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Abstract: Long-term scheduling of large cascade hydropower stations (LSLCHS) is a complex
problem of high dimension, nonlinearity, coupling and complex constraint. In view of the above
problem, we present an improved differential evolution (iLSHADE) algorithm based on LSHADE,
a state-of-the-art evolutionary algorithm. iLSHADE uses new mutation strategies “current to
pbest/2-rand” to obtain wider search range and accelerate convergence with the preventing
individual repeated failure evolution (PIRFE) strategy. The handling of complicated constraints
strategy of ε-constrained method is presented to handle outflow, water level and output constraints in
the cascade reservoir operation. Numerical experiments of 10 benchmark functions have been done,
showing that iLSHADE has stable convergence and high efficiency. Furthermore, we demonstrate the
performance of the iLSHADE algorithm by comparing it with other improved differential evolution
algorithms for LSLCHS in four large hydropower stations of the Jinsha River. With the applications
of iLSHADE in reservoir operation, LSLCHS can obtain more power generation benefit than other
alternatives in dry, normal, and wet years. The results of numerical experiments and case studies
show that the iLSHADE has a distinct optimization effect and good stability, and it is a valid and
reliable tool to solve LSLCHS problem.

Keywords: energy; hydropower stations; differential evolution algorithm; optimal scheduling;
ε-constrained method

1. Introduction

Hydropower has a significant share on the total energy consumption as it is renewable, clean,
and cheap. Therefore, many countries have been working on the development of the utility
of hydropower [1], and many hydropower plants have been put into operation in the past few
decades [2–6]. Large cascade hydropower stations (LHS) play an increasingly important role in energy
production. Many scholars have conducted a lot of research on the water resources management of
LHS. Zhou et al. [7] proposed a joint optimal refill rules for cascade reservoirs to solve the conflict
between the flood control and refill operation. The energy storage operation chart combined with
discriminant coefficient method was put forward by Jiang [8], which was successfully applied to
cascade reservoirs of Li Xianjiang River in southwest China. Regarding the input (e.g., inflow)
imprecision and uncertainties, Chen et al. [9–12] analyzed the influence of the uncertainty in water
resources management and the distribution of flood forecasting error. Djebou et al. [13,14] presented
the interactions between these hydrologic factors that interplay at the watershed scale using the
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entropy-based index. Aiming to determine the optimal strategy that hedges the risk of energy shortfall,
Xu et al. [15] develops a multi-objective stochastic programming model for informing hedging decisions
for hydropower operations. Due to complex hydrodynamic relation, various complex constraints
and diversified interest demand, the long-term scheduling of large cascade hydropower stations
(LSLCHS) has developed into a multi-dimensional, non-convex and non-linear optimization problem.
Correspondingly, optimization of LSLCHS has become a fairly challenging theoretical and practical
problem, which is urgent for optimization techniques and constraints treatment [16–18]. Over many
years, to solve this problem, various optimization algorithms have been applied. Usually there are two
categories of methods: traditional optimizers and modern heuristic algorithms. Traditional optimizers
include linear programming (LP) [19,20], nonlinear programming (NLP) [21,22], dynamic programs
(DP) [23,24], progressive optimality algorithm (POA) [25,26], etc. These algorithms have rigorous
mathematical foundations but low convergence efficiency. They suffer from curse of dimensionality.
Modern heuristic algorithms use intelligent strategies to guide search to better areas, such as particle
swarm optimization (PSO) [27,28], genetic algorithm (GA) [29], cultural algorithm (CA) [30], binary
artificial sheep algorithm (BASA) [31], ant colony optimization (ACO) [18,32], etc. Compared with
traditional optimizers, modern meta-heuristics are significantly more flexible and have high search
efficiency as the meta-heuristics are inspired by different nature principles from biology, ethology,
or physics. However, the common heuristic algorithms have some disadvantages such as premature
convergence because of local fast convergence, and bad local search capability owing to many global
searches. Moreover, they lack effective measures to handle complex constraints, making it difficult to
be applied to solve complex optimal problems with high dimensions such as LSLCHS.

Differential evolution (DE) is a simple yet practical modern heuristic algorithm for global
optimization over continuous spaces introduced by Price and Storn [33]. The DE algorithm has been
used in many practical cases [34,35] and gradually become more popular. Similar to all other modern
heuristic algorithms, the evolutionary process of DE uses mutations, crossover, and selection operators at
each generation to reach the global optimum. The performance of DE basically depends on the mutation
strategy, the crossover operator. Besides, the intrinsic control parameters (population size NP, scaling
factor F, the crossover rate Cr) play a vital role in balancing the diversity of population and convergence
speed of the algorithm. Therefore, Brest et al. [36] proposed a self-adaptive DE (jDE), in which both F
and Cr are applied at random with probability τ1 and τ2. SaDE is proposed by Qin et al. [37] adaptively
adjusts its trial vector generation strategies and control parameters simultaneously by learning from the
previous search. JADE [38] is a well-known, effective DE variant which employs a control parameter
adaptation mechanism and puts forward mutation strategy “current-to-pbest/1”, differential evolution
with composite trial vector generation strategies, control parameters (CoDE) [39], differential evolution
with ensemble of parameters and mutation strategies (EPSDE) [40]. Success-History-based Adaptive DE
(SHADE) [41] is an improved version of JADE which uses a different parameter adaptation mechanism.
LSHADE [42] further extends SHADE with Linear Population Size Reduction (LPSR), which continually
decreases the population size according to a linear function. In addition, LSHADE is the best
ranked DE algorithm on CEC2014 Competition on Real-Parameter Single Objective Optimization [43]
(see http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2014/-CEC2014.htm).

