
water

Article

Influence of Meander Confinement on
Hydro-Morphodynamics of a Cohesive
Meandering Channel

Parna Parsapour-Moghaddam * and Colin D. Rennie * ID

Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON K1N 6N5, Canada
* Correspondence: p.parsapour@uottawa.ca (P.P.-M.); Colin.Rennie@uottawa.ca (C.D.R.);

Tel: +1-613-562-5800 (ext. 6161) (P.P.-M.); +1-613-562-5800 (ext. 6124) (C.D.R.)

Received: 6 January 2018; Accepted: 19 March 2018; Published: 22 March 2018
����������
�������

Abstract: Despite several decades of intensive study of the morphological changes in meandering
rivers, less attention has been paid to confined meanders. This paper studies the hydro-
morphodynamics of two adjacent sub-reaches of a meandering creek, located in the City of Ottawa,
Canada. Both of these sub-reaches are meandering channels with cohesive bed and banks, but
one is confined by a railway embankment. Field reconnaissance revealed distinct differences in
the morphological characteristics of the sub-reaches. To further study this, channel migration and
morphological changes of the channel banks along each of these sub-reaches were analyzed by
comparing the historical aerial photography (2004, 2014), light detection and ranging (LIDAR) data
(2006), bathymetric data obtained from a total station survey (2014), and field examination. Moreover,
two different spatially intensive acoustic Doppler current profiler (ADCP) surveys were conducted
in the study area to find the linkage between the hydrodynamics and morphological changes in the
two different sub-reaches. The unconfined sub-reach is shown to have a typical channel migration
pattern with deposition on the inner bank and erosion on the outer bank of the meander bend.
The confined sub-reach, on the other hand, experienced greater bank instabilities than the unconfined
sub-reach. The average rate of bank retreat was 0.2 m/year in the confined sub-reach whereas it
was lower (0.08 m/year) in the unconfined sampling reach. In the confined sub-reach, an irregular
meandering pattern occurred by the evolution of a concave-bank bench, which was caused by reverse
flow eddies. The sinuosity of the confined sub-reach decreased from 1.55 to 1.49 in the 10-year study
period. The results of the present study demonstrate the physical mechanisms by which meander
confinement can change the meandering pattern and morphological characteristics of a cohesive clay
bed creek.

Keywords: meandering rivers; meander confinement; cohesive bed rivers; hydro-morphodynmics;
spatial ADCP survey

1. Introduction

1.1. Background

Many river scientists and engineers have studied meandering rivers over the past few centuries
(e.g., [1–16]). Despite the fact that river meandering is an erudite topic with a long literature history,
there are still some uncertainties on the source and initiation of the meandering pattern and its
migration. It is known that river meandering is associated with the bank erosion mechanism and can
be influenced by the spatial progression of bars [17].

Bank instability and erosion are intrinsic characteristics of meandering rivers [18]. Lanzoni and
Seminara illustrated how the morphodynamics of meandering rivers can be impacted by meander
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instability [8]. River meandering may also lead to a flow separation which could impact bank erosion
patterns [11,19–23]. Bank erosion processes influence a wide range of social, environmental and
economic factors [24]. Consequently, bank erosion predictions are of essential importance in sustainable
river management [25]. Despite numerous well-documented previous studies devoted to the bank
retreat mechanism, the erosion of cohesive river substrates is not completely understood [26–28].
Cohesive properties of river banks can impact the rate of bank erosion [29]. Unlike non-cohesive river
bed sediments for which resistance to entrainment is merely mechanical, cohesive material interactions
depend on the electro-chemical bonds amongst the particles [26]. Furthermore, several studies have
recognized the significance of pore water pressure in the erosion and removal of cohesive bed river
particles or assemblages e.g., [30–33]. However, a general predictive theory for entrainment of cohesive
river boundary sediments is yet to be developed; thus, prediction of bank erosion in a cohesive river
remains challenging [27]. Bank erosion and subsequent meander migration are important natural
processes for both unconfined and partially confined rivers [34].

