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Abstract: The potential of terrestrial water storage (TWS) inverted from Gravity Recovery and Climate
Experiment (GRACE) measurements to investigate water variations and their response to droughts
over the Volta, Niger, and Senegal Basins of West Africa was investigated. An altimetry-imagery
approach was proposed to deduce the contribution of Lake Volta to TWS as “sensed” by GRACE.
The results showed that from April 2002 to July 2016, Lake Volta contributed to approximately 8.8%
of the water gain within the Volta Basin. As the signal spreads out far from the lake, it impacts
both the Niger and Senegal Basins with 1.7% (at a significance level of 95%). This figure of 8.8% for
the Volta Basin is approximately 20% of the values reported in previous works. Drought analysis
based on GRACE-TWS (after removing the lake’s contribution) depicted below-normal conditions
prevailing from 2002 to 2008. Wavelet analysis revealed that TWS changes (fluxes) and rainfall as well
as vegetation index depicted a highly coupled relationship at the semi-annual to biennial periods,
with common power covariance prevailing in the annual frequencies. While acknowledging that
validation of the drought occurrence and severity based on GRACE-TWS is needed, we believe that
our findings shall contribute to the water management over West Africa.
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1. Introduction

There is ample evidence that West Africa (WA), which is home to about 290 million people
inhabiting 18 countries, is facing a sustained reduction in its total rainfall amount [1]. For instance,
Nicholson [2] reported that, although there has been an apparent resurgence in recent years, rainfall
rates still remain well below those recorded in the first half of the 20th century. In addition, recent
reports indicated that the freshwater flux, i.e., the difference between rainfall and evaporation, over
WA is especially sensitive to rainfall fluctuations due to a long-term imbalance between the two
fluxes [3]. These impacts on freshwater in WA have called for the analysis of the long-term and
seasonal variability of rainfall, evaporation, and other hydrological variables to assess the availability
and variability of freshwater over WA. Analyzing freshwater variability in WA is hampered by the fact
that the region is data-deficient [4], so the required hydro-climatic information is not readily available.
This makes it difficult to provide a more reliable account of the state of the region’s freshwater resources.
Investigation of water storage variability has been limited to developed countries due to the availability
of in-situ data and records, but even with that, the data is usually inaccessible or difficult to access.
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Fortunately, other data sources such as those observed from space-borne sensors can be employed to
overcome the data scarcity in many poor-data regions worldwide.

To circumvent the problem of hydro-climatic data shortage, various studies have attempted to
analyze and explain the variability of available freshwater in the context of runoffs and/or river
discharge [1,5,6], rainfall patterns [7,8], vegetation dynamics [9,10], land water storage [11], etc.
Nevertheless, the Gravity Recovery and Climate Experiment (GRACE) satellite mission has eased
the quantification of land water storage in terms of data shortages. The mission provides the total
water storage (hereafter abbreviated as TWS) from which the other components of the water cycle can
be segregated if ancillary data are available [12,13]. Fluctuations of hydro-meteorological variables
such as precipitation, evaporation, and stream flow are the basis of drought induction [14] and, as a
consequence, based on hydrographs, have impacted land water storage. Thus, GRACE data has
assisted in the quantification of hydrological processes, which are necessary for drought analysis.
When dry conditions set in, hydrologic events, which feed the atmosphere with enough moisture
for precipitation, establish positive feedback processes for a drought episode [14]. An atmosphere
with depleted moisture has little relative humidity, hence lessening the probability of rainfall. Rainfall
in such situations only occurs when moisture carrying winds from other regions provide enough
humidity for precipitation [15].

In a review of droughts in the African continent, recent studies [16,17], mentioned that WA was
one of the regions prone to droughts in the near future. This might be possible due to the rapid
population growth and poor drought assessment methods in the region. Nevertheless, the most
common studies involving the GRACE data over the WA have been based on the quantification
of the water-storage variability and not the potential for drought characterization. For instance,
Andam-Akorful et al. [8] assessed the water-storage variability of the whole of WA based on
net-precipitation, while Ndehedehe et al. [18] explored the variation of hydrological droughts based on
different precipitation indices together with water storage variability from GRACE. There are only a
few studies on the potential of characterizing and quantifying droughts directly from GRACE-derived
TWS on specific regional basin scales. For example, studies have focused on the Volta Basin [18–21],
the Niger Basin [22], and the Senegal Basin [23]. For WA, GRACE-based drought characterization is
uncommon. However, drought characterization based on the GRACE water storage deficits approach
has been studied by Thomas et al. [24] for the Amazon and Zambezi River basins. This method has
helped determine the duration and severity of drought events. Additionally, for the São Francisco River
basin, Sun et al. [25] reported on drought characterization employing GRACE-derived storage indices.

Therefore, the main aim of this study was to analyze the terrestrial water storage (TWS) changes
over WA as observed by GRACE. Our objectives were (1) to deduce the water mass gain of Lake Volta
with respect to the major basins in the region, (2) to explore the potential of GRACE-derived TWS
for hydrological drought characterization after considering the lake’s effect, and (3) to investigate the
impacts of hydro-climatic variables on TWS changes. To achieve this, satellite altimetry and imagery
datasets are combined to account for the surface water storage of Lake Volta, a significant reservoir in
the region, from GRACE-derived TWS. Furthermore, we present a framework comparison involving
co-variability studies of GRACE-derived terrestrial water-storage change (TWSC, the derivative of
TWS w.r.t. the time) with precipitation (rainfall), the normalized difference vegetation index (NDVI),
and the teleconnection index (El Niño Southern Oscillation—ENSO).

2. Materials and Methods

2.1. Study Area

2.1.1. Geography

West Africa refers to the geographic western part of the African continent, which is spread within
the range of latitudes 0◦ to 20◦ N and longitudes 20◦ W to 20◦ E. The total area comprises of about
5,112,903 km2, which accounts for 20% of the total land area of the whole of Africa. The region is
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bordered by the Atlantic Ocean to both the west and the south, to the north by the Sahara Desert and
to the east by two Central African countries, Chad and Cameroon (Figure 1). The main river basins
in WA are the Niger, the Volta, and the Senegal. The Niger Basin is the largest, covering a total area
of 1,926,905 km2 (excluding 9% of its area outside WA, located in Algeria and Chad). It accounts for
about 37% of the total area of WA, while the Senegal and the Volta both occupy an area of 434,749 km2

and 412,481 km2, respectively, making up 8% of the total area of WA. In total, the three basins occupy
about 54% of the entire sub region. We considered the main basins instead of the entire region to avoid
suppressing inherent drought features in some regions of WA. Ndehedehe et al. [18] indicated that,
considering the entirety of WA as a whole, such analyses may lead to the misrepresentation of areas
with relatively lower drought signature amplitudes as insignificant, whereas they may be significant at
a sub-regional scale.

Water 2018, 10, x FOR PEER REVIEW 3 of 27 

 

and to the east by two Central African countries, Chad and Cameroon (Figure 1). The main river 

basins in WA are the Niger, the Volta, and the Senegal. The Niger Basin is the largest, covering a total 

area of 1,926,905 km2 (excluding 9% of its area outside WA, located in Algeria and Chad). It accounts 

for about 37% of the total area of WA, while the Senegal and the Volta both occupy an area of 434,749 

km2 and 412,481 km2, respectively, making up 8% of the total area of WA. In total, the three basins 

occupy about 54% of the entire sub region. We considered the main basins instead of the entire region 

to avoid suppressing inherent drought features in some regions of WA. Ndehedehe et al. [18] 

indicated that, considering the entirety of WA as a whole, such analyses may lead to the 

misrepresentation of areas with relatively lower drought signature amplitudes as insignificant, 

whereas they may be significant at a sub-regional scale. 