To avoid premature convergence and to accelerate convergence, we present an improved version
of the LSHADE algorithm in this paper, called iLSHADE. The main improvement of iLSHADE is
that a new mutation strategy “current to pbest/2-rand” is put forward for wider search range to
improve search ability and prevent individual repeated failure evolution (PIRFE) strategy applied in
the population evolution process. Finally, iLSHADE is applied to LSLCHS in Jinsha River combined
with the improved constraints handling technique. Results of the study demonstrates its superiority in
dealing with LSLCHS problem.

The remainder of this paper is organized as follows: Section 2 introduces the formulation
of LSLCHS problem. In Section 3, a brief view of DE framework and improvement strategies of
iLSHADE is presented. Section 4 presents numerical simulation experiment of iLSHADE. In Section 5,
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implementation of iLSHADE in LSLCHS is shown in detail. In Section 6, iLSHADE is applied to solve
LSLCHS, and the results are analyzed. Finally, conclusions are summarized in Section 7.

2. Optimization Model

The primary objective of LSLCHS problem is to maximize the total power generation of LHS
over the whole operation periods, while subjecting to kinds of equality and inequality constraints.
The objective formula and constraints are described as follows.

2.1. Objective Function

obj = max∑M
i=1 ∑T

t=1 Nit∆t, Nit = Ai HitQit (1)

where obj is the total power generation of LHS over the whole operation periods, M is the number of
hydro plants; T is the whole periods; Ai is output coefficient of the i-th hydro plant; ∆t shows interval
of scheduling term; Nit, Hit and Qit denote output, pure water head and water discharge through
hydro-turbine of the i-th hydro plant in the t-th period, respectively. Moreover, Hit is calculated by
upstream water level, trail water level and head loss shown in formula (8).

2.2. Constraints

In the process of long-term optimal dispatch, various complex equality and inequality constraints,
such as water level, output, and hydraulic connection, should be considered for restricting the total
power generation optimization. The constraints of LHS are described as follows:

1. Water balance constraint.

Vi,t+1 = Vi,t + (Ii,t −Qi,t − Si,t)∆t,
Ii,t = qi,t + Qi−1,t + Si−1,t

(2)

Vi,t is reservoir storage of the i-th hydropower station at the beginning of period t, Ii,t is inflow, qi,t
stands for local inflow and Si,t is deserted outflow.

2. Hydraulic connection.

Zdown
i,t =

{
F(Qi,t + Si,t) without backwater effect,

F(Qi,t + Si,t, Zi+1,t) with backwater effect.
(3)

where Zi,t stands for upstream water level, Zdown
i,t is trail water level. Function F represents the

hydraulic connection between upstream and downstream hydropower stations. Generally, the trail
water level is a function of outflow. However, when the hydropower station is located at the backwater
region of its downstream hydropower station, the upstream water level of the downstream hydropower
station must be taken into consideration in the function.

3. Water level constraint.
Zmin

i,t ≤ Zi,t ≤ Zmax
i,t (4)

|Zi,t − Zi,t+1| ≤ ∆Zi (5)

Zmin
i,t and Zmax

i,t are the upper and lower water level limits and ∆Zi is the maximum amplitude of water
level variation.

4. Power generating constraint.

Nmin
i,t ≤ Ni,t ≤ Nmax

i,t (Hi,t) (6)
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Nmax
i,t (Hi,t) represents the maximum output. The maximum output is a function of pure water head.

Nmin
i,t is the lower output limit, which is generally called Guaranteed output.

5. Outflow constraint.
Qmin

i,t ≤ Qi,t + Si,t ≤ Qmax
i,t (7)

Qmax
i,t is the maximum outflow limit and Qmin

i,t is the minimum outflow limit.

6. Water head equation.

Hi,t = (Zi,t + Zi,t+1)/2− Zdown
i,t − Hloss

i,t (Qi,t) (8)

Hi,t stands for the pure water head. Zdown
i,t is trail water level described in formula (3). Hloss

i,t (Qi,t)

represents water head loss, which is a function of outflow through hydro-turbines.

7. Boundary condition.
Zi,0 = Zbegin

i , Zi,T = Zend
i (9)

where Zbegin
i and Zend

i are initial water level and terminal water level of the i-th hydro
plant, respectively.

3. Overview of iLSHADE

3.1. DE

DE is a group-based evolutionary algorithm. It is used to solve the following continuous domain
global optimization problem:

minimize f (
→
x ),

→
x = (x1, . . . , xD)

xi ∈ [xi, xi] ∀i ∈ {1, . . . , D}, −∞ < xi < xi < +∞
(10)

where f (
→
x ) is continuous fitness evaluation function, D is the dimension of the problem. DE has three

control parameters that need to be set before the calculation: F is scaling factor, CR is crossover control
parameter, and NP is population size. The framework of DE is as follows (Figure 1):

Figure 1. Pseudocode of DE.

The mutation strategy in original DE is “rand/1”, which is expressed in formula (11):

→
v i,G =

→
x r1,G + F · (→x r2,G −

→
x r3,G) (11)
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Other common DE mutation strategies are as follows:

• “rand/2”:
→
v i,G =

→
x r1,G + F · (→x r2,G −

→
x r3,G) + F · (→x r4,G −

→
x r5,G) (12)

• “best/1”:
→
v i,G =

→
x best,G + F · (→x r1,G −

→
x r2,G) (13)

• “best/2”:
→
v i,G =

→
x i,G + F · (→x best,G −

→
x i,G) + F · (→x r1,G −

→
x r2,G) (14)

• “current to best/1”:

→
v i,G =

→
x i,G + F · (→x best,G −

→
x i,G) + F · (→x r1,G −

→
x r2,G) (15)

where the indexes r1− r5 represent the random and mutually different integers generated within
the range {1, NP}, and also different from index i.