Although meander morphodynamics have been widely studied, less attention has been paid to
confined meandering. The morphological development of a confined meander is impeded by a natural
or manmade restriction. A confined meander cannot freely develop, which results in a distinctive
meander pattern that differs from those presented by freely meandering rivers. Nicoll noted that the
dynamics of meander migration may be affected in confined meandering rivers [35], and Ghinassi et al.
observed that meander confinement can lead to the downstream migration of fluvial point bars [36].

Lewin and Brindle showed that free meandering could be hindered by bedrock or anthropogenic
structures [37], and this can result in a square-wave shape meandering configuration. They defined
three degrees of confinement: first-degree confinement takes place in wide valleys whereby the stream
impinges irregularly against the confining valley wall. Lane called this type of meander a “restrained”
meander [38]. In second-degree confinement, the outer side of each meander bend impinges upon
the confining wall, and in third-degree confinement, the meandering stream does not have space
to progress.

Most river meanders do not undergo purely downstream translation. Nicoll observed downstream
translation without substantial distortion only in confined meanders with limited amplitude and low
curvature [35]. Lewin and Brindle noted that downstream translation without meander deformation is
prevalent in second-degree confined rivers [37]. Nicoll and Hickinstudied the planform geometry and
migration pattern of several second-degree confined meandering rivers on the Canadian prairies [39].
They related the channel-migration rate of the studied rivers to basic geomorphic and hydrologic
variables. The authors indicated that the planform relations were generally consistent with those
manifested by freely meandering rivers, with small yet significant differences due to the distinctive
meander behavior of confined meanders.

Previous studies have shown that meander confinement can lead to development of a concave-
bank bench [40–44]. A concave-bank bench is a crescent-shaped accretion on the upstream portion
of the outer bank (concave side) of a meander bend. These deposits are generally observed in
meandering rivers that migrate down valley [45]; however, they may also occur in unconfined meander
belts [41,44,46]. Page and Nanson demonstrated that when the channel flow has the power to erode
the channel banks [41], regular meandering is developed with a point bar and overbank deposition.
However, in cases where the stream power hardly surpasses the shear strength of the bank material,
then irregular meanders may be generated with long straight reaches and sharp bends. They showed
that concave-bank benches are commonly developed when sharp meander bends migrate downstream.

The effect of manmade features on meandering river morphodynamics has been studied,
particularly for river stabilization works [47]. Nevertheless, less studied has been the morphodynamics
of meandering rivers confined by structures such as railway and road embankments [37]. Furthermore,
the migration behavior of confined bends has been studied, most previous research has focused on
second-degree confinement where the river impinges against the confining edge in every meander
wavelength [39].
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1.2. Objectives and Structure

As outlined above, there are still some uncertainties on the source and initiation of the meandering
pattern and its migration, particularly for cohesive bed rivers. Moreover, the morphology and dynamics
of confined meandering rivers are relatively poorly studied. Due to natural or manmade restrictions,
confined meanders cannot freely develop, and this makes them have a meander pattern distinct
from those presented by freely meandering rivers. Previous studies of confined meandering rivers
have been mostly limited to second-degree confinement. Moreover, to the best of our knowledge,
the hydrodynamics of a confined meandering channel have not previously been studied in terms
of measuring the spatial distribution of the velocity flow field. Given the prevalence of confined
meandering rivers, enhancing the understanding of their behavior in the landscape is of essential and
practical importance for sustainable river management.

