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Abstract: The purpose of this paper is to compare the degree of uncertainty of the water
scarcity footprint using the Monte Carlo statistical method and block bootstrap method. Using the
hydrological data of a water drainage basin in Korea, characterization factors based on the available
water remaining (AWARE) model were obtained. The uncertainties of the water scarcity footprint
considering temporal variations in paddy rice production in Korea were estimated. The block
bootstrap method gave five-times smaller percentage uncertainty values of the model output
compared to that of the two different Monte Carlo statistical method scenarios. Incorrect estimation
of the probability distribution of the AWARE characterization factor model is what causes the higher
uncertainty in the water scarcity footprint value calculated by the Monte Carlo statistical method in
this study. This is because AWARE characterization factor values partly follows discrete distribution
with extreme value on one side. Therefore, this study suggests that the block bootstrap method is
a better choice in analyzing uncertainty compared to the Monte Carlo statistical method when using
the AWARE model to quantify the water scarcity footprint.

Keywords: water scarcity footprint; characterization factor; uncertainty analysis; Monte Carlo
statistical method; block bootstrap; probability distribution

1. Introduction

Increasing interest in water footprints has led to the publication of the international water footprint
standard, ISO 14046 [1]. A water footprint consists of two major pillars: water quality degradation
and water consumption [1,2]. From the perspective of a life cycle assessment (LCA), the emission and
water consumption of a product and/or organization are called its life cycle inventory. The potential
impact of environmental emissions is a function of the background concentration of the affected area.
Likewise, the potential impact of water consumption is a function of the water demand and availability
in the affected area [3]. In the context of ISO 14046, the water scarcity footprint (WSF) is the potential
impact associated with the quantity of water consumption, without considering the water quality [1,4].
Water consumption can be divided into blue (surface and groundwater) and green (precipitation) water
from the perspective of water scarcity [5]. However, the impact pathway of green water consumption
is not well known [6] and it could double count with land use impact category [7]. Therefore, this study
only focused on blue water consumption.

To estimate the potential impact of blue water consumption, the water scarcity characterization
factors (CFs) should consider local conditions [1,5]. Most water scarcity CFs take into account
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local climatic characteristics such as drainage basins (spatial) and monthly variations (temporal)
in water supply and demand. There are many approaches to defining the CF of water scarcity such as
withdrawal to availability (WTA), consumption to availability (CTA), and availability minus demand
(AMD).

The CFs of WTA [8–13] and CTA [14–18] are based on the ratio of human water withdrawal
to hydrological water availability and the ratio of human water consumption to hydrological water
availability, respectively. The hydrological water availability of a drainage basin reflects the renewable
freshwater volume, which can be quantified using the long-term runoff [14,19]. Water withdrawal
is the anthropogenic removal of water from any water body or drainage basin, temporarily [1].
Water consumption is often used to describe the water that was removed from but not returned to the
same drainage basin [4,14–18]. Withdrawals can include large volumes of water that are returned to the
basin immediately after removal, which leads to an overestimation of the water scarcity [14]. Therefore,
it has been argued that a consumption-based (CTA) CF is more relevant than a withdrawal-based
(WTA) CF [15,19].

The CF of AMD [4] is based on the difference between the hydrological water availability
and water demand for both humans and ecosystem, which is the absolute scarcity (remaining
availability per area). This CF is also called available water remaining (AWARE). Recently, the United
Nations Environment Program/Society of Environmental Toxicology and Chemistry (UNEP/SETAC)
recommended using the AWARE CF for water scarcity [3].

A major drawback of the ratio approach (e.g., WTA or CTA) to quantifying the WSF is its inability
to represent the absolute water availability [4,20]. This sometimes leads to arid areas with less scarcity
than known water-abundant regions [6,19]. In addition, Boulay et al. [4] stated that a stochastic
uncertainty assessment of AWARE should be carried out in the future. Therefore, the AWARE CF
model was chosen in this study to quantify the uncertainty of the WSF.