→
x best,G is the best individual in a current

generation. Each strategy has a different ability to maintain the diversity of the population, which may
increase/reduce the rate of convergence in the process of evolution.

3.2. iLSHADE

An improved LSHADE (iLSHADE) with new mutation strategy “current to best/2-rand” and the
PIRFE strategy is proposed. The details of these strategies and algorithm procedure are shown below.

3.2.1. Mutation Strategy “Current to pbest/2-rand”

The mutation strategy “current to pbest/1” was proposed by in the framework of JADE (which is
expressed in formula (16)).

→
v i,G =

→
x i,G + Fi · (

→
x pbest,G −

→
x i,G) + Fi · (

→
x r1,G −

→
x r2,G) (16)

In Equation (16), the individual
→
x pbest,G is randomly selected from the top N × p(p ∈ [0, 1])

members in the G-th generation. “current to pbest/1” depends on the control parameter p to balance
exploitation and exploration (small p behaves more greedily).

→
x i,G and

→
x r1,G are selected from P in

the same way as in Equation (12), while
→
x r2,G is randomly chosen from the union P∪A, of the current

population and the archive. We present an improved mutation strategy “current to pbest/2-rand”
to improve the search range based on mutation strategy “current to pbest/1”, which is expressed
as follows:

→
v i,G =

→
x i,G + Fi · (

→
x pbest,G −

→
x i,G) + Fi · [(

→
x r1,G −

→
x r2,G) · randi + (

→
x r3,G −

→
x r4,G) · (1− randi)] (17)

where randi is a uniformly distributed random number between [0,1].
→
x i,G,

→
x r1,G and

→
x r3,G are

selected randomly and different within the range {1, NP} from P in the same way as in formula (16),
while

→
x r2,G and

→
x r4,G is randomly chosen from the union, P ∪A, of the current population and the

archive. The two mutation strategies are illustrated in Figure 2.
As seen in Figure 2a,

→
v i,G is the mutation individual generated for individual

→
x i,G. According to

the principle of vector addition, the position of
→
v i,G changes with the associated mutation factor Fi,

and its position only exists on this “Search Line”. Mutation strategy “current to pbest/2-rand” uses
randi and linear combination of (

→
x r1,G −

→
x r2,G) · randi + (

→
x r3,G −

→
x r4,G) · (1− randi) to expand the

search range. By the varying value randi,
→
v i,G can search anywhere in the shaded triangle area with

the change of the Fi and randi (see Figure 2b). Obviously, the search range of “current to pbest/2-rand”
is much larger than that of “current to pbest/1”.
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Figure 2. Illustration of the DE mutation strategy in two dimensions.

3.2.2. The PIRFE Strategy

The PIRFE strategy is proposed to avoid individuals in a local optimum lead useless evolution.
When an individual falls into a local optimal, it is extremely difficult to produce an effective mutation
to jump out of the local optimal. The individual failing evolution number (IFEN) is defined to
record the number of individual failing evolution, and it is initialized to zero.

→
x i,G generates

→
u i,G

through mutation and crossover. If
→
x i,G+1 produces a failing evolution and

→
x i,G+1 is better than

→
u i,G+1, IFENi,G+1 is equal to IFENi,G plus one, otherwise IFENi,G+1 will reset to zero. IFENi,G+1 is
illustrated as follows:

IFENi,G+1 =

{
0 if

→
u i,G+1 is better than

→
x i,G+1

IFENi,G + 1 otherwise
(18)

If
→
x i produces failing evolutions for IFENi generations, and IFENi is more than limit evolution

generations (see formula (18)),
→
x i falls into local optimal. The LEG represents the largest evolution

generation allowing failure evolutions. In the next evolutionary process, we should avoid involving
→
x i.
→
x i should be replaced by a new individual randomly selected in population. The framework of

the PIRFE strategy is as follows (Figure 3):

Figure 3. Pseudocode of PIRFE strategy.



Water 2018, 10, 383 7 of 18

3.2.3. Control Parameters Assignments

SHADE maintains a historical memory with H entries for both DE control parameters CR, F, MCR
and MF. The scaling factor F ∈ [0, 1] controls the magnitude of the differential mutation operator and
CR ∈ [0, 1] is the crossover rate. In the beginning, the contents of MCR,k, MF,k (k = 1, · · · , H) are all
initialized to 0.5. In each generation G, the control parameters CRi and Fi used by each individual xi are
generated by randomly selecting an index ri from [1, H], and then applying the formulas (19) and (20):

CRi =

{
0 if MCR,ri = ⊥
randni

(
MCR,ri , 0.1

)
otherwise

(19)

Fi = randci
(

MF,ri , 0.1
)

(20)

In case a value for CRi outside of [0, 1] is generated, it is replaced by the limit value (0 or 1) closest
to the generated value. When Fi > 1, is truncated to 1, and when Fi ≤ 0, formula (20) is repeatedly
applied to generate a valid value. These manners are determined according to the procedure for
JADE [38]. In formula (19), if MCR,ri has been assigned the “terminal value” ⊥, CRi is set to 0.