 

Figure 1. The study area of West Africa (WA) and its major river basins, namely, the Volta Basin, 

represented by the blue-shaded region, the Niger Basin, represented by the green-shaded region, and 

the Senegal Basin, represented by the red-shaded region. The graphical scale is related to the center 

of map using the Mercator projection. 

An important feature in the region is Lake Volta, which, located in Ghana, is one of the largest 

manmade lakes in the world, due to the construction of the Akosombo Dam in 1964. It is located at a 

latitude of 6.5° N and a longitude of 0° W (Figure 1). As the largest lake in the basin, it contributes to 

the environmental, economic, and social activities of the country and the entire basin. 

2.1.2. Climate 

West Africa experiences unique climatic conditions of wet and dry seasons resulting from the 

exchange of two migrating air masses that prevail virtually across the entire region. They are hot and 

dry Harmattan winds that blow from the Sahara over the entire region from November to February 

and the tropical maritime or equatorial air mass, which produces counter southwest winds. The 

Figure 1. The study area of West Africa (WA) and its major river basins, namely, the Volta Basin,
represented by the blue-shaded region, the Niger Basin, represented by the green-shaded region,
and the Senegal Basin, represented by the red-shaded region. The graphical scale is related to the center
of map using the Mercator projection.

An important feature in the region is Lake Volta, which, located in Ghana, is one of the largest
manmade lakes in the world, due to the construction of the Akosombo Dam in 1964. It is located at a
latitude of 6.5◦ N and a longitude of 0◦ W (Figure 1). As the largest lake in the basin, it contributes to
the environmental, economic, and social activities of the country and the entire basin.

2.1.2. Climate

West Africa experiences unique climatic conditions of wet and dry seasons resulting from the
exchange of two migrating air masses that prevail virtually across the entire region. They are hot and
dry Harmattan winds that blow from the Sahara over the entire region from November to February and
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the tropical maritime or equatorial air mass, which produces counter southwest winds. The meeting
point of these two air masses forms a belt of variable width and stability called the Intertropical
Convergence Zone (ITCZ), which influences the climate of the region.

West Africa has four climatic zones: the arid zone (Sahelian), the semiarid zone (Sudanian),
the sub-humid zone, and the humid zone (the equatorial) [8]. The Sahelian is the northern section
forming the transition between the Sahara and savannah; rainfall in this area is irregular and does not
exceed three months with less than 500 mm rainfall. In the Sudanian portion, precipitation is less than
88 mm in the north of Nigeria and 1000 mm in the north of Mali, whereas the tropical humid zones
have an average rainfall of approximately 1500 mm.

2.2. Datasets

2.2.1. GRACE-TWS Monthly Fields

To assess the variability of water storage in WA, we employed GRACE-derived monthly TWS
fields provided by NASA’s Jet Propulsion Laboratory (JPL) GRACE Tellus [26], otherwise known as
Level 3 (L3) products. They are gridded mass estimates expressed in terms of monthly TWS fields at a
spatial resolution of 1◦ (~111 km at the equator), which is much finer when compared to the nominal
GRACE resolution (~333 km at the equator). The University of Texas Center for Space Research (CSR)
version was acquired in this study since it has been proven to give the smallest uncertainties over
the major river basins of WA [27]. Specifically, uncertainties of approximately 5.0, 6.0, and 5.9 mm
have been estimated for Niger, Senegal, and Volta, respectively [27]. The TWS grids used in this study
spanned the period from April 2002 to July 2016 with the fields for June 2003, January and June of
2011, and May and October of 2012 missing.

Compensation due to all the filtering processes and truncation of spherical harmonic coefficients
(SHCs) was applied in terms of gain factors [26]. A gain factor k was derived by minimizing the
discrepancies between the unfiltered true (∆ST) and the filtered (∆SF) storage time series, at each grid
point, through a least square regression expressed as [26]

∑(∆ST − k∆SF)
2 = min (1)

where ∆ST is the unfiltered storage (“true” signal) and ∆SF is the filtered storage after expansion
to SHCs and filtered with the same filters as the GRACE. Global Land Data Assimilation System
(GLDAS)-driven Community Land Model (CLM4.0) version 4 [28] was used to simulate the water
storage time series, which are independent of the GRACE.

Apparently, this gain factor, when applied to the filtered GRACE data, restores a significant
portion of the signal attenuation, and the resultant gridded TWS enhances data compatibility with
other gridded datasets. For example, when comparing TWS data with rainfall, one does not have to
filter the rainfall data as the GRACE. However, the quality of the resulting TWS depends on the quality
of the simulated TWS. Models such as GLDAS CLM4.0 do not consider water management such as
groundwater abstraction, surface water impoundment and division, etc. Thus, inter-annual trends
could present large uncertainties, and the estimated scale factors using Equation (1) are dominated by
annual cycles. A well-structured analysis of leakage restoration and scale factor application is further
discussed in, for example, Ref. [29].

2.2.2. Bivariate ENSO Time Series

The Bivariate ENSO Time Series (BEST) is a climate index that characterizes the ENSO phenomenon.
The ENSO is derived from the combined effect of Niño 3.4 and the Southern Oscillation Index (SOI).
The BEST index was obtained for the period coinciding with the GRACE (that is, from April 2002 to
July 2016).
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2.2.3. Tropical Rainfall Measurement Mission Rainfall Products

The rainfall product employed was the Tropical Rainfall Measurement Mission (TRMM). TRMM
was launched in November 1997 to operate for 3 years, and fortunately survived for nearly 17 years
of effective data acquisition to study rainfall and climate research. It was a joint mission between
National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration (JAXA)
to study tropical rainfall in the latitude range of ±50◦. The monthly mean 3B43 V7 [30] rainfall rate
products of a 0.25◦ spatial resolution were used in this study, and were compiled not only from
TRMM but from other satellite products and ground-based rain gauge data as well [31]. The data
were obtained from NASA’s Goddard Earth Sciences Data and Information Service Center (GES
DISC). This dataset has been evaluated for several regions globally, for instance, for the whole of WA,
as inferred by Nicholson [2] in the attempt to verify the recovery of rainfall in the region. Additionally,
Forootan et al. [11] employed this dataset together with sea surface temperature (SST) data for the
water storage deduction of WA. Furthermore, several studies [12,19,32,33] have employed this data
over WA, and Awange et al. [34] reported that it performed quite well over Africa.

2.2.4. Satellite Altimetry Data

Satellite radar altimeters are basically designed to measure the world’s ocean and ice sheets.
However, advanced manipulation of this data has enabled studies in water level variations and
storage changes of large lakes, reservoirs, and wetlands at global scales [35]. Satellite altimeters are
advantageous, in that they provide day and night observations with no cloud restrictions. Since 1992,
the available satellite altimetry missions have been combined to routinely measure lake and reservoir
height variations for many large lakes around the world in near real time. The satellite altimetry data
used in this study were obtained from the U.S. Department of Agriculture’s Foreign Agricultural
Service (USDA-FAS) in collaboration with NASA and the University of Maryland online database of
global lake and reservoir measurements. However, this dataset has a temporal resolution of about
10 days; which was then filtered and resampled to a monthly time step. This data have also been used
in other studies [11,19,20]. Validation of this dataset over some selected reservoirs globally including
Lake Volta was evaluated in [36] whereas a root-mean-square-error (RMSE) of 0.54 m with a correlation
coefficient of approximately 0.99 (95% confidence level) was obtained for Lake Volta. This RMSE is
approximately 4 mm (4 kg/m2) in terms of water equivalent height over the basin estimated by the
propagation of uncertainty.

