6,7]. In fact, different drought
events have affected Europe during recent decades [8–11] and an increase in the drought frequency is
expected in this century in some seasons and areas [12,13], following the recently evidenced variability
of precipitation and/or evapotranspiration [14–17]. The consequences of such changes can significantly
affect some areas, such as the Mediterranean Basin, already under stress from a water shortage, due to
a combination of a dry climate and excessive water demand [18]. At the same time, the knowledge of
wet conditions is also paramount because extreme wet conditions can cause flooding, damage crops,
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reduce yields, and contribute to groundwater contamination [19–21]. In fact, climate change could
also increase the risk of future hydrological extremes over a large regional scale and trigger further
pressure on water resource availability [22]. For these reasons, recently, several studies have focused
on the analyses of the distribution of dry and wet periods events in several parts of the world [23–29].

Generally, climate anomalies are evaluated by means of indices that allow scientists to characterize
them in terms of intensity, duration, frequency, recurrence probability and spatial extent [30,31].
Among these indices, the Standardized Precipitation Index (SPI) [32,33] has found widespread
application worldwide [34–38], in the Mediterranean basin [39–41] and also in Central [42] and
Southern Italy [43–48].

The SPI can be evaluated for several time-scales and allows for the investigation of different dry or
wet classes. Indeed, the SPI is considered one of the most robust and effective indices [49]. Moreover,
in order to evaluate the SPI, only precipitation data are required, and so it is easier to calculate than
more complex indices. Finally, the SPI allows for the comparison of dry or wet conditions in different
areas and for different time periods [40,50].

Unfortunately, in the study of long dry and wet periods, two kinds of problems can affect the
analysis. The first problem is related to the length of the precipitation series and to the limited number
of drought events in the historical data, especially with a long duration [51]. The second problem is
related to the presence of missing values in the precipitation series, which may significantly influence
the estimate of the event duration and the character of their alternation [52]. In order to overcome
such a difficulty, stochastic models are frequently used to produce long and complete precipitation
series that are statistically similar to historical records [53]. Specifically, numerous approaches for the
stochastic modeling of daily precipitation data are available in the hydrological and climatological
literature [54–62]. However, very little work has been done on stochastic generation of monthly
precipitation data [63] because in the past, low attention was paid to this time aggregation. In this
context, several authors applied the Monte Carlo simulation for drought analysis [64]. In particular,
Montaseri and Amirataee [65] evaluated the inherent performance of seven meteorological drought
indices in several parts of the world characterized by different climatic conditions. They highlighted
the advantages of application of the Monte Carlo technique in drought monitoring and recommended
to not only count on historical data series when long-term drought events have to be generalized.
In this paper, as opposed to past studies which have focused on the analysis of daily precipitation in
limited area, a recently proposed model [48] for the stochastic simulation of monthly precipitation
data has been adapted and applied on a large area. The aim of this study is to analyze the probabilistic
occurrence of dry and wet periods through the application of the SPI to monthly precipitation series
generated by a Monte Carlo procedure based on a data set of 46 rain gauges uniformly distributed on
a large part of Southern Italy.

The paper has been structured in two main sections. In Section 2, first a brief description of the
study area is presented and, then, the procedure for stochastic modeling of precipitation at monthly
scale and the SPI method have been described. In Section 3, results of the application of the SPI on the
monthly precipitation, generated for each rain gauge by means of a Monte Carlo technique based on
the stochastic model, are presented and discussed.

2. Materials and Methods

2.1. Case Study

The region under investigation, with an area of about 85,000 km2, is a large portion of southern
Italy, ranging from Campania and Apulia in the North, to Sicily in the South (Figure 1).
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Figure 1. Study area with the locations of the 46 rain gauges.

The study area is located in the middle of the Mediterranean basin and is characterized by peculiar
climatic conditions. In particular, the islands and the coastal areas are dominated by a Mediterranean
climatic regime, characterized by mild and rainy winters and hot and dry summers. In the inland and
the mountainous areas an Apennine climate prevails, with very cold winters and hot summers, and a
rather uniform precipitation distribution throughout the year.

The database used in this study has been extracted by the one presented in Longobardi et al. [66]
in which available precipitation data were tested for time series homogeneity through the combined
use of direct and indirect methods. The database consists of 46 monthly precipitation series, in the
period 1916–2006, with an average density of about 1 station per 1850 km2 (Figure 1 and Table 1).

