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Abstract: The objectives of this study were to assess the climate change impacts on sea-level rise (SLR)
and freshwater recharge rates and to investigate these SLR and freshwater recharge rates on seawater
intrusion in coastal groundwater systems through the Saturated-Unsaturated Transport (SUTRA)
model. The Gunsan tide gauge station data were used to project SLR based on polynomial regressions.
Freshwater recharge rates were assumed as 10% of the projected annual precipitation under climate
change. The Byeonsan2 groundwater monitoring well for seawater intrusion was selected for the
study. A total of 15 scenarios, including the baseline period (2005–2015), were made based on SLR
projections and estimated freshwater recharge rates. The changes in salinity relative to the baseline
at the monitoring well for each scenario were investigated through the SUTRA model. From the
scenario of 0.57 m SLR with a freshwater recharge rate of 0.0058 kg s−1, the largest salinity increase
(40.3%) was simulated. We concluded that this study may provide a better understanding of the
climate change impacts on seawater intrusion by considering both SLR and freshwater recharge rates.
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1. Introduction

Global mean sea-level under Representative Concentration Pathway (RCP) 8.5 is projected to rise
by 0.45–0.82 m from 1986–2005 to 2081–2100, while 0.32–0.70 m of the global mean sea level rise is
projected by 2100 under RCP 4.5 [1]. For the Korean peninsula, sea-level rise (SLR) of 0.75 m under
RCP 4.5 is estimated at the coast line in the East Sea by 2100, followed by the South Sea (0.58 m) and
the West Sea 0.57 m [2]. Those under RCP 8.5 are 1.08 m for the East Sea, 0.72 m for the West Sea, and
0.70 m for the South Sea.

Several approaches have been used to assess SLR or sea-level acceleration (SLA) [3–6]. Breaker and
Ruzmaikin [4] employed the ensemble empirical model decomposition (EEMD) method to estimate
acceleration from 1855 to 2010 with the monthly averaged sea level data for San Francisco (CA, USA).
They reported that SLA was 0.011 ± 0.003 mm yr−2 over the 157-year record of sea level. They also
used polynomial regression for the SLA estimation and found that 0.013 mm yr−2, −0.0006 mm yr−2,
and −0.023 mm yr−2 for the periods 1855–2011, 1900–2011, and 1925–2011, respectively. Eazer and
Corlett [5] showed that SLA for Chesapeake Bay (USA) ranged from 0.05 to 0.10 mm yr−2 using
Empirical Mode Decomposition and Hilbert-Huang Transformation [6]. Kim and Cho [7] reported
that the average SLR around the Korean peninsula over the study period was 2.57 mm yr−1 and the
average SLA 0.075 ± 0.026 mm yr−2 based on EEMD. They also found that 2.603 ± 0.0266 mm yr−1

and 0.114 ± 0.040 mm yr−2 for SLR and SLA, respectively, using polynomial regressions. Yoon [8]
found that SLR around the Korean peninsula was higher the global mean SLR using a regression
approach from tide gauge data.
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Seawater intrusion has been frequently reported around the world: USA [9–12], Europe [13],
Australia [14], China [15], India [16–18], Egypt [19], Bangladesh [20], and South Korea [21,22].
There have been many studies on the assessment of the impacts of SLR on seawater intrusion using
various conceptual and mathematical models. Werner and Simmons [23] used a simple conceptual
approach to assess seawater intrusion in coastal unconfined aquifers by SLR. Pool and Carrera [24]
proposed a double pumping barrier system with two extraction wells combined with an inland
well and a seaward well. The former was for pumping freshwater and the latter for seawater.
They investigated the proposed system by a three-dimensional variable density flow model and
concluded that the proposed system in their study had higher efficiency than a simple negative
barrier. Numerical models based on the sharp interface approach have also been implemented [25,26].
Rasmussen et al. [27] attempted to assess impacts of climate change, SLR, and drainage canals on
seawater intrusion to coastal aquifers located in an island in Demark using the modeling package
MODFLOW/MT3D/SEAWAT. They found that changes in recharge largely influenced the seawater
intrusion to the aquifer. Datta et al. [17] assessed pumping strategies for locally controlling seawater
intrusion in a coastal aquifer in India using the FEMWATER model.