In this study, we evaluate the meander migration dynamics in a first-degree confining medium, i.e.,
in which the river makes irregular contact against a confining railway embankment, in a meandering
cohesive bed river. We employ a paired sub-reach study approach, wherein one sub-reach is freely
meandering and the second adjacent sub-reach is first degree confined by the railway embankment.
Morphodynamics of each sub-reach are measured by repeat surveying over a multi-year period.
Specifically, channel migration and morphological changes of the channel banks along each of these
sub-reaches are analyzed by comparing historical aerial photography, light detection and ranging
(LIDAR) data and bathymetric data obtained from a total station survey. Furthermore, channel
hydrodynamics are measured in both sub-reaches by spatially intensive acoustic Doppler current
profiler (ADCP) surveying, which, to the best of our knowledge, has not previously been conducted
in a confined meander. This allows for a direct comparison of the hydrodynamic characteristics of
unconfined and confined sub-reaches. Furthermore, the measured velocity fields are used to find
linkages between the channel hydrodynamics and morphological changes. We are thereby able to
explore how local meander confinement leads to different hydro-morphodynamic characteristics and
corresponding meander morphology. The methodology employed in this study is comprehensively
explained in the next section (Section 2). Results are shown in Section 3, followed by the discussion
(Section 4) and conclusions (Section 5).

2. Methodology

2.1. Study Site

Watts Creek flows into the Ottawa River at Shirley’s Bay in the Kanata region of the City of Ottawa,
Canada (Figure 1). Two upstream branches (Watts Creek and Kizell Drain) join at a confluence situated
at 45.340172◦ latitude, −75.880610◦ longitude (UTM 431006 m E, 5021119 m N). Watts Creek has been
recognized as providing important coolwater fish habitat [48]. Rates of channel degradation are still
not clear. In this study, we mainly focus on two adjacent sub-reaches. The two sub-reaches are M3 and
M4 (Figure 1c). Both of these sub-reaches are meandering channels with a cohesive bed and banks.
M4 is partially confined by the City of Ottawa rail line, and thereby is undergoing enhanced erosion.
Watts Creek is a semi-alluvial channel offering a diverse habitat, with a mixture of runs, pools, and
riffles. While fine clay and silt substrate is prevalent in Watts Creek, some coarse gravel is also present.
Watts Creek has a bed that consists of a high (>30%) percentage of clay, i.e., soil particles that are smaller
than two to four micrometers [49]. Clay particle properties cannot be as straightforwardly predicted
because cohesion is dictated by electrostatic forces, which depend on the chemical composition of the
clay particles. In addition, the natural consolidation state and hydraulic conductivity, organic matter,
and a few other properties influence particle cohesion. The results of the bed sediment core samples
collected from the entire reach indicated that all median grain sizes were in the silt or clay range which
characterized them as fine grained, cohesive soils. The results of a piston-flume critical bed shear stress
test suggest that the cohesive clay bed sediments in Watts Creek watershed are not heavily consolidated.
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Figure 1. (a) Location of the study area within Canada (adopted from https://www12.statcan.gc.ca); 
(b) Study reach location in the Ottawa Study reach location in the Ottawa area (adopted from 
http://data.ottawa.ca/en/dataset/water); (c) Surveyed sections in Watts Creek sampling reaches M4 
(to left) and M3 (to right) including total station surveyed points, flow from west (left) to east (right) 
(adopted from Google earth). Squares show the meander locations and their referred number within 
each sub-reach. Please note that the study area is situated at 45.340172° latitude, −75.880610° 
longitude. 

2.2. Site Reconnaissance 

Channel condition was assessed by visual observation during different flow regimes. The 
observations are categorized by location within each sampling sub-reach specified in Figure 1c. As is 
shown, M4 sub-reach of Watts Creek is confined by the City of Ottawa rail line. M3 and M4 are 
otherwise similar; they are meandering channels with cohesive bed and banks. They convey the same 
discharge (based on the ADCP measurements), and they have similar bed substrate and riparian 
vegetation. Figures 2–5 show the field conditions immediately after a spring freshet flood. Locations 
of erosion and channel incision were identified by exposed tree roots and steep, undercut or 
collapsing river banks. Observations for each sampling reach are provided below. 