2.2. Stochastic Modeling of Monthly Precipitation

In this subsection, the procedure proposed by Caloiero et al. [48] for the generation of synthetic
monthly precipitation data is briefly presented.

Being Hij (j = month; i = year) the sequence of random variables which describes the cumulated
precipitation from a non-specified origin i = 0, and defining Nj as the number of days of the j-month
and I0 as a generic reference value of the daily precipitation intensity (assumed in this work equal to
1 mm/day), the dimensionless random variables:

Xij =
Hij

Nj I0
, (1)

indicate a sequence which can be described as a discrete cyclostationary stochastic process with period
P equal to 12 months.

By adopting the transformation Yij = Xλ
ij (for λ > 0 and Xij > 0), finalized to the gaussianisation of

the process, the sequence of random variables Zk:
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Zk =
Yij − µY,j

σY,j
with k = 12i + j, (2)

is a standardized stationary Gaussian stochastic process, where both the functions µY,j = Ei
(
Yij
)

and

σY,j =

√
Ei

(
Y2

ij

)
− µ2

Y,j are employed to the deseasonalization of the monthly precipitation process.

Table 1. Main details of the selected rain gauges.

ID Code Rain Gauge Region Longitude Latitude No. of Years of Observation

1 Benevento (Genio Civile) Campania 14.769 41.117 72
2 Bisaccia Campania 15.380 41.008 82
3 Casalvelino Campania 15.102 40.184 76
4 Caserta (Genio Civile) Campania 14.319 41.067 81
5 Nusco Campania 15.088 40.886 84
6 S. Angelo a Fasanella Campania 15.336 40.451 80
7 Salerno (Genio Civile) Campania 14.736 40.667 79
8 Cersosimo Basilicata 16.348 40.051 65
9 Grassano Basilicata 16.270 40.632 61

10 Lagopesole Basilicata 15.737 40.804 83
11 Maratea Basilicata 15.717 39.984 62
12 Pisticci Basilicata 16.735 40.295 67
13 Vaglio di Lucania Basilicata 15.916 40.667 68
14 Altamura Apulia 16.554 40.824 86
15 Bari (Osservatorio) Apulia 16.873 41.118 86
16 Biccari Apulia 15.191 41.393 84
17 Brindisi Apulia 17.938 40.629 86
18 Cerignola Apulia 15.906 41.264 85
19 San Marco in Lamis Apulia 15.637 41.711 87
20 Santa Maria di Leuca Apulia 18.356 39.800 85
21 Taranto Apulia 17.251 40.465 86
22 Vieste Apulia 16.176 41.881 86
23 Campotenese Calabria 16.068 39.873 79
24 Capo Spartivento Calabria 16.056 37.927 68
25 Cassano allo Ionio Calabria 16.319 39.783 74
26 Cecita Calabria 16.538 39.400 70
27 Cittanova Calabria 16.078 38.352 77
28 Cosenza Calabria 16.265 39.287 79
29 Filadelfia Calabria 16.293 38.787 76
30 Isola di Capo Rizzuto Calabria 17.094 38.961 67
31 Joppolo Calabria 15.905 38.592 68
32 San Pietro in Guarano Calabria 16.314 39.346 72
33 Scilla Calabria 15.720 38.252 64
34 Tiriolo Calabria 16.510 38.940 58
35 Acireale Sicily 15.159 37.599 85
36 Castelbuono Sicily 14.079 37.929 81
37 Castronuovo di Sicilia Sicily 13.599 37.679 82
38 Chiaramonte Gulfi Sicily 14.699 37.029 86
39 Floresta Sicily 14.909 37.979 85
40 Leonforte Sicily 14.379 37.629 81
41 Noto Sicily 15.059 36.879 82
42 Palermo Oss. Astronomico Sicily 13.349 38.099 61
43 Palma di Montechiaro Sicily 13.759 37.199 81
44 San Saba Sicily 15.499 38.279 69
45 Sciacca Sicily 13.079 37.499 85
46 Trapani Sicily 12.499 38.009 84

The mean µY,j and the variance σ2
Y,j functions can be described by means of expansion of truncated

Fourier series, expressed as linear superposition of sine and cosine functions with different frequencies.
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The estimation procedures of the number of harmonics (N(µ)
h and N(σ2)

h ) and of the parameters of both
the functions µY,j and σY,j are well described in Caloiero et al. [48].