In each generation, in formula (17), CRi and Fi values that succeed in generating a trial individual
→
u i,G better than the parent individual

→
x i,G are recorded as SCR, SF. At the end of the generation,

the contents of memory are updated as follows:

MCR,k,G+1 =


⊥ if MCR,k,G = ⊥ or max(SCR) = 0
meanWA(SCR) if SCR 6= ∅
MCR,k,G otherwise

(21)

MF,k,G+1 =

{
meanWL(SF) if SF 6= ∅
MF,k,G otherwise

(22)

An index k (1 < k < H) determines the position in the memory to update. At the beginning of the
search k is initialized to 1. k is incremented whenever a new element is inserted into the history. If > H,
k is set to 1. In generation G, the k-th element in the memory is updated. In the update formula (21)
and (22), when all individuals in generation G fail to generate an individual better than the parent,
i.e., SCR = SF = ∅, the memory is not updated. Also, the weighted mean meanWA(SCR) is computed
according to formula (23) by Peng et al. [44]. The weighted Lehmer mean meanWL(SF) is computed
using the formula below, and as with meanWA(SCR):

meanWL(SF) = ∑|SF |
k wk·S2

F,k/∑|SF |
k wk·SF,k (23)

meanWA(SCR) = ∑|SCR |
k=1 wk · SCR,k (24)

wk = 4 fk/∑|SCR |
k=1 4 fk (25)

where 4 fk =
∣∣∣ f (→u i,G)− f (

→
x i,G)

∣∣∣. In the same paper, they also proposed a restart strategy for
JADE [38].

LSHADE put forward a new method of NP setting—LPSR which reduces the population linearly.
The population size at generation 1 is Ninit, and the population at the end of the run is Nmin. After each
generation G, the population size in the next generation, NG+1 is computed according to formula (26):

NG+1 = round[((Nmin − Ninit)/MAXNFE) · NFE + Ninit] (26)

If Nmin is set to the smallest possible value, the evolutionary operators can be applied in the case
of iLSHADE, Nmin = 6 because the mutation strategy “current to pbest/2-rand” showed as formula
(17) requires 4 individuals. NFE is the current number of fitness evaluations, and MAXNFE is the
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maximum number of fitness evaluations. Whenever NG+1 < NG, the (NG − NG+1) worst-ranking
individuals are deleted from the population. Similarly, the external archive size |A| is set to Ninit
multiplied by a parameter rarc, |A| = round(Ninit × rarc). In addition, external archive A is same as
population, whenever |A|G+1 < |A|G, the (|A|G − |A|G+1) worst-ranking individuals are deleted from
the A. The p value for “current to pbest/2-rand” in each generation G is computed as follows:

p = (pmax − pmin) · rand(0, 1) + pmin (27)

where rand(0, 1) returns a uniformly distributed random number in [0, 1], p is a random value in
[pmax, pmin]. Finally, the pseudo-code of the iLSHADE algorithm is given in Figure 4.

Figure 4. Pseudocode of iLSHADE.

4. Numerical Experiment

The iLSHADE algorithm was tested in both low and high dimension on a set of 10 benchmark
functions demonstrated in Table 1. Table 1 indicates benchmark problems with different structures
and characteristics. In the table, “O-V” means the optimum fitness and “O-S” stands for the optimum
solution. f1, f2, f3, f5 and f6 are unimodal optimization problems to evaluate the convergence, while f4,
f7, f8,f9 and f10 are multimodal optimization problems with a huge number of local optima to test the
convergence precision [18].
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Table 1. Details of benchmark problems.

Benchmark Function Name Domain O-V O-S

f1 = ∑n
i=1 x2

i Sphere [−100, 100]n 0 {0, 0, · · · , 0}
f2 = ∑n

i=1 |xi|+ ∏n
i |xi| Schwefel (2.2) [−100, 100]n 0 {0, 0, · · · , 0}

f3 = ∑n
i=1

(
∑i

j=1 xj

)2
Schwefel (1.2) [−100, 100]n 0 {0, 0, · · · , 0}

f4 = ∑n−1
i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

Rosenbrock [−30, 30]n 0 {0, 0, · · · , 0}

f5 = ∑n
i=1

(⌊
xj + 0.5

⌋)2
Step [−100, 100]n 0 {0, 0, · · · , 0}

f6 = ∑n
i=1 ix4

i Quartic [−1.28, 1.28]n 0 {0, 0, · · · , 0}

f7 = ∑n
i=1−xi sin

(√
|xi|
)

Schwefel (2.26) [−500, 500]n −418.9n *

f8 = ∑n
i=1
[
x2

i − 10 cos(2πxi) + 10
]

Rastrigin [−5.12, 5.12]n 0 {0, 0, · · · , 0}

f9 = −20 exp
(
−0.2

√
1/n∑n

i=1 x2
i

)
− exp(1/n cos(2πxi)) + 20 + e

Ackley [−32, 32]n 0 {0, 0, · · · , 0}

f10 = 1 + ∑n
i=1

x2
i

4000 + ∏n
i cos

(
xi√

i

)
Griewank [−600, 600]n 0 {0, 0, · · · , 0}

Note: * (420.9876, 420.9876, . . . , 420.9876).

The iLSHADE is compared to DE and other improved DE like LSHADE, JADE, CoDE and jDE.
The number of function evaluations is used to appraise the convergence. These experiments are
made on a personal computer, Windows10, Intel(R) Core(TM) i7-5500U CPU@ 2.40GHZ, RAM 8.00 GB.
The dimension of benchmark functions is D = 10 in low dimension and 30 in high dimension, and 51 runs
of an algorithm were needed for each function. The maximum number of objective function evaluations
is D × 10,000. The optimal values are known for all benchmark functions.