2.2.1. M4 Sampling Reach 

This part of Watts Creek meanders is adjacent to the City of Ottawa rail line. Overbank sediment 
deposits throughout this reach indicated that the previous spring freshet had overtopped the banks 
in the Main Creek. Figure 2a shows the development of a concave-bank bench on the upstream limb 
of the outer bend at the last sharp meander. There were indications of instabilities on the downstream 
portion of the outer bends in M4 (Figure 2b). Inner bank instability was also observed at the upstream 
bend in M4. As shown in Figure 3a, an erosion pathway cut through the inner bank point bar during 
the freshet flow; vertical stakes in the channel suggest failure of a previous attempt to stabilize the 
inner bank (Figure 3b). Figure 4a illustrates the evolution of the longitudinal-shaped bar as well as 

 

Figure 1. (a) Location of the study area within Canada (adopted from https://www12.statcan.gc.ca);
(b) Study reach location in the Ottawa Study reach location in the Ottawa area (adopted from http:
//data.ottawa.ca/en/dataset/water); (c) Surveyed sections in Watts Creek sampling reaches M4 (to
left) and M3 (to right) including total station surveyed points, flow from west (left) to east (right)
(adopted from Google earth). Squares show the meander locations and their referred number within
each sub-reach. Please note that the study area is situated at 45.340172◦ latitude, −75.880610◦ longitude.

2.2. Site Reconnaissance

Channel condition was assessed by visual observation during different flow regimes.
The observations are categorized by location within each sampling sub-reach specified in Figure 1c.
As is shown, M4 sub-reach of Watts Creek is confined by the City of Ottawa rail line. M3 and M4
are otherwise similar; they are meandering channels with cohesive bed and banks. They convey the
same discharge (based on the ADCP measurements), and they have similar bed substrate and riparian
vegetation. Figures 2–5 show the field conditions immediately after a spring freshet flood. Locations of
erosion and channel incision were identified by exposed tree roots and steep, undercut or collapsing
river banks. Observations for each sampling reach are provided below.

2.2.1. M4 Sampling Reach

This part of Watts Creek meanders is adjacent to the City of Ottawa rail line. Overbank sediment
deposits throughout this reach indicated that the previous spring freshet had overtopped the banks in
the Main Creek. Figure 2a shows the development of a concave-bank bench on the upstream limb of
the outer bend at the last sharp meander. There were indications of instabilities on the downstream
portion of the outer bends in M4 (Figure 2b). Inner bank instability was also observed at the upstream
bend in M4. As shown in Figure 3a, an erosion pathway cut through the inner bank point bar during
the freshet flow; vertical stakes in the channel suggest failure of a previous attempt to stabilize the
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inner bank (Figure 3b). Figure 4a illustrates the evolution of the longitudinal-shaped bar as well as the
secondary channel adjacent to the outer bank of the last meander bend. These features suggest that
M4 has a very active, unstable channel, presumably due to the meander confinement by the rail line.
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Note the City of Ottawa rail line immediately adjacent to the south of the river: (a) Concave-bank
bench formation on the upstream of the bend apex; (b) The failure of outer bank, downstream of the
bend apex. Pictures were taken by the authors on 30 April 2014.
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Figure 3. M4 sampling reach, meander bend restrained by the City of Ottawa rail, facing downstream:
(a) Inner bank was overtopped during the previous high freshet flow, to an erosion pathway through
the inner bank; (b) Vertical metal stakes used for bank stabilization. Pictures were taken by the authors
on 30 April 2014.
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Formation of the longitudinal bar and the secondary channel on the upstream of the outer bend apex; 
(b) ADCP spatial survey in the study reach. The City of Ottawa rail line can be seen immediately 
adjacent to the south of the river. Pictures were taken by the authors on 14 April 2015. 

2.2.2. M3 Sampling Reach 

Sampling reach M3 encompasses two unconfined meander bends. The channel is reasonably 
stable in M3, displaying only modest bank slumping on the outer bank downstream of a bend apex. 
This unconfined section of the creek represents a regular meandering pattern with moderate erosion 
on the outer bank and deposition on the inner bend (Figure 5b). 

 

Figure 5. M3 facing downstream: (a) In the middle of M3, between the two major bends; (b) Last 
meander bend manifests regular meandering pattern with erosion on the outer band and deposition 
in the inner bank. Pictures were taken by the authors on 30 April 2014. 