2.2.5. Satellite Imagery Data

The MOD13Q1 NDVI data, acquired from the Land Process (LP) Distributive Active Archive
Center (DAAC) of NASA and United States Geological Survey (USGS) was used in the study.
The Global MOD13Q1 data are a gridded level-3 product in the sinusoidal projection, at spatial and
temporal resolutions of 250 m and 16 days, respectively. It was considered due to its 250 m resolution,
which is the least among the MODIS products. MODIS data are also cloud-free when compared to other
datasets such as Landsat despite its coarse resolution [37]. Previously the MOD13Q1 has been used in
Islam et al. [38] for flood inundation, and for surface area derivation by Gao et al. [39]. Additionally, the
MODIS global vegetation index product MOD13C1 provides vegetation index classification systems.
Furthermore, it provides a land cover type assessment, and quality control information. The MODIS
Version 5 yearly land cover type L3, 500 m global sinusoidal data (MOD13C1) were obtained from
NASA’s Land Data Products and Services (LP DAAC). This dataset was used to analyze the NDVI
variations over the study area as well.
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2.3. Methodology

2.3.1. Lake Surface Area and Height Changes

The most commonly used method for reservoir water storage estimation using remote sensing data
is to extract water surface area and elevation separately, then, combine these two sets of information for
storage calculation [37,39]. The water surface area was delineated from the MODIS13Q1 NDVI images
(Section 2.2.5), while the water surface elevations were obtained from satellite altimetry (Section 2.2.4).
For every month, one set of the 16-day 250 m product was acquired, which consisted of two scenes
that covered the entire Lake Volta. Both scenes were mosaicked to form a single image and a further
subset for the area of interest. Hence, a single image represented every month creating 12 images per
year. From the period of April 2002 to July 2016, a total of 172 NDVI images were obtained. However,
due to the poor quality of the images in some months due to cloud cover, 110 months of the best image
quality were used out of the 172 images.

A mask was created to separate the water pixels from land using a given threshold. The NDVI values
ranged from −1 to +1 with water values mostly being less than zero. The threshold was manually
adjusted for every image and then compared with the true color image to avoid misclassifications.
This method is similar to those used by Wang et al. [40] and Sheng et al. [41]. Basically, the range of
values for each image was found considering the values for the middle of the lake and outside the
lake as land or non-water. The mask was then applied, the images were converted to binary images
containing pixels 1 for water and 0 for land and vegetation.

The binary images were further converted into shapefiles, delineating the shape of the lake and
extracting the lake shorelines. The coordinates of the lake were then used to compute the corresponding
monthly surface area in square kilometers (km2). This procedure was used to process every image
separately due to the different acquisition dates.

To predict the surface area of the missing months of the overall period, an area–elevation
relationship was derived such that either parameter could be inferred from its pair where the direct
observation was unavailable as described in [37]. Due to the correlation of the known elevations and
surface areas, a linear polynomial was chosen to describe the area–elevation relationship (Section 3.1.1).

2.3.2. Lake-Induced TWS Changes

At this point, the lake boundary obtained was combined with the lake height changes to deduce
the contribution of Lake Volta. However, these data were converted into SHCs and filtered with the
same filtering scheme as the GRACE data to enhance data compatibility in the spectral domain. It was
necessary to have the data in the same resolution (spectral). To accomplish this, a global grid mask
was constructed by a kernel function f̂lake using the spherical coordinates of the lake extent [42]:

f̂lake(ϑ, λ) =

{
1, within the lake
0, elsewhere

(2)

where ϑ is the co-latitude and λ is the longitude. This global grid mask could be, for example,
constructed/achieved at grid intervals of 0.1◦ × 0.1◦ to adequately capture the lake’s shape [20]. Using
the spherical harmonic analysis, a grid integral function f (ϑ, λ) on a sphere can be analyzed into SHCs,
Clake

nm and Slake
nm , as [42]{

Clake
nm

Slake
nm

}
=

1
4π

x

σ

flake(ϑ, λ)Pnm(cos ϑ)

{
cos mλ

sin mλ

}
dσ (3)

where dσ = cos ϑdϑdλ, and Pnm is the normalized associated Legendre function of degree n and order
m. The spherical harmonic synthesis using the coefficients from Equation (3) can then be used to
reconstruct the lake’s shape [42]:
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f̂lake(ϑ, λ) =
1

4π

nmax

∑
n=0

n

∑
m=0

(
Clake

nm cos mλ + Slake
nm sin mλ

)
Pnm(cos ϑ). (4)

To deduce the altimetry-derived TWS of the lake, a standard shape of the lake was chosen and
used together with the monthly shape variations of the lake to scale the altimetry time series. To this
end, it was proposed to compute the area of the standard shape as As using its boundary coordinates,
and this standard shape was then expressed in terms of SHCs using Equation (3). The advantage of
this procedure is that there was no need to expand each monthly shape of Lake Volta obtained from the
satellite imagery since there were missing months; consequently, this reduced numerical computational
time required to compute the coefficients in Equation (3). Furthermore, this procedure was more
sensitive to the lake’s areal changes relatively to an expansion in SHCs of each monthly shape. Thus,
the following expression was proposed here and could be used to compute the altimetry/imagery
derived TWS fields:

LakeTWS(ϑ, λ, t) =
A(t)
As
·h(t)· f̂lake(ϑ, λ) (5)

where LakeTWS is the altimetry-derived TWS due to Lake Volta’s water impoundment; A(t) is the
monthly surface area of the lake; h(t) is the satellite altimetry height, t is the month, and As is the
standard area of lake. Here, it was considered as the standard shape the one that has been widely used
in many GRACE applications over the Volta Basin. This shape was provided with an area of about
8500 km2, as reported by many authors and produced by the Digital Chart of the World (DCW).

The averaged values of the LakeTWS can be extracted over the regional basins, considering the
major basins in WA (the Volta, the Niger, and the Senegal). The regional average of any gridded
quantity f within any given region Ω such as a basin or a lake can be computed as [19]

f (Ω) =
1
Ω

n

∑
i=1

f (ϕi, λi)Ωi (6)

where n is the number of cells within a basin (or a region); Ωi is the area of the cell i; Ω is the total area
of the basin. (For this study, the cell size was 1◦ × 1◦.) Finding the average over each basin determines
the contribution of the lake in each basin, respectively. This was used to determine the contribution of
Lake Volta’s impoundment on the TWS of each basin.

2.3.3. Droughts Characterization

Studies such as Sun et al. [25] and Thomas et al. [24] have confirmed TWS as a more dependable
means for drought analysis, since it reflects all the combined factors of hydrological changes including
human effects. However, the GRACE-derived TWS time series did not cover the desired 30-year
period. Thus, to compute the droughts, a normal condition based on “quasi-climatology” (mid-term
climatology) was considered using the median for computing the monthly normals. Originally, this
approach was based on the mean, but the median was used due to its robustness to extreme values.
The normals are a long-term seasonal measure of the average water storage that exhibits the standard
trend of storage variability. Therefore, it serves as the reference or the baseline for identifying the
occurrence and severity of droughts. Hence, positive deviation from the standard (climatology)
indicates excess water, while negative deviation indicates water loss, deficits, or dry conditions.