In the experiments, the parameters in LSHADE, JADE, CoDE, jDE and DE were kept unchanged
refer to [33,36,38,39,42], and the parameter setting in the iLSHADE is same as LSHADE except the
following parameters:

• Using “current to pbest/2-rand” mutation strategy,
• The p value for mutation strategy is computed as pG = rand[pmin, pmax], where pmin = 2/NP is

set such that when
→
x pbest,G is selected, at least 2 individuals are needed, and pmax = 0.25.

• Initial population size Ninit = 15log(D)
√

D, the control parameter of external archive size rarc = 2.
• Historical memory size H = 6; set a final pair of parameters MF[H] = 0.2 and MCR[H] = 0.8, other

MF values are initialized to 0.5 and other MCR are initialized to 0.8.
• PIRFE parameter LEG = 50.

The aggregate results of statistical testing (+, −, ≈) on 10 functions are shown in Tables 2 and 3.
The symbols +, −, ≈ indicate that a given algorithm performed significantly better (+), significantly
worse (−), or not significantly different better or worse (≈) compared to iLSHADE using the Wilcoxon
rank-sum test [45] (significantly, p < 0.05).
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Table 2. Experimental results of 10 test functions in low dimension.

f
LSHADE

Mean
(Std Dev)

JADE
Mean

(Std Dev)

CoDE
Mean

(Std Dev)

jDE
Mean

(Std Dev)

DE
Mean

(Std Dev)

iLSHADE
Mean

(Std Dev)

f1
0.00 × 100

(0.00 × 100) ≈
8.61 × 10−36

(7.18 × 10−36) −
5.93 × 10−38

(7.34 × 10−38) −
1.15 × 10−38

(1.18 × 10−38) −
2.73 × 10−46

(1.42 × 10−45) −
0.00 × 100

(0.00 × 100)

f2
6.49 × 10−49

(4.38 × 10−48) −
8.75 × 10−20

(4.68 × 10−20) −
7.88 × 10−22

(6.58 × 10−22) −
1.38 × 10−22

(1.01 × 10−22) −
8.03 × 10−25

(1.65 × 10−24) −
3.36 × 10−64

(2.05 × 10−63)

f3
1.10 × 10−91

(5.90 × 10−91) −
2.81 × 10−35

(2.75 × 10−35) −
2.43 × 10−39

(4.02 × 10−39) −
1.24 × 10−40

(1.79 × 10−40) −
4.58 × 10−45

(2.03 × 10−44) −
0.00 × 100

(0.00 × 100)

f4
0.00 × 100

(0.00 × 100) ≈
0.00 × 100

(0.00 × 100) ≈
1.47 × 10−05

(1.96 × 10−05) −
7.39 × 10−03

(9.11 × 10−03) −
7.82 × 10−02

(5.53 × 10−01) −
0.00 × 100

(0.00 × 100)

f5
0.00 × 100

(0.00 × 100) ≈
0.00 × 100

(0.00 × 100) ≈
0.00 × 100

(0.00 × 100) ≈
0.00 × 100

(0.00 × 100) ≈
0.00 × 100

(0.00 × 100)≈
0.00 × 100

(0.00 × 100)

f6
0.00 × 100

(0.00 × 100) ≈
1.40 × 10−71

(3.27 × 10−71) −
6.47 × 10−71

(1.52 × 10−70) −
1.40 × 10−72

(3.66 × 10−72) −
8.39 × 10−88

(4.17 × 10−87) −
0.00 × 100

(0.00 × 100)

f7
−4189.83

(2.73 × 10−12) ≈
−4189.83

(2.73 × 10−12) ≈
−4189.83

(2.73 × 10−12) ≈
−4189.83

(2.73 × 10−12) ≈
−4189.83

(2.73 × 10−12) ≈
−4189.83

(2.73 × 10−12)

f8
0.00 × 100

(0.00 × 100) ≈
0.00 × 100

(0.00 × 100) ≈
0.00 × 100

(0.00 × 100) ≈
0.00 × 100

(0.00 × 100) ≈
3.06 × 100

(2.47 × 100) −
0.00 × 100

(0.00 × 100)

f9
3.72 × 10−15

(9.55 × 10−16) ≈
3.86 × 10−15

(6.90 × 10−16) −
4.00 × 10−15

(2.37 × 10−30) −
3.93 × 10−15

(4.93 × 10−16) −
3.93 × 10−15

(4.93 × 10−16) −
3.72 × 10−15

(9.55 × 10−16)

f10
0.00 × 100

(0.00 × 100) ≈
2.42 × 10−12

(6.51 × 10−12) −
0.00 × 100

(0.00 × 100) ≈
3.22 × 10−04

(2.28 × 10−03) −
8.58 × 10−02

(6.17 × 10−02) −
0.00 × 100

(0.00 × 100)

− 2 6 6 7 8

+ 0 0 0 0 0

≈ 8 4 4 3 2

Table 3. Experimental results of 10 test functions in high dimension.

f
LSHADE

Mean
(Std Dev)

JADE
Mean

(Std Dev)

CoDE
Mean

(Std Dev)

jDE
Mean

(Std Dev)

