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Abstract: Data scarcity is a common problem in hydrological calculations that often makes water
resources planning and engineering design challenging. Combining ensemble empirical mode
decomposition (EEMD), a radial basis function (RBF) neural network, and an autoregression (AR) model,
an improved EEMD prediction model is proposed for runoff series forward prediction, i.e., runoff series
extension. In the improved model, considering the decomposition-prediction-reconstruction principle,
EEMD was employed for decomposition and reconstruction and the RBF and AR model were used for
component prediction. Also, the method of tracking energy differences (MTED) was used as stopping
criteria for EEMD in order to solve the problem of mode mixing that occurs frequently in EEMD.
The orthogonality index (Ort) and the relative average deviation (RAD) were introduced to verify the
mode mixing and prediction performance. A case study showed that the MTED-based decomposition
was significantly better than decomposition methods using the standard deviation (SD) criteria
and the G. Rilling (GR) criteria. After MTED-based decomposition, mode mixing in EEMD was
suppressed effectively (|Ort| < 0.23) and stable orthogonal components were obtained. For this,
annual runoff series forward predictions using the improved EEMD-based prediction model were
significantly better (RAD < 11.1%) than predictions by the rainfall-runoff method and the AR model
method. Thus, this forward prediction model can be regarded as an approach for hydrological series
extension, and shows promise for practical applications.

Keywords: data scarce basins; runoff series; data forward prediction; ensemble empirical mode
decomposition (EEMD); stopping criteria; method of tracking energy differences (MTED)

1. Introduction

Hydrological data scarcity is a constant challenge for international hydrological research. In 2003,
the International Association of Hydrological Sciences (IAHS) launched an initiative called “predictions
in ungauged basins (PUB)” for the IAHS Decade at the 23rd International Union of Geodesy
and Geophysics (IUGG) in Sapporo, Japan. This initiative strongly promoted the development of
hydrological research in ungauged basins [1]. In 2013, a new science decade of IAHS was approved,
“Panta Rhei—Everything Flows”, which made global hydrological researchers aware of the slow
progress in developing innovative hydrological research methods to solve the problem of hydrological
data scarcity [2]. It is well known that runoff data are the most important hydrological data for
river-basin management and are fundamental to hydraulic engineering design and water-resource
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management. If a catchment has few or no runoff data, then it is difficult to carry out policies
and strategies in water-resource management. Therefore, it is important to develop innovative
methods to address the problem of runoff data scarcity to service global hydrological research and
engineering design.

To address the scarcity of runoff data, many researchers have proposed various prediction
methods. They are generally divided into two major categories: physics-based and data-driven
methods. The physics-based methods usually build a proper hydrological model in the few- or no-data
catchments according to the catchment condition, and obtain some unknown model parameters directly
from other river basins that have observed data. When meteorological data and underlying surface
data in the few- or no-data catchments are available, the hydrological processes can be simulated
to obtain the runoff data series in the ungauged basins or extend the series in the few-data basins.
In recent years, many physics-based methods have been proposed to undertake the predictions in
ungauged basins. Servat et al. [3] developed two rainfall-runoff models (GR3 and CREC) which can
do runoff prediction from ungauged basins on the basis of land use and rainfall distribution over the
year. McIntyre et al. [4] proposed a new approach to the regionalization of conceptual rainfall-runoff
models based on ensemble modeling and model averaging. Model parameters were calibrated for
10 gauged basins with hydrological conditions similar to those of the ungauged basins. Also, ensemble
predictions of runoff were done for ungauged basins. Wan et al. [5] developed a lumped conceptual
rainfall-runoff model for rapid runoff prediction in south Florida with a unique and complicated
hydrological setting. Li et al. [6] evaluated two regionalization approaches, spatial proximity and
physical similarity, by which two runoff models (SIMHYD and GR4J) were used to predict runoff from
the Yarlung Tsangpo River basin. Because these models are based on physical causes, the procedure
is very complex and highly susceptible to factors such as the integrity and accuracy of the data on
the river basin’s underlying surface conditions, spatial-temporal variance of meteorological data,
complexity of rainfall-runoff process, and limited understanding of circulation patterns of water in the
basins [7]. In recent years, the precision of predictions by hydrological simulations has been found
to be far from satisfactory in some regions, so hybrid models coupling physics-based models with
data-driven methods have gained more attention.