These deficits or gains give a straightforward measure of the magnitude M (km3), in other words,
the volumetric difference from the standard hydrological conditions (normals), so the volume of water
needed to return to normal conditions. Finally, a drought “event” was concluded to have occurred if
the magnitude M below-normal conditions occurred consecutively for a period of 3 months or more.
This allowed for event-based classification and comparison. To assess the cumulative impact of the
water storage deficit and duration (3 consecutive months or more), a severity term S was defined with
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respect to time. The severity of the drought conditions (S) can be obtained by multiplying the average
deficit by the duration, which can be expressed as [24]

S(t) = M(t)·D(t) (7)

where M is the average deficit for all drought events, t is the specific month, and D is the duration.
This storage-based approach is beneficial as it provides a means of estimating the drought

recovery using the deficits, since the monthly deficit (M) is the quantity of water required to recover
from below-normal water storage conditions. Hence, the rate of change in the increase or decrease of
the storage deficits can be deduced from the time derivatives of the deficits. By employing a backward
difference calculation, the rate of change can be expressed as [24]

dM
dt

(t) = M(t)−M(t− 1) (8)

where M is the monthly deficit, and t is the time. Due to the short time span of the GRACE data,
drought occurrences might have been few in number. Thus, dM/dt time series was presumed to be
the entire set of dM/dt values, including those in previous drought recoveries.

To estimate the minimum and maximum time to recovery for each drought epoch, the distribution
and statistical percentiles of the dM/dt values were computed. This was achieved by using the
Lilliefors statistical test for normality based on the Kolmogorov–Smirnov test (KS-test). Based on
this test, all three basins (Volta, Niger, and Senegal) followed a normal distribution. Hence the 68th
percentile and the 95th percentile of the empirical Cumulative Distribution Function (eCDF) were used
to obtain the minimum and average time to recovery for the deficits.

2.3.4. Cross Wavelet Transform and Coherence

Time series of hydrological datasets (such as rainfall or runoff) inherit some hidden properties
that are of great significance. Techniques such as Fourier transforms assume them to be stationary in
the frequency domain but they are variable in time [43]. Wavelet transformations, however, reveal the
frequency trends of these datasets with respect to space and time dynamics [44]. Two forms of wavelet
transforms are deduced; the continuous wavelet transform (CWT) and its discrete wavelet transforms
(DWT). CWT is preferred for detail extraction, while the latter is better for compact data description
and for noise reduction. CWT provides a representation of signals in a time scale. Linking two CWTs
releases the associated similarities between two datasets, and this is known as cross wavelet transform
(XWT). XWT produces the cross power and related frequency between the two datasets. Cross wavelet
is a tool for analyzing the distribution among time series, and further coherence provides inherent
coherence between the two signals datasets. In this study, the XWT and its coherence were used to
analyze nonlinear time series data. For two distinct time series xn and yn, the XWT can be expressed as

W = WXWY∗ (9)

where * is a complex conjugation. WXY is the cross-wavelet power, which is defined as the magnitude,
while the complex argument, arg(WXY), reveals the local relative phase between the two given fields
in the time frequency space.

In the same way, the coherence of the two time series can be shown as

R2
n(s) =

∣∣S(s−1 WXY
N (s)

)∣∣2
S
(
s−1
∣∣WY

N

∣∣)·S(s−1
∣∣WY

N

∣∣) (10)

where S is a smoothing operator, s is the wavelet scale, WXY is the cross wavelet transform between
the two CWTs, and WX and WX represent the two time series. Therefore, in this study, the inherent
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response and interactions between the GRACE-derived TWS and other climatic variables such as
rainfall, BEST, and NDVI were analyzed.

3. Results

3.1. Altimetry-Imagery Infered TWS Variations (LakeTWS)

3.1.1. Lake Surface Area Changes

Following the processing of the MODIS images (Section 2.3.1), a set of surface area variation time
series were deduced. A linear model was estimated using a simple least square regression to obtain the
best fitting parameters between areal surface changes (satellite imagery) and water elevation (satellite
altimetry) as shown in panel (a) of Figure 2. The best fit parameters were obtained as the slope c and
the intercept m of the fitted least square regression line. The area–elevation relationship (i.e., y and x,
respectively) for Lake Volta over the study period was estimated as

y = 317.5x + 6845.4 (11)

with a Pearson’s correlation coefficient (R) of approximately 0.89 showing high correlation between
the surface area and altimetry heights (panel (a) of Figure 2). The area–elevation relationship in
Equation (11) was then used for making provisions for the missing months of MODIS data as described
in Section 2.3.1. Figure 2 also shows the surface area, lake water level, and volume variations obtained
for the entire study period.
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Figure 2. (a) Scatter plot of the area and elevation relationship; (b) Time series of surface area changes
of Lake Volta shown with a black solid line and the altimetry heights changes represented as a red
line for the entire 172-month study period after making provisions for the missing months using an
area–elevation relationship (Equation (11)).

The peak surface area for the entire period was recorded in November 2010 as 9194 km2

corresponding to a height change of 7.4 m, while the minimum surface area was 4693 km2 with
a height of −3.2 m (Figure 2). An average surface area of 6800 km2 was obtained—not 8500 km2 as
reported by numerous authors [45–47]. Furthermore, this range of surface area values obtained here for
Lake Volta (4690 and 9190 km2) conformed with the results of Tanaka et al. [48] in their attempt to obtain
the surface area of Lake Volta from DMSP-SSMA (Defense Meteorological Satellite Program-Special
Sensor Microwave/Imager) data. Their results ranged from 4450 to 9970 km2, affirming the further
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conclusion that the surface area of 8500 km2 was unrealistic. This might have led to the overestimation
of the resulting storage when combined with altimetry data in next Section 3.1.2.

Noteworthy, one could use only the satellite imagery data and any available digital elevation
model (DEM) for extracting the lake elevation at each image epoch relative to the DEM’s datum.
For example, Tanaka et al. [48] have overestimated the parameters of the area–elevation relationship
in 44.9% relative to the values found in this study. Such an approach would be more interesting
since it would also allow for an estimation of river bed changes when large flows are introduced.
Unfortunately, there is no accurate DEM available for the public domain at present [49]. Thus, this shall
be carried out in the future.