2.3. Data Collection and Analysis 

Morphological studies of the two sub-reaches were done based on the results of: (a) bathymetric 
survey of each section (b) available LIDAR data (c) historical aerial photographs. A topographic and 
bathymetric study was conducted during summer 2014, employing a total station survey to 
accurately distinguish the bank and bed topography. Over 4065 bathymetric points were collected in 
both study sub-reaches with an average spacing of 1.2 and 0.3 m in streamwise and cross-stream 
directions, respectively (Figure 1c). The collected points were then interpolated by the TIN 

Figure 4. M4 sampling reach: (a) meander bend restrained by the City of Ottawa rail, facing upstream.
Formation of the longitudinal bar and the secondary channel on the upstream of the outer bend apex;
(b) ADCP spatial survey in the study reach. The City of Ottawa rail line can be seen immediately
adjacent to the south of the river. Pictures were taken by the authors on 14 April 2015.

2.2.2. M3 Sampling Reach

Sampling reach M3 encompasses two unconfined meander bends. The channel is reasonably
stable in M3, displaying only modest bank slumping on the outer bank downstream of a bend apex.
This unconfined section of the creek represents a regular meandering pattern with moderate erosion
on the outer bank and deposition on the inner bend (Figure 5b).
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Figure 5. M3 facing downstream: (a) In the middle of M3, between the two major bends; (b) Last
meander bend manifests regular meandering pattern with erosion on the outer band and deposition in
the inner bank. Pictures were taken by the authors on 30 April 2014.

2.3. Data Collection and Analysis

Morphological studies of the two sub-reaches were done based on the results of: (a) bathymetric
survey of each section (b) available LIDAR data (c) historical aerial photographs. A topographic and
bathymetric study was conducted during summer 2014, employing a total station survey to accurately
distinguish the bank and bed topography. Over 4065 bathymetric points were collected in both study
sub-reaches with an average spacing of 1.2 and 0.3 m in streamwise and cross-stream directions,
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respectively (Figure 1c). The collected points were then interpolated by the TIN interpolation method
in ArcGIS10.2 (Esri, Redlands, CA, USA) to obtain the DEM (Digital Elevation Model) of 2014. Slope
and hillshade maps were then obtained from the DEM.

The expense of river hydro-morphological field studies has increased utilization of aerial survey
techniques [50]. Relatively recent development of LIDAR technology allows for accurate measurements
of bank locations and elevations [51]. The City of Ottawa has collected LIDAR data for various parts of
the city during different years. This study employs available LIDAR data of the study creek from 2006
obtained from the National Capital Commission (NCC). We converted the LIDAR data to DEMs using
ArcGIS. Historical aerial photographs were acquired using Google Earth. The photos were registered
using georeferencing tools available in ArcGIS. Stationary ground control points for rectification were
obtained using corners of the buildings, road intersections, rail trail, solitary trees and large rocks
nearby the study site. Figure 6 shows the aerial images of the study reach from 2004 and 2014. It should
be noted that both aerial photos show the site condition in the summer (June) which represents the
low flow regime (discharge ~0.15 m3/s based on 2014 ADCP measurements) in the study creek.
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Figure 6. Aerial photo of the study reach adopted from Google Earth: (a) 2014 (b) 2004. Location of the
each sampling reach is shown with the square.

A comparison was then made between the aerial photographs (2004 and 2014), DEMs obtained
from the LIDAR data (2006) and total station surveys (2014). The river DEM maps from 2004, 2006 and
2014 were overlapped in ArcGIS, and polygons were created to define the active channel boundary
and the bank retreat. To distinguish the location of the base and top of the river banks during
different times, slope classification maps were overlapped with the hillshade maps for both LIDAR
and surveyed DEMs. This allowed for assessment of the meander behavior and bank retreat of each
sub-reach. Having DEMs of the study creek at different periods also allows for measurements of
elevation changes. Accordingly, the DEM from 2006 was subtracted from that of 2014 through the
raster calculator tool in ArcGIS to produce a DEM difference raster to explore the amount of erosion
and deposition [52].