From the perspective of the WSF, uncertainties are mostly associated with spatial and temporal
characteristics [1]. However, most WSF studies did not consider the uncertainty of the WSF [8–18].
Pfister and Hellweg, Nunez et al., and Scherer and Pfister estimated the uncertainty of water stress
index CF [21,22] and water scarcity CF [23] using the Monte Carlo statistical method (MCS). Pfister
and Hellweg [21] and Nunez et al. [22] assumed the parametric probability distribution of the input
variables (e.g., availability and consumption) and analyzed the uncertainty of the water stress index
CF. Scherer and Pfister [23] assumed a normal distribution for six global models (e.g., WaterGap2) and
analyzed the model uncertainty of the water scarcity CF.

Although MCS is the method of choice in uncertainty analysis of the WSF studies [21–23], its use
for uncertainty analysis has limitations. It requires defining the probability distribution of each input
variable, which might be more difficult if empirical information is unavailable [24]. Groen et al. [25]
compared four different uncertainty analysis methods (Monte Carlo sampling, Latin hypercube
sampling, Quasi-Monte Carlo sampling, and analytical uncertainty propagation) for greenhouse gas
emissions and found that the relative uncertainty results of the four methods are not significantly
different. However, they assumed that the parametric probability distributions are either normal
or lognormal and stated that these assumptions were the limitations of their work. Based on Chen
and Corson [24], expert judgment can help determine the statistical parameters of the distributions if
there is a lack of empirical information; however, this represents an additional source of uncertainty.
Therefore, other uncertainty methods should be considered for analyzing the uncertainty of the WSF if
the probability distribution of the input data is uncertain.

The objective of this research is to compare the uncertainty of the WSF associated with temporal
variability using two different uncertainty analysis methods: MCS and block bootstrap. Paddy rice
production in Korea was used as the case study for WSF uncertainty analysis in this study. A salient
feature of this study is that it is the first to compare the bootstrap method with the MCS method to
estimate uncertainty of the WSF.
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The Materials and Methods section describes the data collection for AWARE CFs and
irrigation water consumption for the paddy rice production in a specific river basin in Korea.
Moreover, it describes the application of two uncertainty methods: MCS and block bootstrap.
The Results and Discussion section details the results of using the two uncertainty analysis methods to
calculate the WSF of the paddy rice production. The Conclusion section explains the contribution of
this research to the field and future research directions.

2. Materials and Methods

2.1. Available Water Remaining (AWARE) Water Scarcity CF Model

The AWARE model quantifies the potential of water deprivation of either humans or ecosystems
and is used to calculate the WSF based on ISO 14046. Equations (1) and (2) show the definition of AMD
and CF, respectively [3,4]. The model is based on the available water remaining per unit of surface in
a given watershed relative to the world average after human and aquatic ecosystem demands have
been met.

AMDi,j =
Ai,j −

(
Ci,j + EWRi,j

)
Areaj

(1)

CFi,j =
1/AMDi,j

1/AMDworld avg
=

AMDworld avg

AMDi,j
(2)

Here, Ai,j is the water availability in the ith month in region j (m3/month), Ci,j is the human water
consumption (m3/month), EWRi,j is the environmental water requirement (m3/month), Areaj is the
jth area (m2), and AMDworld avg is the world average AMD (m3/(m2·month)).

The sum of human water consumption and environmental water requirement is referred to as
demand. The unit of AMDi,j is m3/(m2·month); CFi,j is dimensionless, expressed as m3

world-eq/m3
i,j.

When AMDi,j is 100 times less than the AMD world average, the CF is given the maximum value of
100. When AMDi,j is 10 times greater than the AMD world average, CF is given the minimum value
of 0.1 [4].

2.2. Case Study for Uncertainty Analysis

As defined earlier, the WSF is the potential impact associated with the quantity of the water
consumption. The functional unit (fu) of paddy rice production was 1 kg of rice. The WSF of the paddy
rice production per functional unit was calculated using the linear WSF model shown in Equation (3).