3.1.2. Lake Kernel Function

Lake kernel function is essential to scale the altimetry-imagery-derived TWS of the lake for
spectrally consistency with the GRACE data. Thus, it is essential for data compatibility. For Lake Volta,
the kernel averaging method [42] has also been applied in studies such as [19,20] to synthesize the
altimetry-derived storage of the lake. The averaging lake kernel functions expressed in terms of SHCs
as ones inside the lake and zeros anywhere else (see Equations (2) and (3)) were computed at different
spatial resolutions (Figure 3). This was necessary to verify the absolute kernel resolution desirable for
the kernel function to capture the irregular shape within the lake as suggested in [20]. Nevertheless,
it is quite significant to note that kernel function amplitudes differ for different resolutions and can
also be the same amplitude for different resolutions (Figure 3).
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Figure 3. Kernel function for Lake Volta computed from spherical harmonic coefficients analyzed with
different resolutions; that is, spherical harmonic coefficients computed using a global grid of ones within
the lake and zeros elsewhere (see Equation (2)) at a resolution of 0.5 arc-degree (a); 0.1 arc-degree (b);
0.05 arc-degree (c); and 0.00833 arc-degree (d).
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Apparently, the kernel function at a coarse spatial resolution of 0.5 arc-degree provides an associated
maximum amplitude, shown on the color bar above 0.03 in Figure 3a. However, the associated
function amplitude corresponding to the 0.1 arc-degree (Figure 3b), 0.05 arc-degree (Figure 3c),
and 0.00833 arc-degree (Figure 3d) in all exhibited the same kernel function amplitude around
approximately 0.03. Hence, the coarsest and the smoothest resolutions from Figure 3a,d had significant
amplitude differences; therefore, the least resolution, 0.00833 arc-degree (30 arc seconds), was chosen.
Next, it was then passed through with the same filter scheme as applied to the GRACE, i.e., the
polynomial filter and the Gaussian 300 km half-width pass filter. Figure 4a shows the 30 arc-seconds
kernel after applying the half width filter and the polynomial filter. Application of these filters reduces
the amplitudes of the kernel and spreads out of Lake Volta’s domain. Figure 4b also shows the ratio
between the lake kernel filtered as shown in Figure 4a and the kernel displayed in Figure 3d.Water 2018, 10, x FOR PEER REVIEW 11 of 27 
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Figure 4. (a) The kernel function in Figure 3d, which was computed with 30 arc-seconds of resolution
after the same filter scheme used in the Gravity Recovery and Climate Experiment (GRACE), that is,
a polynomial and Gaussian filter with a half-length of 300 km, was applied; (b) The ratio between the
lake kernel filtered (panel a) and the kernel displayed in panel (d) of Figure 3.

Since the GRACE gridded dataset is at a 1 arc-degree resolution, it was necessary to compute a
kernel grid of the same resolution to enhance data compatibility in the space domain using Equation (4).
Then, f̂lake at each grid point with a resolution of 1◦ × 1◦ was used to compute LakeTWS (TWS of
Lake Volta) fields as per Equation (5). The results are presented in Figure 5 in terms of linear rates
(panel a) and root-mean-square (RMS) (panel b). The RMS shown in Figure 5b depicts the strength of
the seasonal water level variations of Lake Volta over WA as “sensed” by GRACE.

The time series of LakeTWS for the Niger, Senegal and Volta Basins were averaged using
Equation (6), respectively. Next, their linear trends were estimated. The results in this study revealed
an overall regional trend of 0.63 ± 0.14 mm/year for the Volta, 0.06 ± 0.01 mm/year for the Niger,
and 0.08 ± 0.02 mm/year for Senegal. It is noteworthy that the RMSE estimated for the altimetry
data (Section 2.2.4) was based on water measurements, which is equivalent to approximately 4 mm
spread over the Volta Basin (without considering the SHCs of the lake’s shape). Considering the
rates of LakeTWS for the Volta Basin over the time window of 14.25 years, this would be equivalent
to an accumulated water mass gain due to Lake Volta of about 9.0 mm, which is more than double
the estimated altimetry error (4 mm). This provided confidence in using the derived altimetry series
despite the large “uncertainty” for Lake Volta. We did not use this error when we estimated the linear
rates of LakeTWS because it was estimated based on gauge data located at Akosombo Dam, which was
different from the altimetry radar tracks. The best option would be to calibrate the altimetry missions
over Lake Volta, and this might be carried out in the near future.
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(RMS) of LakeTWS time series.

3.2. GRACE-Derived TWS Variations

The TWS obtained from GRACE is the sum of all the possible water compartments such as soil
moisture, groundwater, reservoirs, and lakes [50]. To determine the actual TWS (irrespective of surface
water) of a given region, it is necessary to acquire an idea of the contribution of significant surface
water bodies (reservoirs and lakes). Seasonal fluctuations and climate change effects on these lakes
and reservoirs have an impact on the TWS of a region, which might result in the overestimation of
the GRACE-derived water storage [47,50], which is important to consider in drought characterization.
Figure 6 (panels a and b) shows the spatial map of TWS (total TWS with all components) computed
from April 2002 to July 2016 without the scale factor applied (panel a) and with the scale factor applied
(panel b), respectively. (Scale factor has been addressed in Section 2.2.1.)
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Figure 6. The rate of change in terrestrial water storage (TWS) loss or gain averaged over the entire
WA in mm/year from April 2002 to July 2016. (a) The map GRACE-derived TWS over the WA without
applying the scale factor; (b) The result of GRACE-derived TWS after applying the scale factor; (c) The
rate of TWS after the lake effect (Figure 5a) is taken out from GRACE-TWS; (d) The same as panel (c),
but after the scale factor is applied.
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As seen in Figure 6a, low rates of TWS were observed due to the signal loss from the application
of filtering processes and leakage effects; however, the linear rates increased in Figure 6b after the
application of the GLDAS CLM 4 scale factor, indicating that there had been some amount of restoration
of the loss signal. It is important to note that Long et al. [29] concluded that the effectiveness of the scale
factor was improved upon the elimination of surface water components. Hence, the altimetry-imagery
TWS of Lake Volta as shown in Figure 5 (TWS of Lake Volta obtained from satellite altimetry and
satellite imagery) was subtracted from the total TWS of the entire region (Figure 6a). The resulting TWS
is shown in Figure 6c, which is a representation of the GRACE-derived TWS without the contribution
of Lake Volta. To this end, the scale factor was applied to the results in Figure 6c to obtain Figure 6d,
which is the scaled TWS without the lake’s contribution.

Succeeding the computation of the TWS (without Lake Volta’s effect) at each grid point (1◦ × 1◦),
a Mann–Kendall nonparametric trend analysis was conducted to determine the monotonic trend
direction, followed by the Theil–Sen test to detect the slope overtime. Spatial maps showing the
patterns of TWS computed over the whole of WA from April 2002 to July 2016 were developed. From
the results of Figure 6d (TWS minus LakeTWS), the regional averaged TWS was computed for the three
major basins of WA: the Niger, Volta, and Senegal. (For this study, the cell size was 1◦ × 1◦.)

3.3. GRACE-Based Drought Characterization

The 156-month “quasi-climatology” was computed using the median of the TWS for each month
from January 2003 to December 2015 (13-year record), for instance the median of all Januaries in the
13-year record. The time frame from 2003 to 2015 was chosen to obtain an integer number of years
(13 years) to eliminate aliasing errors from fractional months [51]. Since climatology is described as the
characteristic seasonal cycle of water storage that represents the normal or standard water storage,
the residuals (de-seasoned TWS) were obtained after subtracting the seasonal climatology from the
GRACE-derived TWS for each basin (Figure 7). The de-seasoned TWS provides the amount of water
lost or gained for the entire period for each basin and thus is a measure of the amount of water gained
or lost in any instantaneous month.
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Figure 7. Residual TWS time series (de-seasoned TWS) calculated as the difference between the time
series and the climatology for Volta Basin (a), Niger Basin (b), and Senegal Basin (c). These residual time
series depict the deviation from the normal annual (climatology) where positive deviations characterize
the excess and relatively wet periods represented in the blue area whereas negative residuals relate to
relatively dry periods shown in red area.
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Figure 8 shows the GRACE-based drought events derived from the de-seasoned water storage
(Figure 7) computed over the entire time window for Volta (a), Niger (b), and Senegal (c). A drought
event was concluded to have occurred if a loss lasted for three or more months consecutively
as described in Section 2.3.3. Therefore, the drought event for each basin were characterized.
From the respective durations of each event and the average loss, the severity of the drought events
was computed.Water 2018, 10, x FOR PEER REVIEW 14 of 27 
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Figure 8. Instantaneous water storage deficits and severity for GRACE-observed, regional-average
over (a) the Volta Basin; (b) Senegal Basin; and (c) Niger Basin. Total severity (S) values for each
hydrological drought event are given in bold (mm/month).