DE
Mean

(Std Dev)

iLSHAD
EMean

(Std Dev)

f1
1.12 × 10−90

(6.44 × 10−90) −
0.00 × 100

(0.00 × 100) ≈
9.85 × 10−19

(7.04 × 10−19) −
4.31 × 10−41

(4.35 × 10−41) −
9.34 × 10−44

(2.74 × 10−43) −
0.00 × 100

(0.00 × 100)

f2
2.09 × 10−42

(1.03 × 10−41) −
4.11 × 10−27

(4.89 × 10−27) −
4.01 × 10−12

(1.34 × 10−12) −
3.48 × 10−24

(1.96 × 10−24) −
1.16 × 10−05

(8.17 × 10−05) −
4.88 × 10−58

(1.55 × 10−57)

f3
3.85 × 10−81

(1.74 × 10−80) −
3.58 × 10−49

(7.53 × 10−49) −
4.22 × 10−19

(3.41 × 10−19) −
7.27 × 10−43

(1.05 × 10−42) −
1.16 × 10−46

(6.85 × 10−46) −
0.00 × 100

(0.00 × 100)

f4
1.40 × 10−25

(9.70 × 10−25) −
1.85 × 10+01

(1.01 × 10+01) −
1.82 × 10+01

(3.29 × 100) −
1.15 × 10+01

(8.23 × 100) −
2.62 × 100

(2.60 × 100) −
0.00 × 100

(0.00 × 100)

f5
0.00 × 100

(0.00 × 100) ≈
1.96 × 10−02

(1.39 × 10−01) −
0.00 × 100

(0.00 × 100) ≈
0.00 × 100

(0.00 × 100) ≈
4.22 × 100

(7.61 × 100) −
0.00 × 100

(0.00 × 100)

f6
0.00 × 100

(0.00 × 100) ≈
0.00 × 100

(0.00 × 100) ≈
2.35 × 10−33

(2.93 × 10−33) −
1.79 × 10−69

(3.86 × 10−69) −
1.74 × 10−59

(1.10 × 10−58) −
0.00 × 100

(0.00 × 100)

f7
−12,569.49

(1.82 × 10−12) ≈
−12,567.16

(1.64 × 10+01) −
−12,569.49

(1.82 × 10−12) ≈
−12,569.49

(1.82 × 10−12) ≈
−11552.14

(3.68 × 10+02) −
−12,569.49

(1.88 × 10−05)

f8
1.74 × 10−16

(6.35 × 10−16) +
0.00 × 100

(0.00 × 100) ≈
8.38 × 10−12

(9.18 × 10−12) +
4.83 × 100

(3.86 × 100) −
3.62 × 10+01

(1.44 × 10+01) −
3.16 × 10−11

(1.66 × 10−10)

f9
4.00 × 10−15

(2.37 × 10−30) ≈
4.76 × 10−15

(1.46 × 10−15) −
2.74 × 10−10

(1.08 × 10−10) −
5.60 × 10−15

(1.77 × 10−15) −
2.64 × 10−01

(5.21 × 10−01) −
4.00 × 10−15

(2.37 × 10−30)

f10
0.00 × 100

(0.00 × 100) ≈
1.55 × 10−03

(3.81 × 10−03) −
3.05 × 10−17

(1.08 × 10−16) −
0.00 × 100

(0.00 × 100) ≈
7.99 × 10−03

(1.46 × 10−02) −
0.00 × 100

(0.00 × 100)

− 4 6 7 7 10

+ 1 1 1 0 0

≈ 5 3 2 3 0
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1 Simulation in low dimension.

Table 2 summarizes the experimental results in low dimension. It shows that iLSHADE eventually
converges to optimum for 8 test functions except f2 and f9. Moreover, iLSHADE significantly
outperforms JADE, CoDE, jDE, DE. Compared to LSHADE, iLSHADE beats LSHADE on two test
functions f2 and f3. Especially in f3, only iLSHADE converges to the global optimal value. Overall,
iLSHADE performs better than other algorithms on low dimension optimization problems.

2 Simulation in high dimension.

The experimental results in high dimension are summarized in Table 3. iLSHADE eventually
converges to optimum for 7 test functions except f2, f8 and f9. iLSHADE performs the best in f2

and f9, although it does not converge to the global optimal. While on f8, JADE performs the best.
The proposed algorithm is not good as expected. Above all, iLSHADE has an obvious advantage over
other algorithms on high dimension optimization problems.

To sum up, iLSHADE is suitable for both low dimension and high dimension, meaning that the
improvement proposed in this paper is effective.

5. Implementation of iLSHADE for LSLCHS

5.1. Solution Structure and Initial Population

To handle constraints and calculate objective function, solution structure for the LSLCHS
comprises a group of monthly water levels as the decision variables shown as follows.

X =


X1

X2

...
XM

 =


x1

1, x1
2, · · · x1

T
x2

1, x2
2, · · · x2

T
...

xM
1 , xM

2 , · · · xM
T

 (28)

where M is the number of hydropower stations, T (12 month in a year) is the number of intervals.
In algorithms relying on heuristic search, initial population is an important issue to convergence speed
and population diversity. The iLSHADE has a large initial population size based on LPSR and ensures
the diversity of the population by random initialization.

5.2. Constraint Handling

It is multiple and complicate for flow constraint, power generating constraint, amplitude of
water level variation and hydraulic connection of cascade. The handling measure currently used
for water balance constraint, water level constraint and boundary condition is often corrected to the
boundary [18,46]. It has defects such as: (1) The direction of the entering feasible domain is relatively
simple and centered on the boundary because of the excessive attention to the rapid into the feasible
area; (2) When there are multiple feasible domains, it is easy to ignore small feasible areas;

The ε-constrained method is first proposed by Takahama et al. [47], which relaxes the greed of the
feasibility criterion to the constraint conditions. The ε value is set as threshold value in ε-constrained
method. In general, constrained optimization maximum problems can be mathematically formulated
as follows:

max f
(→

x
)

,
→
x = (x1, . . . , xD) (29)

subject to

 gi

(→
x
)
≤ 0 i = 1, 2, · · · , m

hj

(→
x
)
= 0 j = 1, 2, · · · , n

(30)
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where gi

(→
x
)

is inequality constraints, m is the total number of inequality constraint. hj

(→
x
)

is equality

constraints and n is the total number of equality constraints. The value of constraint violation ϕ
(→

x
)

can be calculated in the following formula (30), and ϕ
(→

x
)

of infeasible solutions is bigger than 0.