Generally, a weak correlative structure appears in the sequence of the random variables Zk.
If this correlation is significant, it can be modelled as an autoregressive process of order p. Being Zk
standardized Gaussian variables and considering a white noise standardized Gaussian process Wk,
it can be written:

Zk = ψ0Wk +
p

∑
l=1

ϕlZk−l , (3)

Using the sample values rZ,l of the autocorrelation coefficients of lag l (l = 1, .., p) of the sequence
Zk, by solving the Yule-Walker system it is possible to estimate the parameters ϕl and consequently ψ0

with the following relation [67]:

ψ̂0 =
√

1 − ∑p
l=1 ϕ̂lrZ,l (4)

The p-order of the autoregressive process can be fixed as the minimum value for which cannot
be rejected the hypothesis H(ρν)

0,p that the sample biases wp,k =
(

zk − ∑
p
l=1 ϕ̂lzk−l

)
/ψ̂0 with k = p + 1,

p + 2 are uncorrelated (for lag v = 1, 2, . . . ). The Anderson test [68,69] allows to test the hypothesis
H(ρν)

0,p at a significance level α. The test must be applied also in the case p = 0, for which W0,k = Zk and
w0,k = zk, in order to verify the hypothesis that the process Zk can be considered as a white noise.

2.3. Standardized Precipitation Index

In this study, dry and wet periods were expressed using the SPI [32] on different time scales.
Indeed, it is generally agreed that the SPI on short-term scales (e.g., 3 or 6 months) describes drought
affecting vegetation and agricultural practices, while on long-term scales (e.g., 12 or 24 months) it
is a broad proxy for water resource management [70]. Angelidis et al. [71] described in detail the
calculation of SPI. The index is computed by fitting an appropriate probability density function (pdf)
to the frequency distribution of precipitation summed over the time scale of interest (usually 3, 6,
12, and 24 months). This is performed separately for each time scale and for each location in space.
Computation of the SPI involves fitting a gamma function to a given time series of precipitation,
with probability density function (pdf) defined as:

g(x) =
1

βαΓ(α)
xα−1e−x/β for x > 0, (5)

where α > 0 is a shape parameter, β > 0 is a scale parameter, x > 0 is the amount of precipitation
and Γ(α) is the gamma function. Fitting the distribution to the data requires α and β to be estimated
for each month of the year and for each time aggregation. Using the approximation of Thom [72],
these parameters can be estimated as follows:

α =
1

4A

(
1 +

√
1 +

4A
3

)
, β =

x
α

with A = ln(x)− ∑ ln(x)
n

, (6)

where n is the number of observations. Integrating the pdf with respect to x yields the cumulative
distribution function (cdf) G(x):

G(x) =
x∫

0

g(x)dx =
1

βαΓ(α)

x∫
0

xα−1e−x/βdx, (7)



Water 2018, 10, 336 6 of 17

It is possible to have several zero values in a sample set. In order to account for zero value
probability, since the gamma distribution is undefined for x = 0, the cdf for the gamma distribution is
modified as:

H(x) = q + (1 − q) G(x), (8)

where q is the probability of zero precipitation, given by the ratio between the number of zeros in the
precipitation series (m) and the number of observations (n).

Finally, the cdf is transformed into the standard normal distribution to yield the SPI. Following
the approximate conversion provided by Abramowitz and Stegun [73], it results:

z = SPI = −
(

t − c0 + c1t + c2t2

1 + d1t + d2t2 + d3t3

)
, t =

√√√√ln

(
1

(H(x))2

)
for 0 < H(x) < 0.5, (9)

z = SPI = +

(
t − c0 + c1t + c2t2

1 + d1t + d2t2 + d3t3

)
, t =

√√√√ln

(
1

(1 − H(x))2

)
for 0.5 < H(x) < 1, (10)

where c0, c1, c2, d1, d2 and d3 are mathematical constants.
Although McKee et al. [32] originally proposed a classification restricted only to drought periods,

it has become customary to use the index to classify wet periods as well. Table 2 reports the climatic
classification according to the SPI, provided by the National Drought Mitigation Center (NDMC,
http://drought.unl.edu).

Table 2. Climate classification according to the Standardized Precipitation Index (SPI) values [32].