In order to evaluate the effect of the velocity field on the channel morphology, spatially intensive
ADCP surveys were conducted in both study reaches during August (low flow) and October (moderate
flow) 2014. According to the ADCP measurements, flow discharge was 0.17 and 0.45 m/s under low
and moderate flow, respectively. It should be noted that the bankfull discharge was approximately
1.4 m/s [53], and the return flow of the high flow was estimated to be 1.4 years [54]. A Sontek M9
River Surveyor ADCP was deployed on an Ocean Sciences trimaran riverboat (Figure 4b). Standing on
opposite banks of the creek, we operated the trimaran boat with ropes and moved the boat downstream
in narrowly spaced transects in a zigzag array. The measured depth-averaged velocity data were then
post processed using in-house Matlab codes [55]. Parsapour-Moghaddam and Rennie provide further
details on conducting a spatially intensive ADCP survey in a clay-bed meandering river [16,56,57].
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3. Results

Table 1 illustrates the channel and flow characteristics of both sub-reaches during ADCP
measurements at the moderate flow in 2014. As can be seen, the channel and averaged values of
the flow characteristics were quite similar in both sub-reaches.

Table 1. Channel and flow characteristics in the study area based on the ADCP measurements at the
moderate flow in 2014.

Parameter M4 Sub-Reach M3 Sub-Reach

Channel slope 0.0017 0.0016
Averaged width (m) 3.4 3.6
Averaged depth (m) 0.4 0.6

Averaged discharge (m3/s) 0.45 0.45
Averaged flow velocity (m/s) 0.2 0.17

Average Froude number 0.1 0.07

We compared the position of the active channel mapped from 2004 aerial photography with
that of 2014. This is shown for both M4 and M3 sampling reaches in Figures 7 and 8, respectively.
The boundaries were obtained through digitizing the channel margin based on the aerial images in
ArcGIS. A sufficiently large number of vertices was employed to avoid digitization errors. Figure 9
shows the cumulative erosion and sedimentation that occurred in the channel margins between
2006 (based on the LIDAR data) and 2014 (based on the total station survey). This was obtained by
subtracting the 2006 DEM of the study area from the corresponding 2014 DEM.

Figure 8 shows that the M3 sampling reach exhibited a typical meandering pattern in which
erosion and deposition occur at the outer and inner bank, respectively. This can be seen in Figure 9b
where negative and positive values show erosion (outer bend) and deposition (inner bend), respectively.
This confirms our field observations (Figure 5). Table 2 illustrates that the sinuosity of this sub-reach
was more-or-less consistent, with only a slight increase from 2004 to 2014.
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Figure 9. Erosion (negative) and deposition (positive) (m) from 2006 to 2014 in: (a) M4 and (b) M3
sampling reaches. Background image adopted form google earth image (2004).

Table 2. Channel geometry of each sub-reaches of the study creek within different years.

Sampling Reach Date Length of the Channel Path (m) Sinuosity

M4
2004 187.88 1.55
2014 175.27 1.49

M3
2004 106.26 1.44
2014 107.1 1.46

On the contrary, the M4 sampling reach (Figure 7) showed irregular meandering behavior.
From Table 2, it can be inferred that the sinuosity of the channel decreased from 1.55 to 1.49 in the 10-year
period. As shown in both Figures 7 and 9a, a concave-bank bench can be observed in the upstream limb
of the outer bank of the first meander bend. Furthermore, a longitudinal bar is developing in the second
meander bend, which may be a precursor to concave bank bench. These results are consistent with the
results of our field reconnaissance (Figures 2a and 4a). On the other hand, Figures 7 and 9a indicate the
occurrence of bank erosion on the downstream of the outer bend apex at the confined meander bends.
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This was also observed during the field site examination (Figure 2b). Apparently, the sharp meander
bends of M4 sampling reach migrated downstream whereas the straight portion seemed to be more
stable. The average rate of bank retreat in the M4 sub-reach was 0.2 m/year, while it was 0.08 m/year
in the M3 sub-reach.