Data-driven methods are generally used to make short-term predictions or data extension using
mathematical methods and intelligent algorithms via the statistical characteristics of short observational
runoff series or unknown meteorological and hydrological black-box models in data-scarce basins or
reference watersheds. Besaw et al. [8] developed and tested two artificial neural networks (ANNs) to
predict runoff from the Winooski River basin with time-lagged records of precipitation and temperature
as input data. Mohamoud [9] employed flow duration curves for forecasting flow in ungauged
basins by combining dominant landscape and climate descriptors from 29 nearby catchments with
multiple regression. It is well-known that data-driven methods require less data and have a simpler
structure than physics-based methods. Furthermore, data-driven methods have a good prediction
performance without really simulating the rainfall-runoff process, and can avoid the complex physical
process and the influence of model uncertainty. Thus, data-driven methods are usually used as
alternative and similar or even superior to those of physics-based methods in ungauged basins where
hydrological model simulations cannot be carried out effectively. Nowadays, they have been widely
used in hydraulic engineering design. However, they are not universal and are affected by regional
conditions. For instance, in north-western China, due to the poor similarity of reference basins and
the complicated and changeable rainfall-runoff relationships in the region, rainfall data in the basin
and the hydrological characteristics in the reference basin cannot be used as data-driven model inputs
in the region. Therefore, the prediction of runoff series in such regions should preferably be based
on the existing short runoff data than the unsatisfied rainfall-runoff model or poor similarity of
the reference basin. Generally, data extension based on the existing runoff data is called forward
prediction, which means predicting a non-measured runoff process before the existing runoff records
by data-extension methods.
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In the steady state, time-series models and artificial intelligence algorithms, such as artificial
neural networks (ANNs) [10–14] and support vector machines (SVMs) [15–18], can make satisfactory
predictions. However, under the dual influence of global climate change and intense human activities
in recent years, runoff series have exhibited such characteristics as high complexity, non-stationarity,
non-linearity and multiple time-scales [19–21]. These characteristics make analysis of runoff
characteristics and conventional hydrological time-series forecasting more difficult. The precision of
conventional prediction methods does not satisfy the requirements of current engineering design and
hydrological research. Therefore, a new prediction method should be developed for hydrological data
extension to meet hydraulic engineering design demands.