A summary of the drought events and severity obtained for each basin are shown in Table 1.
Overall, six drought events were recorded for the Niger, five for the Senegal, and four for the Volta.
The longest drought duration was obtained for the Niger Basin, which lasted for 67 months (April 2002
to October 2007) with a severity of −3216 km3/month.

Table 1. A summary of the GRACE–identified hydrological droughts over the major basins of WA.

Basin No. of Events
≥3 Months

Time Frame of
Each Event

Duration
(Months)

Peak Magnitude
(km3)

Average
(km3)

Severity
(km3/Month)

Volta 4

2002-04 to 2005-05 39 −50 (2002-09) −16 −624
2005-08 to 2008-07 36 −30 (2005-12) −17 −510
2009-06 to 2009-08 3 −3 (2009-06) −2 −6
2011-12 to 2012-02 3 −4 (2012-02) −2 −6

Niger 6

2002-04 to 2007-10 67 −131 (2002-09) −48 −3216
2007-12 to 2008-04 5 −23 (2008-04) −19 −95
2009-02 to 2009-10 9 −50 (2009-02) −17 −153
2010-04 to 2010-06 3 −29 (2010-06) −12 −36
2011-08 to 2011-10 3 −18 (2011-09) −11 −33
2011-12 to 2012-03 4 −28 (2012-02) −14 −56

Senegal 5

2002-07 to 2003-11 17 −43 (2002-12) −16 −272
2004-01 to 2005-06 18 −25 (2004-10) −9 −162
2005-08 to 2008-06 35 −19 (2006-09) −10 −350
2008-09 to 2009-09 12 −8 (2009-07) 5 −60
2011-08 to 2011-11 4 −6 (2011-11) −4 −16

Note: Column (1): basin’s name; Column (2): number of events; Column (3): time span of each event (YYYY-MM
format); Column (4): duration; Column (5): peak magnitude, the maximum value of the deficit M that occured
during a hydrological drought in km3 at en epoch (YYYY-MM); Column (6): average water storage deficits (km3);
Column (7): total severity (S) in km3/month.
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3.4. Intercomparison Between GRACE-TWS and Rainfall, and NDVI, and BEST

As GRACE is unique in measuring the land water storage and drought index based on this quantity,
as presented in Section 3.3, it is difficult to be compared against, for example, drought characterization
based on rainfall. Thus, to find out whether or not TWS provided reliable results, we performed a
relative comparison of rainfall (Section 3.4.1) and NDVI (Section 3.4.2), and, finally, in Section 3.4.3
we present the influence on land water-storage (in terms of flux) variability, its relationship and
changes with respect to some hydro-climatic datasets, such as rainfall, the NDVI, and a teleconnection
index (BEST).

3.4.1. Precipitation and TWS Changes (TWSC)

Rainfall fields from TRMM were compared with the GRACE-derived land water storage. Previous
studies have reported that, in the attempt to compare precipitation and TWS, at least a likely shift
of about three months is expected to occur [19]. Therefore, to ensure direct comparability between
both fields, either the precipitation flux can be integrated or the TWS state fields can be differentiated.
In this study, the TWS flux, referred to as TWS change (TWSC), was computed from the time derivative
of the TWS (storage) fields. This was achieved by applying a numeric differentiation on the TWS fields
by considering the center difference derivative (two-sided difference operator) as [52]

dS
dt

TWSCi ≈
1
2
(TWSi+1 − TWSi−1) (12)

where i is the month, for example, May 2002, since the GRACE-derived TWS series started from April
2002 (i − 1).

The mean seasonal cycle (normals) of the rainfall from TRMM and the TWSC were removed and
the residuals are displayed in Figure 9. The anomalies of TWSC and TRMM provided a correlation
of 0.32 for the Volta Basin, 0.25 for the Niger Basin, and 0.32 for the Senegal Basin. However, before
considering the removal of the normals, TWSC and TRMM exhibited considerably higher correlations
of 0.90 for the Volta and the Niger and 0.87 for the Senegal Basin. Generally, both TWSC and the
rainfall datasets are expected to be in agreement [32,53].
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The three datasets overlap from 2002 to 2013.
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3.4.2. Vegetation Indices (NDVI), TWSC, and Rainfall

The results of the satellite-driven vegetation indices (NDVI) for WA are used here as a proxy
of moisture conditions since soil moisture deficits are ultimately tied to drought stress on plants.
The NDVI values generally ranged from 0.17 to 0.65 per month. The trend of NDVI increased and
decreased with strong seasonality reflecting the wet and dry through the time. NDVI was coupled
to rainfall; therefore, the NDVI was compared to the rainfall and TWSC. For the Volta, the TRMM
and the NDVI had a correlation of 0.90 (with a p-value of 1.11 × 10−62), and there was a correlation
of 0.90 (p-value of 4.27 × 10−58) for the Niger. For the Senegal, the coefficient of correlation was
0.89 (p-value of 1.93 × 10−59), which had the least observed NDVI. Therefore, for all three basins,
a high correlation was exhibited between the two variables, meaning they were in-phase (or near so).
For TWSC and NDVI, the correlation obtained was 0.74, 0.72 and 0.69 for the Volta, Niger, and Senegal
Basins, respectively.

3.4.3. Co-Variability Studies of TWSC and Hydro-Climatic Variables

(a) The Volta Basin

Figure 10 presents the wavelet coherence (Figure 10a) and cross wavelet relationship (Figure 10b)
between TWSC and the rainfall data for the Volta Basin. In Figure 10a, the TWSC and rainfall showed a
significant in-phase relationship within a 0.25–1.5-year period, with a localized correlation of about 0.7
(0.7 ≤ R ≤ 0.8) between 2008 and 2009. This could be attributed to wetter conditions induced by the
increased rainfall, thereby modulating a corresponding quarter to annual changes in TWS. These wetter
conditions could also be induced by external events such as ENSO from the previous year, for example,
the La Niña event in 2007, which led to heavy downpours resulting in extreme floods in 2007 [54].
Additionally, in the two-year band, a localized correlation of 0.8 (0.8 ≤ R ≤ 0.9) was observed with the
TWSC leading rainfall between the latter part of 2007 and early 2013. This period of TWSC increase
was influenced by the continuous rainfall recovery [55]. This was highly reflected by the higher TWS
amplitudes from GRACE, and the drought recovery, which commenced within this period (2008).
The most significant co-varying power between the two fluxes was observed in the range between
periods of 0.8–1.2 years (Figure 10b). Between 2003 and 2010, TWSC and rainfall presented an in-phase
relationship at about the one-year period, implying a common power. This illustrates the coupling
relationship between TWSC and rainfall at annual time scales. During the same period, an anti-phase
relationship presented from 2011 until the end of the time series (mid 2016). In comparison to the
de-trended TWS time series in Figure 7a, the positive trends started in 2008 in response to the increased
rainfall in that period over WA.