WSF = Xg (3)

Here, WSF (m3
world-eq/fu) is the potential impact of the water consumption by paddy rice

production per functional unit, X is the vector of the mean monthly CFi (m3
world-eq/m3

region, 1 × 12)
based on the AWARE model, and g is the inventory vector (m3

region/fu, 12 × 1) representing the
monthly load of the paddy rice production.

Because the focus of this paper is to assess the uncertainty of the WSF, Geum River Basin in
Korea was chosen for the case study. It is assumed that the water consumption for the paddy rice
production in a given month is uniform in the chosen basin not considering temporal (year-to-year)
variation. Therefore, monthly water consumption of the rice production was treated as constant in the
WSF model. However, the CF was treated as a random variable in Equation (3) in order to consider
temporal (year-to-year) variation.
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2.2.1. Paddy Rice Production

Paddy rice production consumes more than 95% of all water during irrigation [26,27].
The electricity consumption, fuel consumption, and pesticide and fertilizer consumption were therefore
excluded from the system boundary of the rice production as shown in Figure 1.Water 2018, 10, x FOR PEER REVIEW    4 of 12 
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Figure 1. System boundary for the water scarcity footprint of paddy rice production.

The water consumption of rice production was estimated using the annual consumption of
irrigation water [28] and annual rice production in the Geum River Basin. Water for rice production
is only consumed during irrigation periods (April to September); thus, monthly variations exist.
The monthly ratio of irrigation water consumption for irrigation periods for the Geum River Basin was
collected from the Rural Agricultural Water Resource Information System [29]. The yearly average
water consumption of the rice production was 0.51 m3

Geum/fu.

2.2.2. Characterization Factor Data Sources

The AWARE method uses the WaterGAP2.2 model to estimate the hydrological data
(water availability and human demand); data is available for the 34 largest watersheds in the world [30].
However, Nunez et al. [22] encourage updating the water stress index CF using information at the
national level because the global model (e.g., WaterGAP2.2) may not represent the local condition
of specific basins in a country. Thus, data on the natural runoff and water withdrawal was collected
from the Korea National Water Resources Management Systems [28,29]. Based on the collected data,
water availability, human demand, and ecosystem demand were estimated.

The water availability was estimated to be the actual runoff, including the human impact on the
flow regulation [4]. However, the Korea National Water Resources Management System, which is
based on Precipitation-Runoff Modeling System model, only provides natural runoff data, proven
to closely mimic the natural water availability in Korea [31]. Therefore, the ratio between actual
runoff and natural runoff provided by Water Use in Life Cycle assessment (WULCA, Basin ID 36565)
was multiplied with long-term monthly natural runoff data from the Precipitation-Runoff Modeling
System and used as the water availability in the Geum River Basin in Korea. The temporal boundary
of the water availability was 45 years (1970–2014).

Monthly water withdrawal data for the year of 2014 was used to estimate the human demand to
meet the guideline of the LCA initiative, which requires using the water consumption of the current
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state [3]. Water withdrawal data was collected from the Water Resource Management Information
System [28] in the Geum River Basin. Domestic and industrial water withdrawal and agricultural
water withdrawal were converted into water consumption by applying return flow rates of 65% and
35%, respectively [32,33].

Pastor et al. [34] stated that the variable monthly flow method is a valid and easy method for
the implementation of global hydrological models. Therefore, in this paper, the environmental water
requirement (EWR) was estimated using pristine flow (i.e., natural runoff) with the percentage of
variable monthly flow method. It allocates 30–60% of mean monthly flow as a function of seasonal
flow pattern: 30% of mean monthly flow to EWR during high-flow seasons when mean monthly flow
is over 80% of the mean annual flow, 45% of mean monthly flow during intermediate seasons when
mean monthly flow is over 40% and below 80% of the mean annual flow, and 60% of mean monthly
flow during low-flow seasons when mean monthly flow is below 40% of mean annual flow [34].

2.3. Uncertainty of the WSF Associated with Temporal Variability

Two different methods were used to estimate the uncertainty associated with temporal variability
of the value of the WSF in Equation (3): MCS and block bootstrap. Both methods were used to estimate
the variance and mean of the WSF with a confidence interval.