The multiple time scales of hydrological time series refer to the existence of multi-level time scales
and local features in the hydrological series changes in the time domain. For multiple time-scales
issues with non-stationarity and non-linearity variables, many time-scale decomposition approaches
have been introduced to separate the different time scales in hydrological series for hydrological
prediction and to provide important support for system analysis and runoff prediction. For example,
the wavelet transform (WT) has been adopted by many researchers for analyzing hydrological time
series with multiple scales due to its excellence in situations with multiple resolutions in time and
frequency domains [22–25]. Essentially, a wavelet transform is a Fourier transform with an adjustable
window, and the signal should be stable in the WT window. Therefore, it is still susceptible to
the limitations of Fourier analysis. Although WT provides high resolution in both the frequency
domain and the time domain, certain limitations of this method may generate some false harmonic
waves. Thus, the selection of WT basis functions is critical and has a significant impact on the
wavelet decomposition performance. In order to promote the development of multiple time-scale
analysis approaches, Huang proposed a novel signal analysis method in 1998 called empirical mode
decomposition (EMD) [26]. This method is essentially the smoothing treatment of the signal, by which
the multi-scale fluctuation or trend components in the signal are decomposed to generate a series of
intrinsic mode functions (IMFs) and a residual. Comparing two approaches, it can be seen that
an EMD-based Hilbert spectrum and a wavelet spectrum have the same characteristics on the
linear framework, while the Hilbert spectrum has significantly higher resolution in both time and
frequency domains. Therefore, it is often considered that the EMD result can reflect non-stationary
and non-linearity characteristics in the original series more accurately than the WT method, and
EMD is regarded as a more effective way to process complex signals. In classical hydrology,
a hydrological time series can be regarded as a set of random components, periodical components
and trend component. When the decomposition result of the EMD is perfect, the high-frequency
components, the low-frequency components and the residual obtained by the decomposition can
be approximated as random components, periodic components, and the trend [27,28]. Nowadays,
EMD has become a new method for multi-time-scale analysis of non-stationary hydrological time series
and has been successfully applied in hydrological research around the world [29,30]. Based on the
EMD method, researchers have proposed “decomposition-prediction-reconstruction” coupling models
which improve the precision of hydrological prediction effectively [31–33]. However, limitations still
exist, such as mode mixing and IMFs’ orthogonality effect on the EMD performance and prediction
precision. Ideally, each component obtained after the decomposition should contain information on
one time scale. However, due to the defects of the decomposition method and the random fluctuations
in hydrological series, a component obtained after decomposition may contain different information
belonging to other components. That is called mode mixing, which will lead to an unclear physical
meaning of each component and confusion in further analysis. The orthogonality of EMD can be
understood mathematically in that each IMF decomposed is orthogonal and also can be understood
in the decomposing operation in that there is no energy loss of the original series in the process of
extracting components in the ideal state. Unfortunately, the total energy of the components is always
significantly different from the energy of the original series in the actual EMD process. To address
these issues, Wu and Huang proposed the ensemble EMD (EEMD) method to suppress mode mixing
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in EMD [34,35]. However, EEMD is not perfect, and mode mixing still occurs among low-frequency
components. So, it is inferred that a proper stopping criteria is critical for EMD, which can guarantee
that the EEMD method can provide satisfactory decomposition results [36]. For hydrological time
series, a proper stopping criteria not only improves the precision of fluctuation component extraction in
hydrological time-series data, but also preserves the long-range trend in the series to the greatest extent
possible, which significantly influences the accuracy of forward prediction. In the EEMD, the stopping
criteria is called the SD criteria, in which the standard deviation is used to stop the decomposition
procedure [26]. Later, G. Rilling proposed the so-called G. Rilling (GR) criteria [37], which leverages the
evaluation function σ(t) and the predefined threshold to control when the sifting process stops. In the
GR criteria, two conditions are to be fulfilled: the number of extrema and the number of zero-crossings
must differ at most by 1, and the mean between the upper and lower envelopes must be close to zero.
Compared with the SD criteria proposed by Huang, the GR can obtain the mean value of IMFs more
accurately. However, the effects of these criteria are still limited, and the energy loss during sifting and
orthogonality among IMFs are not fully addressed. Some problems such as mode mixing cannot still
be solved perfectly. To address these issues, Cheng proposed a new EMD sifting stopping criteria, the
method of tracking energy differences (MTED), aiming to solve the mode-mixing problem from the
perspective of energy. Currently, it has achieved excellent results in fault diagnosis [38].

In view of the above analysis, this paper investigated the applicability of the sifting stopping criteria
to hydrological time series. The MTED was selected as the sifting stopping criterion for decomposing
runoff series using EEMD. For forward prediction, a radial basis function (RBF) neural network, and an
autoregressive (AR) model were combined to create a “decomposition-prediction-reconstruction”-based
improved EEMD prediction model in order to predict short runoff series and further solve the problem of
runoff data scarcity encountered in hydrological research and engineering design.

2. Materials and Methods

2.1. Empirical Mode Decomposition (EMD)

EMD is a new and innovative self-adaptive time-frequency signal-processing method proposed
by Huang in 1998 [29]. This method is primarily designed for non-stationary and non-linear data.
Signal decomposition obtains multiple stable IMFs and a monotonic residual based on the data’s
own time-scale pattern. In hydrological applications, EMD converts a non-stationary hydrological
series into a series of hydrological components with clear patterns that have specific physical
meanings [33]. These components are more predictable and can improve the precision of forward
prediction significantly. Details of the EMD procedure are as follows:

• Step 1: Identify all local maxima and minima in the original time series X(t). The upper and lower
envelopes of the time series are obtained by cubic spline interpolation. The mean of the upper
and lower enveloping lines is m(t):

m(t) =
Xmax(t) + Xmin(t)

2
(1)

• Step 2: A new series h(t) is calculated by subtracting the mean m(t) from the original series X(t):

h(t) = X(t)−m(t) (2)

• Step 3: The EMD sifting stopping criteria determines whether sifting should stop. If the stopping
condition is met, h(t) is the IMF, and the next step is executed. If the stopping condition is not met,
then h(t) is used as the original series, steps 1 and 2 are repeated until the stopping condition is
met, and the first IMF, IMF1 c1(t), is calculated.
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• Step 4: The residual series r1(t) is obtained by subtracting the IMF c1(t) from the original series
X(t):

r1(t) = X(t)− c1(t) (3)

• Step 5: The residual series r1(t) is used as the new original series, and steps 1–4 are
repeated. All the IMFs, c1(t), c2(t), . . . , cn(t), are decomposed until cn(t) is a monotonic or
single-extreme-point residual.