To study further the hydro-morphodynamics of the irregular meandering development observed
in the confined sampling reach in the study creek, spatially distributed ADCP depth-averaged velocities
were employed. Figures 10 and 11 show the interpolated measured depth-averaged velocities during
both low flow and moderate flow in the meander bends of the M4 and M3 sub-reaches, respectively.
As shown in Figure 10, reverse flow occurred in the confined meander bends while the unconfined
meanders had a regular flow pattern in the streamwise direction (Figure 11). The reversing flow was
associated with the irregular bend geometry and the flow obstruction imposed on the bend flow by
the concave-bank bench.

Water 2018, 10, x FOR PEER REVIEW 10 of 17 

 

confined meander bends. This was also observed during the field site examination (Figure 2b). 
Apparently, the sharp meander bends of M4 sampling reach migrated downstream whereas the 
straight portion seemed to be more stable. The average rate of bank retreat in the M4 sub-reach was 
0.2 m/year, while it was 0.08 m/year in the M3 sub-reach. 

To study further the hydro-morphodynamics of the irregular meandering development 
observed in the confined sampling reach in the study creek, spatially distributed ADCP depth-
averaged velocities were employed. Figures 10 and 11 show the interpolated measured depth-
averaged velocities during both low flow and moderate flow in the meander bends of the M4 and M3 
sub-reaches, respectively. As shown in Figure 10, reverse flow occurred in the confined meander 
bends while the unconfined meanders had a regular flow pattern in the streamwise direction (Figure 
11). The reversing flow was associated with the irregular bend geometry and the flow obstruction 
imposed on the bend flow by the concave-bank bench. 

 

 

 

0.5

A

0.5

B

Figure 10. Cont.



Water 2018, 10, 354 11 of 18

Water 2018, 10, x FOR PEER REVIEW 11 of 17 

 

 
Figure 10. Measured depth-averaged ADCP velocities in the meander bends of the M4 sub-reach at: 
(a) first bend during August 2014 (low flow); (b) second bend during August 2014 (low flow); (c) fist 
bend during October 2014 (moderate flow); (d) second bend during October 2014 (moderate flow). 
Refer to Figure 1c for location of these bends. Surveyed bathymetric data (2014) are shown in the 
background. Note that the circles show the induced reverse eddies. 

 

 

0.5

C

0.5

D
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(a) first bend during August 2014 (low flow); (b) second bend during August 2014 (low flow); (c) fist
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Refer to Figure 1c for location of these bends. Surveyed bathymetric data (2014) are shown in the
background. Note that the circles show the induced reverse eddies.
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Figure 11. Measured depth-averaged ADCP velocities in the meander bends of the M3 sub-reach at:
(a) first bend during August 2014 (low flow) (b) second bend during August 2014 (low flow) (c) fist
bend during October 2014 (moderate flow) (d) second bend during October 2014 (moderate flow). Refer
to Figure 1c for location of these bends. Surveyed bathymetric data (2014) are shown in the background.

4. Discussion

The morphology of meandering cohesive bed rivers is yet not fully understood, particularly
when they are confined. The results of this study illustrated an irregular meandering pattern in the
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confined sub-reach of the study creek. This irregular meandering pattern included development of a
concave-bank bench in the upstream portion of outer bank in the confined sampling reach.