2.3.1. Monte Carlo Statistical Method

The MCS method, a stochastic method to estimate the uncertainty of the model output,
calculates the model output based on generated input data. The procedure is repeated many times
(e.g., 10,000 iterations) to obtain the probability distribution of the WSF model output from which the
mean, variance, and confidence interval of the WSF can be computed. In this study, 10,000 iterations
were used according to the recommendations by Martorell et al. [35].

In principle, MCS is performed in four steps [36]: (i) choose the probability distribution of a chosen
input variable, Xi, and identify the value of statistical parameters such as the mean and variance if
the probability distribution is normal. If it is not, find the relevant probability distribution and values
of its statistic; (ii) generate random deviates from a given probability distribution of Xi using the
transformation method, where the method transforms the uniform variate of r [0,1] of the uniform
distribution to a random deviate Xi of a certain interval of a predetermined probability distribution.
This transformation is based on the conservation of the probability of the two distributions; (iii) repeat
the previous two steps for all the chosen Xi and compute the model output z for the generated random
deviates of all input variables; and finally, (iv) identify the mean (Z), standard deviation, and confidence
interval of the model output at the 95% confidence level. The Spearman coefficient was applied to
account for the dependence between monthly CFs. This is because the Spearman correlation measure
is robust for non-Gaussian marginal densities [37]. In addition, the correlation coefficient between
the input variables is not zero, which indicates that there is some degree of association between the
monthly CFs, that is, a nonzero correlation coefficient implies two input variables share some degree
of correlation [38].

To apply the MCS method to Equation (3), the equation should be expressed as

WSF =
12

∑
i=1

giXi (4)

The X in both Equations (3) and (4) represent CF. However, X in Equation (3) is the mean value of
the monthly CFs, while X in Equation (4) represents random variable with annual variation.

Three different scenarios were chosen to compare the effect of different probability distributions
of Xi (i.e., CFi) on the WSF: (i) all input variables follow parametric probability distributions;
(ii) all input variables follow nonparametric probability distributions (i.e., empirical distributions);
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and (iii) the combined case, where input variables either follow nonparametric or parametric
probability distributions.

In the case of the parametric probability distribution, the relevant probability distribution of Xi
(i.e., CFi) in the Geum basin was estimated using the Anderson–Darling method [39]; the parameter
values of Xi were estimated. The hypotheses to test the parametric probability distribution using
the Anderson–Darling test were that in H0, the input data follows a specific distribution; and in H1,
the input data does not follow a specific distribution. For the goodness-of-fit test, 13 parametric
probability distributions were used: lognormal, Pareto, Weibull, gamma, logistic, extreme value,
Student’s-t, normal, Beta, BetaPERT, exponential, uniform, and triangular. If the p-value is less than
0.05, the null hypothesis is rejected. In general, if one cannot estimate the probability distribution,
either normal or lognormal distributions are assumed in the LCA [40,41].

The empirical distribution based on the histogram was used to estimate the probability
distribution in the nonparametric probability distribution case. For the combined case, the input
variables not following a specific distribution were estimated using the empirical distribution.

The value of the WSF, which is the mean of the simulated runs, and variance of the WSF are
obtained by solving Equation (4). The output of this method includes the mean (WSF), variance,
and confidence interval of the WSF. The confidence interval of the model output of the MCS was
obtained using the percentile approach, where the upper and lower bounds of 95% confidence interval
were the 0.025 and 0.975 quantiles of the model outputs, respectively.

2.3.2. Block Bootstrap Method

The bootstrap method is based on a resampling of the sample dataset with replacement.
It calculates the difference between the resampled mean and sample mean repeatedly (e.g., number
of iterations R = 1000). In this study, 1000 iterations were used according to the recommendations
by Pattengale et al. [42]. The premise of the method is that the difference between the resampled
data mean and sample mean is approximately equal to the difference between the sample mean and
population mean [43].