The Saturated-Unsaturated Transport (SUTRA) model [28], a variable density flow and solute
transport model, is widely used for the investigation of seawater intrusion and is well documented [14].
Narayan et al. [29] employed the SUTRA model to investigate the impacts of various pumping and
recharge conditions on seawater intrusion in the Burdekin Delta aquifer (Australia). They observed
that pumping rates and recharge much higher influenced seawater intrusion than aquifer properties.
Hussain et al. [30] assessed the impacts of pumping and recharging from a single pond system on
seawater intrusion in the Wadi Ham aquifer in UAE using the SUTRA model. They showed that
the artificial recharge considerably reduced salinity in the aquifer. Ghassemi et al. [31] suggested
that the SUTRA model may provide better simulation results for two-dimensional problems than for
three-dimensional problems. They tested the SUTRA model for seawater intrusion investigation on
Nauru Island in the Pacific Ocean.

Few studies have been conducted on the impacts of changes in SLR projection based on tide
gauge measurements and recharge rates estimated from projected precipitation under climate change
on seawater intrusion in coastal aquifers. The objective of this study was to investigate the impacts of
climate change on coastal groundwater systems through the SUTRA model. We investigated SLR from
tide gauge measurements and estimated freshwater recharge rates based on RCP 4.5 and RCP 8.5.

2. Materials and Methods

2.1. Site Description and Data Collection

To monitor groundwater level, temperature, and electric conductivity (EC) at coastal areas
where seawater intrusion was reported or a seawater intrusion risk was high, the Seawater Intrusion
Monitoring Network (SIMN) was established and has been operated by the Korea Rural Community
(KRC) since 1998 [32,33]. The SIMN consists of 154 monitoring wells and Byeonsan2, close to
the Gunsan tide gauge station, selected to investigate seawater intrusion for this study (Figure 1).
The groundwater monitoring well was installed in 2004 and located at 670 m from the coastal line. An
EC sensor in the well was installed at 44 m below sea level. The observed data from 2005 to 2015 were
used for this study. The average temperature during this period was 15.0 ± 0.3 ◦C and the average
salinity 0.0050 ± 0.00054 kg-dissolved solids (kg-seawater)−1. A Piper trilinear diagram [34] was
applied for hydrogeochemical facies of the Byeonsan2 monitoring site and the results from the diagram
showed that the dominant hydrogeocheincal facies were classified with Na-Cl type (data not shown).

Hourly sea level measurements at the Gunsan tide gauge station (Figure 1) were collected
from the Korea Hydrographic and Oceanographic Administration (KHOA, http://www.khoa.go.kr).
The Gunsan station was installed in 1980. These sea level data from 1981 to 2015 at the station were
used to project SLR under climate change for this study. For this study, freshwater recharge rates
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were estimated from annual precipitation. The observed precipitation data were collected from the
nearest Automated Synoptic Observing System (ASOS) station from the Byeonsan2 monitoring well,
which is the Buan station operated by the Korea Meteorological Administration (KMA). Annual mean
precipitation and temperature at the station are approximately 1250 mm and 12.6 ◦C, respectively.
The predicted precipitation data under RCP 4.5 and RCP 8.5 were used to estimate the freshwater
recharge rates under climate change. These climate change scenarios at 1-km resolution were collected
from the Korea Global Atmosphere Watch Center (KGAWC, http://www.climate.go.kr). Outputs
of a global climate model (HadGEM2-AO) were dynamically and statistically downscaled using a
regional climate model (HadGEM3-RA) and Modified Korean-Parameter-elevation Regressions and
Independent Slopes Model (MK-PRISM), respectively. More detailed information on these downscaled
methods can be found in Kim et al. [35].
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seasonal component of sea level was in February. This estimated seasonal cycle was removed from 
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monthly sea level data in which the seasonal components were removed. These projected SLR was 
used for boundary conditions of the SUTRA model. 