SPI Value Class Probability (%)

SPI ≥ 2.0 Extremely wet 2.3
1.5 ≤ SPI < 2.0 Severely wet 4.4
1.0 ≤ SPI < 1.5 Moderately wet 9.2
0.0 ≤ SPI < 1.0 Mildly wet 34.1
−1.0 ≤ SPI < 0.0 Mild drought 34.1
−1.5 ≤ SPI < −1.0 Moderate drought 9.2
−2.0 ≤ SPI < −1.5 Severe drought 4.4

SPI < −2.0 Extreme drought 2.3

3. Results

In order to generate the long synthetic monthly precipitation series, for each of the selected 46 rain

gauges, the parameters of the applied model (λ, number of harmonics N(µ)
h and N(σ2)

h , and p order of
the autoregressive model) were estimated (Table 3). In particular, for the mean function, the number of
harmonics N(µ)

h have been evaluated equal to 2 for almost all the rain gauges, with the exception of
the Capo Spartivento, Castelbuono, Floresta, Palermo and Trapani gauges for which 3 harmonics are
needed. From Figure 1 it can be easily seen that all these 5 rain gauges lies on an ideal horizontal line,
thus evidencing a possible connection between the obtained results and the latitude. Moreover, 4 out
5 of these rain gauges, all in the northern side of Sicily, are exposed to the north-western air currents.

For the variance function, Table 3 shows more heterogeneous results in the number of harmonics N(σ2)
h :

1 harmonic has been evaluated for 15 out of 46 rain gauges (33%), 2 harmonics for 25 rain gauges (54%)
and 3 harmonics for the other 6 rain gauges (13%), thus no clear clusters can be identified.

For all the rain gauges, the sequences of observed values zk showed low linear correlation
coefficients, but not low enough to consider the process Zk uncorrelated. In fact, the application of the
Anderson test, with a lag vmax = 24, to the zk series evidenced that only for 18 rain gauges the process
Zk can be considered as a white noise (p = 0), while for the other 28 precipitation series, it is sufficient
to adopt an autoregressive model of order p = 1.

http://drought.unl.edu
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Table 3. Values of the transformation parameter λ, number of harmonics N(µ)
h and N(σ2)

h for the mean
and the variance functions, respectively, and p-order of the autoregressive model, estimated for each
rain gauge.

ID Code Rain Gauge λ N(µ)
h N(σ2)

h
p

1 Benevento (Genio Civile) 0.436 2 1 1
2 Bisaccia 0.546 2 1 1
3 Casalvelino 0.490 2 3 0
4 Caserta (Genio Civile) 0.473 2 2 1
5 Nusco 0.510 2 2 1
6 S.Angelo a Fasanella 0.429 2 2 1
7 Salerno (Genio Civile) 0.433 2 2 0
8 Cersosimo 0.359 2 1 0
9 Grassano 0.429 2 2 1

10 Lagopesole 0.469 2 2 1
11 Maratea 0.461 2 2 0
12 Pisticci 0.352 2 1 1
13 Vaglio Di Lucania 0.444 2 3 0
14 Altamura 0.431 2 2 0
15 Bari (Osservatorio) 0.413 2 2 0
16 Biccari 0.488 2 2 1
17 Brindisi 0.393 2 2 0
18 Cerignola 0.407 2 1 1
19 San Marco in Lamis 0.431 2 2 0
20 Santa Maria di Leuca 0.383 2 3 1
21 Taranto 0.374 2 2 1
22 Vieste 0.392 2 1 1
23 Campotenese 0.466 2 2 1
24 Capo Spartivento 0.338 3 2 0
25 Cassano allo Ionio 0.473 2 2 0
26 Cecita 0.442 2 2 1
27 Cittanova 0.401 2 1 1
28 Cosenza 0.477 2 2 1
29 Filadelfia 0.477 2 3 1
30 Isola di Capo Rizzuto 0.315 2 3 1
31 Joppolo 0.498 2 1 0
32 San Pietro in Guarano 0.513 2 2 1
33 Scilla 0.484 2 1 1
34 Tiriolo 0.405 2 2 1
35 Acireale 0.299 2 1 0
36 Castelbuono 0.390 3 2 0
37 Castronuovo Di Sicilia 0.389 2 1 0
38 Chiaramonte Gulfi 0.371 2 1 1
39 Floresta 0.378 3 2 0
40 Leonforte 0.363 2 1 1
41 Noto 0.320 2 1 1
42 Palermo Oss. Astronomico 0.431 3 2 0
43 Palma di Montechiaro 0.333 2 3 0
44 San Saba 0.381 2 2 1
45 Sciacca 0.331 2 1 1
46 Trapani 0.408 3 2 1