For TWSC and BEST, a localized moderated correlation of about 0.5 (0.5 ≤ R ≤ 0.6) was observed
in the two- to three-year time band, during which BEST led between the years of 2006 and 2009
(Figure 10c). Additionally, a high correlation of about 0.8 (0.8≤ R≤ 0.9) was observed in the semiannual
to annual time band presenting an in-phase relationship between the two fields from early 2006 to the
middle of 2008. However, these two fields shared a significant common power in the annual time band
between the years 2006 and 2016 with an in-phase relationship. This in-phase phenomenon between
TWSC and BEST, from 2006 to 2009, coincided partially to a drought period (2006 to 2008) as shown
in Figure 8a, despite the wetter conditions induced by the 2007 La Niña. The conditions prevailed,
resulting in increased TWS starting from 2008 as recorded in this study. This event has been recorded
as one of the major causes of the 2007 flood, which affected the whole of WA as reported by [54].
In addition, Andam-Akorful et al. [8] reported that the availability of fresh water across WA was highly
coupled to a low-frequency La Niña that triggered lower changes in rainfall and higher changes in
evaporation (meaning all processes of vaporization). Furthermore, this ENSO event, as figured by
BEST, induced amplified wet conditions in November 2010. Despite the rainfall increase, the period
between 2002 and early 2008 was characterized as a drought period according to the GRACE-based
drought characterization in this study (Figure 8a) by emphasizing the fact that the rainfall recovery in
the early 2000s did not influence a sustainable water-storage increase.
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Lastly, TWSC and NDVI within the Volta Basin exhibited a common relationship in the semi-annual to
biennial time bands, which was significant from the beginning to the end of the time series (Figure 10e).
However, the TWSC led the NDVI in the biennial time band from 2008 to 2016. The relationship
between TWSC and NDVI was connected to the influence of rainfall on NDVI. Section 3.4.2 showed
that rainfall and NDVI had a high correlation. NDVI and TWSC correlated predominantly for the entire
period. However, they both exhibited a common power throughout the study period (Figure 10f).

(b) Niger Basin

A correlation of about 0.8 (0.8 ≤ R ≤ 0.9) was observed around the 0.25- and 0.5-year frequency
cycle (between 2004 and 2005) between TWSC and rainfall over the Niger basin (Figure 11a).
Additionally, the most significant and conspicuous correlation was seen around the two-year time
band where rainfall led the TWSC from 2009 to the middle of 2014. In Figure 11b, the co-varying
relationship between the two fields occurred at an annual time frequency with TWSC leading between
the years 2004 and 2006, followed in succession by an in-phase relationship, indicating a common
power between these two fields in the years between 2007 and 2009. A similar correlation was observed
with an anti-phase coherency from 2012 to the end of the time series. Previously, regarding the Senegal
Basin, Tarhule [56] mentioned that, despite impending drought conditions, heavy rainfall did coincide,
untimely leading to severe floods in the region, for instance, during the August and September 2007
floods, which severely affected the Volta and Niger Basins.

For TWSC and BEST over the Niger Basin (Figure 11b,c), a high correlation was observed in the
annual time band with an in-phase relationship between the years 2006 and 2008. This was shown
by the strong relationship between TWSC and rainfall in the annual frequency. A high rainfall in this
period was induced. Another obvious, but low correlation of about 0.4 (0.4 ≤ R ≤ 0.6), was observed
in the two- to three-year time band, with BEST leading TWSC in the years 2007 and 2009. The power
spectrum between the two series revealed a common in-phase relationship from the latter part of 2005
to the end of the time series. This showed a significant agreement between the two time series after
the La Niña occurrence. Similarly, the wetter phase of the La Niña was induced in the Niger Basin,
resulting in the transition from a series of drought events to a recovery period.

TWSC and NDVI exhibited a common relationship in the semiannual to a biennial time band
significantly from the beginning to the end of the time series (Figure 11e). However, toward the end of
the time series from 2008 to 2016, the TWSC led the NDVI in the biennial time band. Hence, NDVI and
TWS were coherent in the annual frequency, and vegetation greenness could be affected by decline in
land water storage. However, NDVI can also be influenced by external activities such as agriculture.

(c) Senegal Basin

Considering the Senegal Basin, a significant correlation was seen around the 0.25-year time
frequency where the TTWSC led the TRMM rainfall from the end of 2007 to 2008 (Figure 12a).
Comparatively, this region had the least rainfall observations despite the amplified wet conditions in
2007. Additionally, a significant correlation was observed from 2009 to 2013, indicating an in-phase
relationship. On the other hand, the corresponding co-varying relationship between TWSC and rainfall
(Figure 12b) revealed a common power in the 0.5–1-year frequency with an anti-phase correlation
observed (2004–2008). This can be concluded for the positive trends from 2011 to 2012 in comparison
with Figure 7c for the Senegal Basin.
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For TWSC and BEST, an in-phase relationship was observed in the annual time band with a high
correlation of about 0.8 (0.8 ≤ R ≤ 0.9) between the years 2006 and 2008, as shown in Figure 12a, which
depicts the TWSC response to increased rainfall in this period. However, this resulted in water storage
deficits resulting into drought conditions as detected by the GRACE (see Figure 8c). A lower coherency
0.6 (0.6 ≤ R ≤ 0.7) was seen in the two-year frequency with BEST leading (2006–2008) (occurrence of
ENSO) and a near in-phase sudden change from 2008 to 2013. However, the common power between
the two was revealed from 2005 to 2012, with a significant high common power from 2007 to 2013 in a
one- to two-year frequency with BEST leading (Figure 12d). This could be attributed to the induced
wet conditions that influenced the water storage increase in the region and, hence, a high correlation
in the annual band. Undoubtedly, the rainfall in this region was also regulated by ENSO activities,
which subsequently impacted the TWSC.

In Figure 12e, TWSC and NDVI exhibited an in-phase relationship from the 0.5–2-year time
frequency for the entire time; moreover, the TWSC led the NDVI in the biennial frequency shown
between 2010 to the end of the time series. In Figure 12f, an anti-phase common power was observed
predominantly from 2004 to 2016. The Senegal Basin had the least observed NDVI average when
compared to the Volta and the Niger Basins as well the least rainfall variations, thereby influencing an
associated TWSC that followed a similar pattern.

4. Discussions

The first objective of this study was to deduce the water mass gain due to the water impoundment
of Lake Volta with respect to the major river basins of WA (Volta, Niger, and Senegal) as observed by
GRACE. This was important in order to remove the response of the reservoir to the regularization of
the discharge, which controls the reservoir’s level. We used satellite imagery and satellite altimetry
to retrieve LakeTWS (Section 2.3.2) in terms of monthly fields. Monthly areal changes were derived
using MODIS imagery (Section 2.2.5) and water level variations using altimetry products provided
by USDA (Section 2.2.4). Lake Volta is mainly used for hydroelectricity generation, whereas other
activities such as fishery and transportation take place. As inferred from the scatter plot in Figure 2a,
the change in 1 m of water level brings a change of 317.5 km2, which is 44.9% lower than the value
of area elevation relationship gathered from Tanaka et al. [48]. The lakeside ecotone (transition area
between two biomes) of approximately 4501 km2—the difference between the maximum and the
minimum surface area values presented in Figure 2b—showed the portion that could be susceptible
to productivity. For example, the linear relationship found here (Equation (11)) could be used to
properly find the areas susceptible to agriculture and animal grazing and to determine in which
months of the year it would be available (Figure 2). This range of areal changes also showed the impact
of the management of water resources, for example, the portion of the area that was inundated by
flood events.