The bootstrap method described above or the empirical bootstrap method cannot be applied
to dependent data such as in this study because the empirical bootstrap method does not consider
covariance. Lahiri [44] stated that independent and identically distributed bootstrap methods fail
when it comes to dependent data. It would be a mistake to resample sequential scalar quantities
because the reshuffled resamples would break the temporal dependence. Thus, we decided to use the
block bootstrap method instead.

The block bootstrap method employed in this study divides the original water scarcity CFi,j

data (45 × 12 matrix) into 45 (years) non-overlapping blocks with a length of 12 (months). This is
intended to keep the 12-month data from a given year in a block. The concept of the block bootstrap
method is that if a block is long enough (45 years in this study), the dependence of the original data
of each monthly CF (water scarcity CFi,j) will be preserved in the resampled CFi,j [45]. The block
bootstrap method creates a block using paired monthly CF values, subsequently generating replicates
through resampling. The sign of the covariance of the original sample and the replicates are the
same. Furthermore, the sign of the correlation coefficients of the original sample are the same as
those of the resampled replicates. As such, dependence between monthly CF values remains intact.
If we resample once (i.e., R = 1), newly resampled CFi,j data is obtained, from which WSF∗

1 can be
determined. By repeating the same procedure many times (R = 1000), we can obtain 1000 WSF∗ values.
A 95% confidence interval of the WSF using the block bootstrap is calculated with the basic percentile
method, as shown in Equations (5) and (6).

CIblock bootstrap = [WSF − δ∗0.025, WSF − δ∗0.975] (5)

δ∗= WSF∗ − WSF (6)
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Here, WSF is the original WSF model output, WSF∗ is the block bootstrap-resampled WSF
model output (1000 samples), and δ∗ is the difference between WSF∗ and the WSF [43]. We compute
δ∗ = WSF∗ − WSF for each block bootstrap-resampled CFi,j and sort them from smallest to biggest.
Because δ∗0.025 is at the 97.5th percentile, it corresponds to the 975th element in the δ∗ list. Likewise,
δ∗0.975 is at the 2.5th percentile, corresponding to the 25th element in the δ∗ list.

The statistical programing language R was used for the block bootstrapping (the R code is
provided in the Supplementary Information section). Crystal Ball [46] was used to solve Equation (4)
based on MCS.

2.3.3. Comparison of the Uncertainty

To compare the uncertainty obtained from different uncertainty analysis methods, the ratio
between the half-width of the 95% confidence interval and the mean of the model output,
WSF, was used [40,47]. The ratio, termed U, represents the percentage uncertainty of the model
output and is defined as

U =
Half width of the 95% confidence interval of the model output

The mean of the model output
× 100(%) (7)

A smaller U value reflects a more precise estimate of the mean of the model output. In other
words, a smaller U value indicates less uncertainty of the WSF.

3. Results and Discussion

Table 1 shows the monthly water consumption (load) data of the paddy rice production.
Water consumption for paddy rice production only occurred during the irrigation season from April to
September; the consumption differs from month to month.

Table 1. The monthly load data for the paddy rice case study in the Geum River Basin (unit: m3
Geum/fu).

January February March April May June July August September October November December

Rice - - - 0.01 0.03 0.17 0.10 0.13 0.07 - - -

The CF values of the Geum River Basin calculated using the previously discussed method
discussed above are given in Table S1 of the Supplementary information section. The monthly CF data
in Table S1 is arranged in a matrix of 45 (years) × 12 (months).

To perform uncertainty analysis with MCS, the parametric probability distribution of monthly
CF was estimated by the Anderson–Darling goodness-of-fit test, as stated before. Table 2 shows the
probability distribution of the CFs under three different scenarios for the MCS. In case of monthly
CFs of six months (January, February, April, June, September, and December), the null hypothesis was
rejected for all the tested kinds of parametric probability distributions (H0 = the input data follows
a specific distribution). For the combined (parametric and nonparametric) distribution scenario,
the distribution rejected in the null hypothesis test was replaced by the empirical distribution.

Table 2. Probability distribution of the CFs under three different scenarios of the MCS.

Month Nonparametric Parametric Combined

January Empirical - * Empirical
February Empirical - Empirical

March Empirical Weibull Weibull
April Empirical - Empirical
May Empirical Weibull Weibull
June Empirical - Empirical
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Table 2. Cont.