After the parameters estimation, 104 years long synthetic series have been generated for each rain
gauge through a Monte Carlo procedure, and the SPI data were evaluated both for short (SPI3 and SPI6)
and long (SPI12 and SPI24) time scales. Considering the SPI classification (Table 2), the occurrence
probabilities of the various classes of dry and wet conditions were evaluated for each rain gauge.
The results were also spatially interpolated using a spline technique.

Figure 2 shows the results obtained through the evaluation of the SPI over a 3-month timespan.
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Figure 2. Maps of the monthly occurrence probabilities of Extreme drought (a), Severe drought (b),
Moderate drought (c), Extremely wet (d), Severely wet (e) and Moderately wet (f) conditions for the
3-month SPI.

Concerning the extreme drought conditions (Figure 2a), few areas located in the Campania
and Calabria regions evidenced probability values greater than 3%, while most of the study area,
and particularly the Tyrrhenian side, showed extreme droughts probabilities ranging between 2.5%
and 3% (Figure 2a). The areas (Figure 2b) with the highest probabilities of severe droughts (till an
occurrence probability of 5.5%) are similar to the ones obtained for the extreme drought conditions,
even though most of the study area showed probabilities ranging between 4% and 4.5% (Figure 2b).
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As regards the distribution of the occurrence probability of moderate droughts (Figure 2c), the highest
values have been evaluated in the Campania region, in the same area where the highest extreme and
severe dry values have been identified, and on the eastern and the south-eastern sides of Calabria
and Sicily, respectively (Figure 2c). For this drought class, most part of the study area presented
probabilities ranging between 8% and 9%. Concerning the occurrence probability distributions of
wet conditions (Figure 2d–f), generally opposite results than those referred to dry conditions have
been detected. However, there are areas where high probability values were evaluated for both dry
and wet conditions which are mainly located on the Ionian side of the Basilicata and the Calabria
regions (Figure 2d,e). As a general result, for this short time-scale (3 months), the probabilities of dry
conditions are higher than those of wet conditions. This is confirmed by Figure 3, in which the results
obtained for both dry and wet conditions, at the various time-scales, are summarized.
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Figure 3. Box-plots of the regional occurrence probabilities of Extreme, Severe and Moderate drought
and wet conditions for the 3-month (a), 6-month (b), 12-month (c) and 24-month (d) SPI. The lines
indicate the theoretical values proposed by McKee et al. [32].

In particular, for the 3-month SPI (Figure 3a), the average probabilities values of the severe and
extreme drought conditions are higher than those corresponding to the severe and extreme wet ones.
Moreover, the average probability value of the extreme drought condition (about 2.5%) is higher than
the theoretical one (2.3%) presented by McKee et al. [32].

Figure 4 shows the results of the occurrence probabilities evaluated for the 6-month SPI.
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Moderate drought (c), Extremely wet (d), Severely wet (e) and Moderately wet (f) conditions for the
6-month SPI.

In particular, Figure 4a points out the spatial distribution of the probabilities of extreme droughts.
The highest probability values (>3%) have been localized in two small areas of Northern Calabria and
Northern Sicily. The spatial probability distribution of severe values (Figure 4b) showed similar results
to those evaluated for the 3-month SPI but with higher values, reaching 6% in some areas of Campania
and Calabria. Regarding the moderate drought conditions (Figure 4c), most part of the study area
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presented occurrence probability values ranging between 8% and 9% with the highest probabilities
mainly identified in Campania and Calabria (values > 10%).

Also for the 6-month SPI, the extreme and severe wet conditions (Figure 4d,e) showed lower
probabilities values than the ones obtained for dry conditions, with the highest values detected only in
small areas of Apulia, Basilicata, Calabria and Sicily (between 2.5% and 3%).

Concerning the severe conditions, most of the study area evidenced probability values lower
than 4% and between 4% and 4.5%, with Sicily showing probability values higher than the other three
regions of the study area. Finally, the moderate wet conditions (Figure 4f) showed high probability
values (between 9% and 10%) across almost all the study area and in particular between Apulia and
Basilicata, on the Tyrrhenian side of Calabria and in large coastal areas of Sicily. Similar to the 3-month
SPI, also for the 6-month SPI (Figure 3b), the average probability values of severe and extreme dry
conditions are always greater than the wet ones.