ϕ
(→

x
)
= ∑m

i=0 max
(

0, gi

(→
x
))

+ ∑n
j=1

(∣∣∣hj

(→
x
)∣∣∣, 0

)
(31)

When the constraint violation values of both solutions are smaller than ε value, the one with
better objective function value is selected. Otherwise, the one with smaller constraint violation value is
selected. Overall, when any of the following conditions are met,

→
x i is superior to

→
x j:

f
(→

x i

)
< f

(→
x j

)
, if g

(→
x i

)
≤ ε ∩ g

(→
x j

)
≤ ε

f
(→

x i

)
< f

(→
x j

)
, if g

(→
x i

)
= g

(→
x j

)
g
(→

x i

)
< g

(→
x j

)
, otherwise

(32)

and the final effectiveness of e-constrained method strongly depends on the control method of ε value.
Takahama et al. [47] proposed the following method,

ε(0) = ϕ
(

Pθ
0

)
(33)

ε(t) =

{
ε(0)(1− t/Tc)

cp 0 < t < Tc

0 t > Tc
(34)

where Pθ
0 is the top θ-th individual in the initial population, cp is a control parameter. If the number

of iterations t is less than a given threshold value Tc, the ε value declines in an exponential way.
Otherwise, ε is set to 0 (see formula (33) and (34)).

The ε-constrained method can expand search space, avoid the constraint correction for unfeasible
solutions and enable to search infeasible region that is around feasible region. However, the constraints
consist of flow, power generating and amplitude of water level. Operating water level in LSLCHS
problem is multiple and complex. Their units are not integrated, and the physical quantities
corresponding to the same level of different reservoirs are different. To solve the above problems,
we proposed ε-constrained in cascade reservoir operation method (ε-CRO) with unify different
physical quantities constraint violation. The ε-CRO chooses water to unify different physical
quantities constraint violation because all constraints can be converted to outflow constraint and
flow accumulated over time as water. The feasible range of outflow Qi,t is expressed in formula (35)
and (36).

Qi,t+1 = min


Qmax

i,t+1(
V(Zi,t)−V(Zmin

i,t+1)
)

/∆t

(V(Zi,t)−V(Zi,t − ∆Zi))/∆t

(35)

Qi,t+1 = max



Qmin
i,t+1

Ii,t +
(

V(Zi,t)−V(Zmax
i,t+1)

)
/∆t

Ii,t + (V(Zi,t)−V(Zi,t + ∆Zi))/∆t

Qmin N
i,t+1

(36)

where Zi,t represents the i-th reservoir water level at the -th period, Z(V) is the relationship between
water level and storage. Qi,t+1 and Qi,t+1 stand for the minimum and maximum outflow under all
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constraints. Qmin N
i,t+1 is the outflow for guaranteed output and ∆t stands for time horizon. The value of

constraint violation in LSLCHS problem ϕCRO

(→
x
)

can be calculated as follows:

ϕCRO

(→
x
)
= ∑M

i=1 ∑T
t=1

[
max

(
0, Qi,t −Qi,t+1

)
+ max

(
0, Qi,t+1 −Qi,t

)]
(37)

εCRO(0) and εCRO(t) are calculated like in [47] except θ = 0.5, cp = 1 and Tc = 0.5 ∗MAXNFE.

6. Case Study

6.1. Description of Case Study

The Jinsha River, the upper stretch of the Yangtze River, is 2290 km long with a 485,000 km2

basin area flowing through the provinces of Qinghai, Sichuan, and Yunnan in western China (See in
Figure 5). Along the river, there are four large hydropower stations with large installed capacity, huge
regulating storage and high water head. The total installed capacity of the four large hydropower
stations is twice more than the Three Gorges Project (the largest hydropower station in the world).
The main parameters of these hydropower stations are listed in Table 4.

Figure 5. The location of the Jinsha River Basin in China.

Table 4. The main parameters of four large hydropower stations in Jinsha River.

Parameter Wudongde Baihetan Xiluodu Xiangjiaba

Adjustment ability Season Annual Annual Season
Regulating storage (billion m3) 2.60 10.40 6.46 0.90

Hydro plant discharge range (m3/s) [49,400, 906] [49,700, 905] [43,700, 1500] [49,800, 1500]
Upriver water level range (m) [975, 945] [825, 765] [600, 540] [380, 370]

Installed capacity (MW) 12000 16000 13860 6400
Normal water level (m) 975 825 600 380

6.2. Results and Analysis

In the case, the four large hydropower stations are all taken into consideration. According to
historical runoff from 1959 to 2014 in the basin, three typical years are chosen to be the inflow conditions:
wet year (historical runoff of 1999), normal year (2008) and dry year (1969). Simulation results of
iLSHADE are compared to LSHADE, JADE and CoDE in three typical years. The initial water level
and terminal water level of all the hydropower stations are set to the normal water level. The schedule
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period consists of 12 intervals with one month for each interval. In addition, the parameters in all
algorithms are the same as those mentioned in Section 4. The maximum evaluation time is set to 40,000.