Figure 1. Location map of the Gunsan tide gauge station (35.98◦ N 126.56◦ E), the Byeonsan2
groundwater monitoring well for seawater intrusion (35.64◦ N 126.48◦ E), and the Buan weather
station (35.73◦ N 126.72◦ E).

2.2. Sea-Level Rise Projection

Polynomial regressions were used to project SLR at the Gunsan tide gauge station in the 2050s
(2051–2060) and 2090s (2091–2100) from the observed sea level data. Linear and quadratic regressions
were used to estimate a trend and acceleration of SLR, respectively. Boon et al. [3] used this method to
project the trend and acceleration of SLR of Chesapeake Bay (USA). Missing values were frequently
found in the tide gauge measurements and adequately filled before further analyses. These missing
values were interpolated using the Tidal Analysis Software Kit-2000 (TASK-2000) package [36], which
implements tidal harmonic analysis. This package is widely used for tidal analyses and more
detailed information on the package can be found in Murray [37]. For this study, the observed
hourly sea level data were aggregated to daily to monthly sea level (Figure 2a,b). The seasonal cycle
(i.e., repetition over time) of sea level (Figure 2c) was defined as monthly mean values during the
monitored period (1981–2015). A clear seasonal component was seen as shown in Figure 2c. While
the seasonal component of sea level in August was highest, the lowest seasonal component of sea
level was in February. This estimated seasonal cycle was removed from the monthly sea level data
(Figure 2d). Finally, polynomial regressions were performed using the monthly sea level data in which
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the seasonal components were removed. These projected SLR was used for boundary conditions of the
SUTRA model.Water 2018, 10, x FOR PEER REVIEW  4 of 11 
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Figure 2. The observed sea level data at the Gunsan tide gauge data: (a) hourly, daily, and monthly sea
level data; (b) monthly seal level data; (c) seasonal cycle of sea level; and (d) monthly sea level data
with no seasonal components. SSH is the sea surface height.

2.3. Seawater Intrusion Modeling

Seawater intrusion can be defined as a variable density saturated flow and non-reactive solute
transport of total dissolved solids (TDS) or chloride. Therefore, the governing equations for seawater
intrusion can be expressed as the following Equations (1)–(3):

ρSop
∂ρ

∂t
+ ε

∂ρ

∂U
∂U
∂t
−∇·

[
kρ

µ
·(∇p− ρg)

]
= Qp (1)

where ρ is the fluid density (ML−3), Sop is the specific pressure storativity (ML−1T−2)−1, t is the time
(T), ε is the fractional porosity [1], U is the solute mass fraction (MM−1), k is the permeability tensor
(L2), µ is the fluid viscosity (ML−1T−1), p is the fluid pressure (ML−1T−2), g is the gravity vector
(MT−2), and Qp is the fluid mass source (ML−3T−1):

v =
kρ

εµ
·(∇p− ρg), (2)

where v is the fluid velocity (MT−1):

ερ
∂U
∂t

+ ερv·∇C−∇·[ερ(Dm I + D)·∇U] = Qp(C∗ − C). (3)

where Dm is the coefficient of molecular diffusion in porous medium fluid (L2T−1), I is the identity
tensor [1], D is the dispersion tensor (L2T−1), C is the concentration of solute (MM−1), and C* is the
concentration of a fluid source (MM−1).

The SUTRA model was used to investigate seawater intrusion in the Byeonsan2 groundwater
monitoring well. A two- or three-dimensional finite-element (FEM) and finite-difference method (FDM)
is employed to simulate groundwater flow and solute transport [38]. The SUTRA model can be used
to investigate seawater intrusion in aquifers at near-wells through two-dimensional cross-sectional
modeling. For this study, the ModelMuse software package [39] was used to generate irregular
quadrilateral finite element meshes and to construct input files for the SUTRA model. The ModelMuse
software package, a graphical user interface, can create input files for various the U.S. Geological Survey
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(USGS) models including MODFLOW-2005 [40], MODFLOW–CFP [41], PHAST [42], and SUTRA [38].
We originally assumed that the paths of flow and solute transport in the study region coincided with
streamlines. A streamline from 300 m distant to the coastline to the Byeonsan2 monitoring well was
stretched and two-dimensional irregular meshes were created along the stretched streamline. Figure 3
illustrates the simulation domain describing initial and boundary conditions. A total of 4637 nodes
and 4539 elements in the 2-D vertical cross-sectional domain were generated for this study (Figure 3).