In Figure 5a the spatial distribution of the occurrence probabilities of extreme drought values
for the 12-month SPI are shown. The highest probability values (>3%) have been detected in the
northern parts of Campania and Apulia, on the Tyrrhenian side of Calabria and on the northernmost
and the southernmost areas of Sicily. The majority of the study area presented probability values
ranging between 1.5% and 2.5%. Concerning the severe drought, only limited areas in Calabria and
Campania presented occurrence probabilities values higher than 6% (Figure 5b), while almost all
the study area evidenced occurrence probabilities lower than 4%. As regards the moderate drought
conditions (Figure 5c), a large portion of the study area showed probabilities values ranging between
8% and 10%, with the highest values (>10%) located in Calabria, Campania and in the southernmost
part of Sicily. Generally, the wet conditions (Figure 5d–f) presented lower probabilities than the dry
ones. In particular, while similar results (occurrence probabilities >3%) have been identified in Apulia
and in Sicily for extreme wet (Figure 5d) and drought conditions, the severe wet conditions showed
very low occurrence probabilities (<4%) for almost all the study area (Figure 5e).

Regarding the moderate wet range (Figure 5f) of the 12-month SPI values, Sicily and Apulia
showed the highest probabilities values (between 8% and 10%). Figure 3c shows that for the 12-month
SPI the average probability values of the different dry classes are always higher than the wet ones.

Finally, concerning the 24-month SPI, the results of the spatial analysis are shown in Figure 6.
The highest probability values for the extreme drought conditions (>3%) have been detected in northern
Campania, in the northern Tyrrhenian side of Calabria and in the northernmost and southernmost
areas of Sicily (Figure 6a). The majority of the investigated territory presented probability values of
severe dry conditions lower than 4%, with only few areas of Campania, Calabria and Sicily, where the
probabilities reach values greater than 6% (Figure 6b).

Regarding the moderate dry values for the 24-month SPI (Figure 6c), a large portion of the study
area on the Tyrrhenian side, covering parts of the Campania, Basilicata and Calabria regions, showed
probability values higher than 10%.

As regards the wet extreme values, a high percentage of the study area presented probabilities
lower than 1%. In fact, only two small areas in Sicily evidenced probability values higher than 3%
(Figure 6d). Similar results have been obtained for the severe wet conditions (Figure 6e) while for the
moderate wet values, the highest probabilities, although lower than 10%, have been detected in Sicily
and Apulia. The differences between dry and wet values of the 24-month SPI are clearly summarized
in Figure 3d, which confirms that the average probability values of the different dry classes are always
higher than the wet ones.

As a summary of the results obtained for the severe and extreme drought conditions, on a
short-term the highest probability values have been mainly obtained in few areas located in the
Campania and Calabria regions while, considering the long-term, the highest probability values have
been detected in the northern parts of Campania, on the Tyrrhenian side of Calabria and on the
northernmost and the southernmost areas of Sicily.
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The results of this paper confirm that there are more chances for dry conditions than wet
conditions [74,75]. This is a critical issue for agricultural areas such as southern Italy, that suffers
climate change [76–78] which is a major driver of agricultural and meteorological drought.
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4. Conclusions

The investigation of dry and wet periods in a large area of southern Italy, through the stochastic
modeling of 46 monthly precipitation series and the subsequent synthetic generation by means of
a Monte Carlo technique, allowed the comparison among the occurrence probabilities of different
classes of SPI values, for both short- and long-term periods. The obtained results showed a decreasing
tendency of the occurrence probability of both dry and wet conditions when the time scale increases
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(passing from 3 to 24 months), with the exception of the moderate dry conditions that presented a
different behavior. In fact, in a large area partially covering mainly Campania and Basilicata regions,
higher than expected probability values for moderate droughts coexist with lower than expected
probability values for moderately wet periods, thus evidencing the clear shift towards drier conditions.
The results also show some areas where both the dry and wet conditions reach the maximum of
probability values, evidencing high variability of precipitation temporal distribution. In general,
the average values of occurrence probability both of dry and wet conditions are almost always lower
than the experimental McKee values, with the exception of the extreme dry SPI3 values.
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