Month Nonparametric Parametric Combined

July Empirical Weibull Weibull
August Empirical Lognormal Lognormal

September Empirical - Empirical
October Empirical Weibull Weibull

November Empirical Weibull Weibull
December Empirical - Empirical

* Cannot be determined; the p-value is less than 0.05 for the null hypothesis test for determining the parametric
probability distribution.

Therefore, the uncertainties of the WSF of the paddy rice production were estimated using two
different uncertainty analysis methods: MCS with two scenarios (nonparametric and combined) and
block bootstrap. Table 3 shows the mean, confidence interval, confidence interval width, and U for
the MCS and block bootstrap methods for the WSF of the rice production. As pointed out earlier,
two different scenarios for the probability distribution of the input variables were created in the MCS
case such that there are two different uncertainty analysis results.

Table 3 shows the statistical values of the WSF for the rice production. The WSF mean values for
the nonparametric, combined MCS methods and block bootstrap were similar. The U value, however,
is lowest in the case of the block bootstrap method, approximately five times smaller than that of the
other two MCS scenarios.

Table 3. The statistical values of the water scarcity footprint for the rice production (unit: m3
world-eq/fu).

Statistic
MCS Scenarios

Block Bootstrap
Nonparametric Combined

WSF 6.6 6.1 6.0
Confidence interval [0.9, 25.4] [0.6, 22.4] [3.5, 8.1]

Confidence interval width 24.5 21.8 4.6

U (%) 185.3 177.3 38.6

The percentage uncertainty (U) used in this paper is a parameter for estimating the uncertainty of
the model output. It is similar to the coefficient of variation (CV); however, the U value is based on the
confidence interval, and CV is based on the standard deviation of the model output. The confidence
interval focuses on the uncertainty, while the standard deviation is a measure of data dispersion or
square root of variance. Thus, internationally recognized institutions such as IPCC use U instead of
CV in estimating the uncertainty of the model output. The U value is the only parameter used in this
study to evaluate the degree of relative uncertainty among the three different statistical simulation
methods. As such, comparing the appropriateness of the three different simulation methods using the
value of U is warranted.

The three simulation methods have different logic for generating the values of the input variables;
however, they use the same method for estimating the confidence interval of their model outputs.
The only difference is the way of generating the values of the input variables. Since the values of the
input variables differ, the model output values also differ. The combined MCS identifies the probability
distribution of the input variables (parametric and non-parametric), and the distribution thus identified
is used to generate the values of the input variables. The generated values are then fed to the model and
generate a model output. By repeating the procedure many times (e.g., 10,000 iterations), enough data
points are available, forming a pseudo population. The same procedure applies to the non-parametric
MCS method, with one exception that the probability distribution is non-parametric. The bootstrap
method generates the values of the input variables using the original sample by following the bootstrap
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technique. Thus, there is no need to estimate the probability distribution of the input variables which
is the essence of the bootstrap method.

The likely reason for the higher U values of the MCS scenarios is the nonparametric nature of the
CF distribution. Particularly, the AWARE CF, which has been used for the WSF in this study, may have
a nonparametric nature due to the discrete steps in its function [3]. Therefore, the estimated probability
distribution for the MCS scenarios of the CF might be incorrect. For the nonparametric probability
distribution, the estimation method was based on the histogram approach. This approach also has
a drawback in the arbitrary nature of choosing the bin size [48]. According to Chen and Corson [24],
expert judgment can help determine the statistical parameters of the distributions if there is a lack of
empirical information; however, this represents an additional source of uncertainty, as shown by the
higher U values obtained with the MCS scenarios compared with that of the block bootstrap method.

In most LCA studies, the uncertainty was analyzed using the MCS method with parametric
probability distribution [49]. In the case of the uncertainty analysis of the WSF, the MCS method has
been widely used. However, the parametric probability distribution of the input variables, such as
CF, is difficult to estimate and can be incorrect, partly because the CF data can be nonparametric in
nature. According to the Jolliet et al. [41], lognormal distributions are applicable to the LCA due to the
positive value of CF, and other parameters.