A homogeneous and anisotropic porous medium was assumed for the simulation domain.
Hydraulic conductivity and transmissivity of this site were 3.4 × 10−4 m day−1 and 0.67 m2 day−1,
respectively. Longitudinal dispersivity and transverse dispersivity were estimated through the SUTRA
model by comparing the simulated salinity against the observed salinity converted from the observed
EC. An observation node was inserted at the location of the EC sensor (i.e., 44 m below sea level).
In this study, the observed salinity from 2005 to 2010 were selected for the calibration of the transport
parameters (i.e., longitudinal dispersivity and transverse dispersivity), while those in 2011 to 2015
were selected for the validation of the SUTRA model. The performance of the SUTRA model was
assessed with Mean Absolute Percentage Error (MAPE, Equation (4)). The simulation periods selected
in this study were the baseline period (2005–2015), 2050s (2051–2060), and 2090s (2091–2100).

MAPE =
100
N ∑ n

i=1

∣∣∣∣Oi − Pi
Oi

∣∣∣∣, (4)

where Oi is the observed value and Pi is the simulated value.
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Figure 3. Initial and boundary conditions and finite-element meshes for the simulation domain.
ρsea = 1024.99 kg m−3; H = depth (m); g = 9.81 (m s−2); P = hydrostatic seawater pressure;
Qin = freshwater recharge rate (kg m−2); Cin = 0.0 (kg kg−1); Csea = 0.0357 (kg kg−1). A total of
4637 nodes and 4539 elements were generated for the simulation domain.

3. Results and Discussion

3.1. Sea-Level Rise Projection

Figure 4 displays the results of polynomial regressions. An increase of approximately 0.12 m in
the sea level at the Gunsan tide gauge station was observed from 1981 to 2015. Over this period, the sea
level at the station increased with a constant rate of 3.45 ± 0.49 mm yr−1 (p-value < 0.0001), based on
the linear regression, which is assumed as a constant rate of SLR. An acceleration of 0.08 mm yr−2

(p-value < 0.001) was found over same period from the quadratic regression. This linear trend is in
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good agreement with that by Yoon [8]. Yoon [8] reported that a constant rate of 3.4 mm yr−1 and
3.7 mm yr−1 were estimated from the Gunsan tide gauge station data for the periods 1981–2014
and 1985–2014, respectively. The constant rate (3.45 ± 0.49 mm yr−1) in this study is slightly
lower than that (3.53 ± 0.29 mm yr−1) at the Mokpo tide gauge station by [6] and very close to that
(3.4 ± 0.4 mm yr−1) for the global mean sea level by [43], while the constant rate is higher than the
average SLR (2.57 mm yr−1) from their study. The acceleration in this study is close to the average
acceleration of SLR (0.075 yr-2) by [6]. They estimated the trend and acceleration of SLR at the five
tide gauge stations around the Korean peninsula using the ensemble empirical mode decomposition
(EEMD) approach.

The SLR by the year 2050 was projected by using these polynomial regression results. These projections
were used for the initial and boundary conditions of the simulation domain to investigate the impacts
of SLR on seawater intrusion in the Byeonsan2 groundwater monitoring well. By the year 2050,
an increase in sea level of approximately 0.12 m was projected based on the linear regression, while sea
level was projected to increase by approximately 0.32 m relative to the sea level in the year 2015 based
on the quadratic regression. However, it should be noted that the acceleration was estimated using
only 35 years of monitored tide gauge measurements, which might be short for the SLR projection to
the year 2050.

Figure 4. Sea level (black curve), fitted straight line (blue line, linear trend), and fitted quadratic line
(green curve, quadratic trend) at the Gusan tide gauge station.