After the spherical harmonic analysis of the lake boundary (using the same processing scheme
as GRACE data), LakeTWS fields were computed at each grid point covering the whole of WA using
Equation (5) proposed here. Equation (5) was suitable to account for the month-to-month changes
of the surface of the lake. Many studies have reported the contribution of Lake Volta on the overall
gain of water storage over WA [19,20,33,47,57,58]. For instance, Moore et al. [47] assumed an invariant
surface area in their study for Lake Volta, among other areas. However, they further cautioned that it
could result in an underestimation of the surface area effect. Meanwhile, recent studies [19,20] have
assumed a constant surface area for Lake Volta in the synthesis of the altimetry-derived lake storage.
With reference to the findings of Ferreira and Asiah [19], it was reported that the contribution of Lake
Volta’s water impoundment was about 48% of the TWS gain within the Volta Basin. Similarly, in a
recent study, Ndehedehe et al. [20] also found the lake’s impoundment to contribute to approximately
41% of the TWS gain of the basin. The results from these two studies unanimously agree, but on the
contrary this study presented a linear rate of 0.63 mm/year, which represents approximately 8.8%
of the TWS gain as “sensed” by the GRACE mission for the Volta Basin. That is, this value is quite
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different from the ones presented in [19] and [20], which are, respectively, 48% and 42%. The slight
difference between these values could be attributed to the time span of the data and the methodology
used. However, these values overestimated the contribution of Lake Volta to the observed increase in
TWS over the basin relative to the estimated results in the presented study. Differences in datasets
cannot explain such discrepancies, but the methodology seems to be crucial. For example, here, after
converting the lake’s shape to SHCs, a filter scheme as that of GRACE was applied, and as such it
reduced the amplitudes of the kernel, as derived from comparisons based on Figures 3d and 4a. These
reductions seem to be of the order of a factor of 4–5, as can be inferred from Figure 4b, which agrees
with results found in this study and those found in [19,20]. For the Senegal and Niger Basins, the
contribution is about 1.7% for both. Thus, while using GRACE-derived TWS to characterize droughts
over WA, Lake Volta should be taken into account to avoid overestimation of TWS amplitudes.

As a second objective, this study aimed to explore the potential of GRACE-derived TWS for
hydrological drought characterization after properly accounting for the lake’s induced TWS (LakeTWS).
The de-seasoned TWS series showed below-normal conditions (climatology) from April 2002 to the
latter half of 2008, generally indicating a massive dry period for the three river basins (see Figure 7).
For instance, considering the Volta Basin (Figure 7a), the period from April 2002 to July 2008,
experienced a continuous loss of water storage up to −41 km3 at each month. For the Senegal
Basin, the periods from July 2002, January 2004 to June 2005, August 2005 to June 2008, and September
2008 to August 2009 showed below-normal TWS anomalies. The Niger Basin, which is the largest
basin in terms of surface area suffered the highest reduction in TWS anomalies from April 2002 to
April 2008, with a maximum loss of −131 km3. Additionally, a considerably drier period was observed
from February 2009 to October 2009. Overall, the results of averaged regional TWS over the three
main basins presented long-term water depletion from 2002 to 2008. However, the gain of water in the
region started gradually from 2008 and significantly increased from 2010 until the latter half of 2016
(the end of the time series). This agrees with findings of Andam-Akorful [59], who reported drought
over WA using standard drought indices based on moisture gain and loss according to a given time
scale and, thereby, concluded that continuous moderate drought occurred over a period of 6 years
for the whole of WA (2002–2008). This coincided with the results presented here in that, for all basins,
the prolonged major drought events occurred from 2002 to 2008, separated by a nearly one-month
gain. Additionally, the GRACE drought events concluded for the Niger (2005, 2009, and 2011) and the
Senegal (2011) coincides with the results of Masih et al. [16].

As a third objective, the impacts of hydro-climatic variables on TWS change (TWSC) were
investigated. Thus, to compare the GRACE-derived TWS with other hydro-climatic variables
(i.e., rainfall and NDVI), the temporal derivative of TWS was computed, yielding TWSC (Section 3.4).
Intercomparing the de-seasoned series of both rainfall and TWSC (Figure 9) indicated deviations
relative to the normals, which provided information on the water surplus and deficits for the three
basins. Nevertheless, such “drought” characterizations reflected dry weather patterns, and, many
months later, as hydrographs indicate, these patterns impacted land water storage. Although it was not
possible to recognize the same drought events depicted in Figure 8 and summarized in Table 1, those
residuals over the three river basins showed almost the same conditions in terms of water variability.
This provided confidence in drought characterization, as performed in Section 3.3, since rainfall and
TWSC series were strongly related to the Volta, Niger, and Senegal Basins. Other factors impacting the
TWS over the regions could play a minor role, since Lake Volta was reduced from GRACE-TWS and
groundwater usage over the region seems to be mostly related to “garden-scale” irrigation activities.
Furthermore, the NDVI series for the three basins related more to rainfall as compared to water storage
change (TWSC). This seems to be the case since moisture conditions in the root zone could be rapidly
depleted, and TWSC would still reflect the deep soil layers. To this end, wavelet coherency and
co-variability framework showed that TWSC was highly responsive to the fluctuations of the rainfall,
NDVI, and ENSO (expressed by the BEST series).
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5. Conclusions

The water storage of Lake Volta plays an important role in analyzing terrestrial water storage as
“sensed” by the GRACE mission over West Africa. In fact, it was found that Lake Volta contributed to
approximately 8.8% of the terrestrial water-storage gain within the Volta Basin from April 2002 to July
2016. As the signal spread far from the source, it also affected both the Niger and the Senegal Basins,
with 1.7% of their water mass gain. This figure of 8.8% for the Volta Basin is about 20% of the values
estimated in previous works. The resulted regional averaged series of terrestrial water storage without
Lake Volta’s contributions exhibited a trend of 6.83± 1.65 mm/year for the Volta, 3.97± 1.21 mm/year
for the Niger, and 5.19 ± 0.94 mm/year for the Senegal. This affirms that, if one is interested in using
GRACE-derived terrestrial water storage over West Africa, for estimating groundwater variations,
drought characterization, etc., must consider Lake Volta. For this purpose, we used monthly series of
areal surface changes estimated from satellite imagery (MODIS) and water level variations estimated
from satellite altimetry (USDA products).

The hydrological droughts using terrestrial water storage over the Volta, Niger, and Senegal
Basins revealed that a long-term continuous deficit occurred from 2002 to 2008, with a few one-month
gains in all three basins. The results also indicated a rising trend in water storage gain from 2009
until July 2016 (the end of the time series). This is consistent with the drought events in the region
from the standard drought indices, which exhibit moderate drought occurrence for the whole of
West Africa. Finally, the variability of changes in the terrestrial water storage was found to be highly
responsive to the fluctuations of rainfall, the NDVI, and the teleconnection index (ENSO), as depicted
by wavelet coherency and co-variability analysis. More so, the high common power variations of
these inherent relationships were observed in the semi-annual to biennial frequencies. Future work
shall focus on estimating volume changes of the main reservoirs over West Africa, which could affect
the GRACE-derived terrestrial water storage in hydrological studies (e.g., droughts). Since West
Africa is data-scarce, the possibility of combining different space-borne sensors as shown in this study
might be of interest for policy-makers and managers who wish to exercise sustainable development in
these regions.
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