Figure 2 shows the histogram in blue and estimated parametric probability distribution in red
for the CF for June and August in the Geum River Basin. The probability distribution in August
was estimated to be the lognormal distribution based on the Anderson–Darling test, where the null
hypothesis was assumed as a lognormal distribution. The probability distribution in June, however,
could not be estimated using the Anderson–Darling test because all null hypotheses were rejected.
In this case, the lognormal distribution was assumed, as suggested by the IPCC guideline [40] and
Jolliet et al. [41].
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Based on the recommendations of the LCA community [40,41], a lognormal distribution was
applied for the “cannot be determined” cases and then compared with the histogram of the CF
data. The probability distribution for August in Figure 2 resembles the histogram rather closely.
Thus, the estimated lognormal distribution in August closely represents the CF data. However, this is
not the case for June. A huge discrepancy can be observed between the estimated lognormal
distribution and histogram. The tail side of the data could not capture the peak on the 100 side
of the lognormal distribution. In the histogram, there are two peaks on both sides of the X axis and
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none in between. This is a typical example of a discrete distribution, where P(Yn = y) = 1 − 1/n
for y = 0 and P(Yn = y) = 1/n for y = n and 0 elsewhere (P(Yn = y) = probability P at the random
variable Y of which value is y, n = integer value) [50]. This indicates that the AWARE CF values partly
follow a discrete distribution. Thus, it is a futile attempt to find the parametric distribution of the
AWARE CF data where the maximum value is 100. This is because the estimation of the parametric
probability distribution may not capture extreme values [47] such as a maximum AWARE CF value
of 100. There was no maximum CF value in August; however, in the case of June, 20% (9 years out
of 45 years) of the CF data shows a maximum value of 100 (Table S1). Therefore, the parametric
probability distribution should not be used when estimating WSF with the maximum value of 100 in
the AWARE CF model.

Based on the U values in Table 3 and the discussions above, it can be concluded that the block
bootstrap method gave a lower uncertainty than the MCS method in this study. In other words,
the block bootstrap method provides a more accurate estimation of the WSF compared with the MCS
method, which requires estimation of the parametric and/or nonparametric probability distribution.
The block bootstrap method used in this research is a distribution-free method; it uses random sampling
of the original CF sample such that there is no step for identifying probability distribution.

Therefore, this study suggests that the block bootstrap method is a better choice in analyzing
uncertainty compared to the MCS method in the case of estimating WSF using the AWARE CF model.

4. Conclusions

Uncertainty in the WSF may arise from the temporal variability of the characterization factors.
The paddy rice production in the Geum River Basin was used as the case study for WSF uncertainty
analysis with MCS (two scenarios) and block bootstrap methods. Percentage uncertainty (U) was
lowest in the case of the block bootstrap method, approximately five times smaller than that of the
other two MCS scenarios. Estimation of the CF probability distribution is difficult, partly because the
CF data can be nonparametric in nature. The MCS method might therefore provide less accurate results
due to the incorrect estimation of the probability distribution. This is because AWARE CF values partly
follow discrete distribution with extreme value on one side. Therefore, this study suggests that the
block bootstrap method is a better choice in analyzing uncertainty compared to the MCS method in the
case of estimating WSF using the AWARE CF model. Moreover, the parametric probability distribution
should not be used when estimating WSF with a maximum value of 100 in the AWARE CF model.

It is noteworthy that this paper has performed uncertainty analysis of the WSF by considering
temporal variability with the block bootstrap method for the first time to estimate the uncertainty of
the WSF.

According to ISO 14046, uncertainties are mostly associated with spatial and temporal variations.
However, this study focused only on the temporal variability of the monthly CFs. Therefore, uncertainty
analysis considering spatial variability with the block bootstrap method will be the future direction
of this research. Moreover, this study only treated CF as the random variable. However, in reality,
the load (water consumption) should also be treated as a random variable in future studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/10/3/341/
s1.
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