3.2. Seawater Intrusion Modeling

It is generally known that climate change may have impacts on SLR and precipitation which may
be associated with freshwater recharge rates and that seawater intrusion is influenced by not only sea
level, but also freshwater recharge rates. While a higher freshwater recharge rate could lower salinity
in groundwater, a higher sea level may increase seawater intrusion. For this study, the freshwater
recharge rates of the simulation domain were assumed as 10% of the annual mean precipitation for
the baseline, the 2050s, and the 2090s. Chung et al. [44] reported that the freshwater recharge rate for
the Korean peninsula was approximately 10% of annual precipitation. For the baseline period, 10% of
annual mean precipitation from 2005 to 2015 was assumed as the freshwater recharge rate and it was
0.00603 kg s−1. For the 2050s and 2090s, annual mean precipitations were first calculated with RCP
4.5 and 8.5 climate change scenarios from the KGAWC and these annual mean precipitations were
then used for freshwater recharge rates, respectively. There were four freshwater recharge rates except
for the baseline period. However, it should be noted that this simple approximation of the freshwater
recharge rate from annual mean precipitation may lead to inadequate inference of seawater intrusion
investigation. For example, for the water-balance method, evapotranspiration, runoff, and precipitation
should be considered to estimate groundwater recharge rates [45]. A further study is suggested for the
accurate estimation of freshwater recharge rates. Four SLR scenarios, including the projections from



Water 2018, 10, 357 7 of 11

the polynomial regressions and the projections for the West Sea under the two emission scenarios [2]
were assumed for this study: 0.12 m by the year 2050 from the linear regression, 0.32 m by the year
2050 from the quadratic regression, 0.57 m under RCP 4.5 [2], and 0.72 m under RCP 8.5 [2]. A total of
15 scenarios were made considering these four freshwater recharge rates and SLR scenarios and the
baseline. These scenarios in this study are summarized in Table 1. The lowest freshwater recharge
rate (0.0549 kg s−1) was found in the 2090s under RCP 4.5 and the highest freshwater recharge rate
(0.0694 kg s−1) was found in the 2090s under RCP 8.5.

Table 1. Fifteen scenarios, including the baseline with SLR and freshwater recharge rates.

Cases SLR (m) Freshwater Recharge Rate (kg s−1) Descriptions

Baseline 0.0 0.00603 2005–2015
RR2050RCP45 0.0 0.00627 2050s, RCP4.5, Precipitation (1)
RR2050RCP85 0.0 0.00580 2050s, RCP8.5, Precipitation (2)
RR2090RCP45 0.0 0.00549 2090s, RCP4.5, Precipitation (3)
RR2090RCP85 0.0 0.00694 2090s, RCP8.5, Precipitation (4)

2050L 0.12 0.00603 Linear trend by 2050 (5)
2050C 0.32 0.00603 Quadratic trend by 2050 (6)

2090RCP45 0.57 0.00603 SLR of the West sea under RCP4.5 (7)
2090RCP85 0.72 0.00603 SLR of the West sea under RCP8.5 (8)

2050L_RR2050RCP45 0.12 0.00627 (1) and (5)
2050L_RR2050RCP85 0.12 0.00580 (2) and (5)
2050C_RR2050RCP45 0.32 0.00627 (1) and (6)
2050C_RR2050RCP85 0.32 0.00580 (2) and (7)

2090RCP45_RR2090RCP45 0.57 0.00549 (3) and (7)
2090RCP85_RR2090RCP85 0.72 0.00694 (4) and (8)

For the baseline simulation, sea level and Qin were set to be 0.0 m and 0.00603 kg s−1, respectively.
The longitudinal dispersivity and transverse dispersivity were estimated by comparing the observed
and simulated salinities from the observation node (located at 44 m below sea level), based on the
assumption of anisotropic and homogeneous domains for the transport parameters. The estimates of
the longitudinal dispersivity and transverse dispersivity were 10.0 m and 0.1 m, respectively. The value
of MAPE of the observed and simulated salinities for the calibration period was approximately 1.6%,
while the MAPE value for the validation period was about 2.4%. The ratio of longitudinal dispersivity
to transverse dispersivity was 100 for this site. This ratio is in substantial agreement with that reported
by Anderson [46]. Anderson [46] found that the ratio of longitudinal dispersivity to transverse
dispersivity ranged from 10 to 100. Gelhar et al. [47] reported a “scale effect” that transport parameters
are generally proportional to the sizes of the study regions. Therefore, a further study on a tracer test
is suggested to accurately determine transport parameters, including longitudinal dispersivity and
transverse dispersivity.