Table 5 represents that iLSHADE gains the best benefit of power production in three typical
years. The convergence process of different algorithms in dry year is shown in Figure 6. Compared to
LSHADE, JADE and CoDE on average optimal benefit of 51 independent simulations are illustrated
in Table 5, iLSHADE increases the power production by 2.02, 4.04, 2.39 (108 KWh) in wet year, 3.03,
7.37, 3.76 (108 KWh) in normal year, 3.48, 5.68, 1.96 (108 KWh) in dry year. Obviously, the proposed
iLSHADE is superior when solving LSLCHS problem by obtaining the maximal benefit of power
production efficiently. In particular, the standard deviation of 51 independent simulations in iLSHADE
is 0.02 in wet year, 0.01 in normal year, 0.01 in dry year, which shows that the convergence stability
of iLSHADE is better than other algorithms. Meanwhile, it can be seen easily from Figure 6a that
iLSHADE can avoid premature convergence effectively, at the same evaluation times keep a fast
convergence speed compared to LSHADE, CoDE and JADE. Figure 6b depicts that the ϕCRO

(→
x
)

of
iLSHADE and LSHADE frequent changes and always lower than εCRO(t), until evaluation times is
greater than Tc, ϕCRO

(→
x
)

is limited to 0.

Table 5. Results of 51 independent simulations on generated energy optimization (108 KWh).

Method
Wet Year (1999) Normal Year (2008) Dry Year (1969)

Max Mean Std Max Mean Std Max Mean Std

iLSHADE 2425.03 2425.01 0.02 2268.13 2268.11 0.01 1814.36 1814.35 0.01
LSHADE 2423.86 2422.99 0.48 2266.88 2265.08 0.94 1812.64 1810.87 0.99

Diff 1.17 2.02 1.25 3.03 1.72 3.48
JADE 2424.43 2420.97 1.32 2267.51 2260.74 2.43 1814.00 1808.67 2.234
Diff 0.6 4.04 0.62 7.37 0.36 5.68

CoDE 2423.39 2422.62 0.30 2265.62 2264.35 0.64 1813.08 1812.39 0.39
Diff 1.64 2.39 2.51 3.76 1.28 1.96

Figure 6. Convergence process of different algorithms.

The monthly reservoir water levels and outflow, as well as the optimal schedule result of
Wudongde, Baihetan, Xiluodu and Xiangjiaba result in normal year obtained by iLSHADE are shown
in Figure 7. Due to sufficient inflow, the cascade reservoir does not need to release storage capacity
to meet the constraints of minimum outflow limit during the dry season from January to March.
The inflow of Wudongde is very low in April, so the cascade reservoir needs to release storage capacity
to meet the constraint requirements. As one of the upstream reservoirs, Wudongde first lowers the
water level. To reduce the water spillage before flood season, Baihetan will lower its water level below
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the flood control level in advance and impound some water at the last period. Xiluodu and Xiangjiaba
lower the water level in the last period. During the impoundment period, Wudongde and Baihetan
store water to normal water level before Xiluodu and Xiangjiaba in October. In this way, the water in
upstream reservoirs can utilize the downstream high hydraulic head to generate more electric power.

Figure 7. Optimal results in normal year by month.

Furthermore, the historical runoff data from 1959 to 2014 are selected for long sequence calculation.
The parameters in all algorithms are the same as those mentioned in Section 6.2 and the maximum
evaluation time is set to 40,000. The average adding annual power production that iLSHADE compares
to LSHADE, JADE and CoDE is presented in Figure 8. It can be seen clearly from Figure 8 that
iLSHADE is superior compared to other algorithm in solving the LSLCHS problem with different
types of historical runoff from 1959 to 2014.

Figure 8. Historical runoff data from 1959 to 2014 for the annual power production increase that
iLSHADE compares to LSHADE, JADE and CoDE.
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According to the above analysis, proposed iLSHADE is superior when solving LSLCHS
problem in different types of runoff by obtaining the maximize benefit of electric power production.
All these experiment results fully demonstrate that iLSHADE is a competitive method to solve the
LSLCHS problem.

7. Conclusions

An iLSHADE algorithm with new mutation strategy “current to pbest/2-rand” and PIRFE
strategy has been developed in this paper to solve the LSLCHS problem. The significant modifications
are mainly focused on preventing premature convergence and accelerating convergence. To verify
the performance of iLSHADE, numerical simulation in both low and high dimension on a set of
10 benchmark functions has been done. Compared with other improved differential evolution
algorithms, iLSHADE obtains better performance with all ten functions in the low dimension and nine
functions in the high dimension. This indicates that the proposed new mutation strategy “current
to pbest/2-rand” and PIRFE strategy in iLSHADE enhance the performance of original algorithm
LSHADE effectively. Then iLSHADE is applied to solve LSLCHS problem for four large hydropower
stations in Jinsha River. Compared to LSHADE, JADE and CoDE on average optimal benefit,
iLSHADE increases the power production by 3.03, 7.37, 3.76 (108 KWh) in a normal year. In particular,
the standard deviation of 51 independent simulations in iLSHADE is far lower than other algorithms.
Moreover, according to its successful simulation performance with the historical runoff data from
1959 to 2014, iLSHADE can obtain better schedule results with lager generation benefits and better
convergence property compared to LSHADE, JADE and CoDE. Above all, iLSHADE is a valid and
reliable tool in solving the LSLCHS problem. Future research should consider the iLSHADE algorithm
combined with other methods when solving multi objective scheduling problems in LSLCHS problem.
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