Page and Nanson developed a conceptual model for the formation of a concave-bank bench [40],
which begins with cut-bank erosion that enlarges the channel. The possible growth of a point bar
upstream of a sharp bend would deflect the flow and would leave a region of flow expansion and
separation downstream and beside the upstream limb of the concave bank, which generates large
eddies and induces reverse flow. The developed reverse flow causes the upstream margin of the inner
bend to erode and thus widen the channel. Consequently, compensating sedimentation may occur
in the downstream portion of the inner meander bend, which leads to downstream migration of the
meander. The vacated zone at the upstream limb of the outer bend could be filled with eddy accretion
consisting mostly of fine grains, leading to development of a concave-bank bench. In coherence with
the Page and Nanson conceptual model for development of a concave-bank bench, the encroachment
of the railway embankment on the M4 sampling reach in the study area confined the lateral erosion
and caused the meander to migrate downstream, which provided room for fine-grained accretion
on the outer meander bends. On the other hand, a lower ratio of the bedload to the suspended
load in this semi-alluvial cohesive-bed river may have limited downstream development of the
point bar [43,47]. This may have created an open space for separation zone and flow expansion.
The measured ADCP velocities in the confined meander (Figure 10) confirmed the creation of the
reverse flows caused by the flow expansion which would favor the development of the concave-bank
bench. Spatially distributed ADCP velocity measurements employed in the present study provide
the first corroborative proof for the theory developed by [40], which was not previously supported by
detailed velocity field measurements.

Nanson and Page indicated that during the process of eddy accretion, a longitudinal-shaped bar
could be developed [41], close to the concave bank and upstream of the meander apex, prior to the full
formation of the bench. As a result, a secondary channel may occur since the generated longitudinal
bar bench may fail to migrate completely to the concave bank. This longitudinal bar serves as a core
for further deposition. Gradual deposition and aggradation of the bar leads to complete formation of
the concave-bank bench. Figure 4a shows the creation of a longitudinal-shaped bar and an induced
secondary channel in the confined M4 sampling reach. This can be caused by the sedimentation in the
flow separation zone at the upstream of the outer bank.

Bank instability, which was mostly observed in the confined section, can be attributed to induced
reverse eddy currents, which facilitate the undercut erosion and bank failure on the upstream of the
outer banks. Another possible reason for the observed bank instability in the confined setting could be
linked to elevated pore water pressure during flood drawdown, which cannot rapidly drain due to
the cohesive nature of the bank. With a decline of the spring freshet flow stage and removal of the
confining river pressure, the elevated pore water pressure could reduce the frictional shear strength
and increase the unit weight of the bank material, which may have contributed to the observed bank
failures. Furthermore, construction of the railway embankment may have consolidated the river bank,
further hindering dissipation and drainage of elevated pore water pressures in the river bank.

5. Conclusions

Despite previous research on meander migration patterns, both the impact of channel confinement
and the detailed hydro-morphodynamics in a cohesive meandering clay bed river are not yet fully
understood. The present study examined the meandering behavior of a cohesive clay bed river over a
10-year period. Two sub-reaches of the same meandering cohesive clay bed river were shown to have
different morphodynamic characteristics and migration pattern. The unconfined sampling reach had
a typical meandering pattern with erosion on the outer banks and deposition on the inner banks of
meander bends. The sinuosity of the reach remained more-or-less constant over the ten-year period.
On the other hand, analysis of aerial images along with LIDAR data, total station survey, and field
examination revealed an irregular meandering pattern in the confined sub-reach. The sinuosity of this
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part of the creek decreased from 1.55 to 1.49. The average rate of bank retreat was 0.2 and 0.08 m/year
in the confined and unconfined sub-reaches, respectively. The results showed an evolution of the
concave-bank bench on the upstream limb of the outer banks of the sharp menders in the confined
reach, whereas bank instability was observed downstream of the bend apices. It was shown that
different locations along a river, depending on degree of channel confinement, could have distinctly
different morphological characteristics. To explore how the morphodynamics of each sub-reach
could be linked to its hydrodynamics, we employed spatially intensive ADCP surveying. ADCP
measurements confirmed that the averaged values of the flow characteristics such as depth, velocity
and Froude number were quantitatively quite similar in both sub-reach; however, the results of
spatially distributed ADCP depth-averaged velocities confirmed the occurrence of reverse flow on
the upstream limb of the outer meander bends in the confined sub-reach, which could be linked to
the irregular meandering pattern and generation of the concave-bank bench. The results of this study
shed light on the potential impacts of channel confinement on the bank retreat and river migration in
comparable case studies.
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