When sea level rises (i.e., relative sea level > 0.0 m), the coastal line will move inland and
hydrostatic seawater pressure at each node will be changed in the simulation domain. For example,
sea level will rise by approximately 0.57 m for the 2090RCP45 scenario (Table 1). This SLR will
move the coastline approximately 17.1 m inland. Therefore, the initial and boundary conditions
for the SLR scenarios (i.e., relative sea level > 0.0 m) should be adequately configured according to
the new sea level. Figure 5 presents salinity changes relative to the baseline at the observation
node (located at 44 m below sea level) for the 14 scenarios. Among the cases with no SLR
scenario (i.e., with consideration of only the freshwater recharge rate: RR2050RCP45, RR2050RCP85,
RR2090RCP45, and RR2090RCP85), the highest increase in salinity (approximately 13.3%) was
simulated for RR2090RCP45, while the highest decrease in salinity was approximately 19.6% for
case RR2090RCP85. Overall, the highest salinity change (approximately 40.3%) was simulated for the
scenario 2090RCP45_RR2090RCP45 (i.e., SLR of 0.57m and a freshwater recharge rate of 0.00549 kg s−1)
and the results for the baseline and this scenario are displayed in Figure 6. A salinity change of only
7.7% increased with the case 2090RCP85_RR2090RCP85 (i.e., the highest SLR of 0.72 m and the highest
freshwater recharge rate of 0.00694 kg s−1). These results imply that a freshwater recharge rate of
0.00694 kg s−1 may largely offset the impact of SLR on seawater intrusion. This finding is in good



Water 2018, 10, 357 8 of 11

agreement with that by Hussain et al. [30]. They found that salinity in the aquifer could be largely
reduced by the artificial recharge application. These results suggest that to accurately assess the impacts
of climate change on seawater intrusion in coastal groundwater systems, both SLR and freshwater
recharge rates should be considered.Water 2018, 10, x FOR PEER REVIEW  8 of 11 
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Figure 6. (a) Salinity for the baseline and (b) salinity differences between the baseline and the scenario
2090RCP45_RR2090RCP45 2090RCP45_RR2090RCP45 (0.57 m SLR with a freshwater recharge rate of
0.0058 kg s−1) in × 10−3 (kg-dissolved solids) (kg-seawater)−1.

4. Conclusions

We attempted to investigate the impacts of climate change and SLR on seawater intrusion in
the coastal groundwater systems in South Korea through the SUTRA model. The Gunsan tide gauge
station and the Byeonsan2 groundwater monitoring well for seawater intrusion were selected for
this study. The longitudinal dispersivity and transverse dispersivity estimated by the SUTRA model
with the baseline period (2005–2015) were 10.0 and 0.1 m, respectively. Due to the “scale effect”,
a further study on a tracer test is suggested to accurately determine the transport parameters. For the
14 scenarios, the largest salinity change relative to the baseline (approximately 40.3%) was simulated
with case 2090RCP45_RR2090RCP45 (i.e., 0.57 m SLR and a freshwater recharge rate of 0.00549 kg s−1),
while the change in salinity increased by only 7.7% for case 2090RCP85_RR2090RCP85, even though
the highest SLR (0.72 m) was assumed for this case. These findings indicate that a freshwater recharge
rate of 0.00694 kg s−1 may largely offset the impact of SLR on seawater intrusion at the Byeonsan2
groundwater monitoring well. These findings suggest that both freshwater recharge rate and SLR
should be considered for the accurate assessment of climate change impacts on seawater intrusion in
coastal groundwater systems. We concluded that this study may provide a better understanding of
the climate change impacts on seawater intrusion in coastal groundwater systems by considering the
climate change impacts on SLR and freshwater recharge rates.
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