2.2. EEMD

The EEMD method is an improvement of EMD method that reduces mode mixing and obtains the
actual time-frequency distribution of the signal [35]. The principle is to leverage the statistical features
(uniform frequency distribution) of Gaussian white noise. When white noise is added to a signal,
the signal becomes continuous on different scales to reduce mode mixing. Details of the decomposition
principle and procedure are as follows:

• Step 1: White noise ni(t) with a mean of 0 and standard deviation constant is added to the original
signal X(t) multiple times. The standard deviation of the white noise is set to 0.1–0.4 times the
standard deviation of the original signal (0.2 in this study):

Xi(t) = X(t) + ni(t) (4)

where Xi(t) represents the signal after the i-th addition of Gaussian white noise.
• Step 2: Each Xi(t) undergoes the EMD procedure. The IMF component obtained is denoted by

cij(t), and the residual term is denoted by ri(t). Among them, cij(t) represents the j-th IMF from the
decomposition of the signal after the i-th addition of Gaussian white noise.

• Step 3: Steps l and 2 are repeated N times. Based on the principle that the statistical mean of
an uncorrelated random series is 0, the IMFs are subjected to an overall averaging operation to
eliminate the impact of adding Gaussian white noise to the actual IMF multiple times. Finally, the
IMF obtained from EEMD is as follows:

cj(t) =
1
N

N

∑
i=1

cij (5)

where cj(t) represents the j-th IMF of the original signal obtained by EEMD. As the value of N
increases, the sum of IMFs for the corresponding white noise approaches 0. At this point, the
result of EEMD is as follows:

X(t) = ∑
j

cj(t) + r(t) (6)

where r(t) is the final residual, which represents the average trend of the signal. Any signal X(t) can
be decomposed into multiple IMFs and one residual via EEMD. IMF cj(t) (j = 1, 2, . . . ) represents
the signal’s components from high frequency to low frequency. Each frequency contains distinct
components and varies with the signal X(t).

2.3. Improved Ensemble Empirical Mode Decomposition (EEMD)

Whether the decomposed IMFs are proper or applicable is largely determined by the sifting
stopping criteria. Different criteria result in different IMFs from decomposition. Due to the limited
applicability of the SD criteria proposed by Huang [34,35] and the GR criteria proposed by
G. Rilling [37], the method of tracking energy differences (MTED) is introduced as the sifting stopping
criteria to improve the EEMD method.

The MTED is different from the other two sifting stopping criteria. It assumes that the IMFs are
finite and orthogonal to each other; that is, in an ideal state, when an IMF is sifted, no energy is lost
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during sifting. If the EEMD exhibits a smaller energy loss during sifting, it is more likely to guarantee
the orthogonality of IMFs and, therefore, the EEMD sifting is more appropriate. It is clear that the
MTED mainly works from the perspective of energy and ensures that each extracted IMF and residual
are orthogonal in terms of energy. Details of the procedure are as follows [38]:

EX =

∞∫
−∞

[
n

∑
i=1

ci(t)

]2

dt =
∞∫
−∞

c2
1(t)dt +

∞∫
−∞

c2
2(t)dt + · · ·+

∞∫
−∞

c2
n(t)dt = E1 + E2 + · · · En (7)

where EX is the total energy of the series; ci(t) is an IMF or residual of the original series after EEMD;
and E1, E2, . . . , En is the energy of the corresponding component.

During EEMD, if a component h(t) = X(t)−m(t) is obtained, then when h(t) is sifted from X(t),
the sum of the energy for h(t) and the rest of the series is as follows:

Etot =

∞∫
−∞

h2(t)dt +
∞∫
−∞

m2(t)dt = Eh + Em (8)

Then, the difference between the total series energy before and after h(t) is sifted is as follows:

Eerr = Etot − EX (9)

Normally, |Eerr| decreases as the number of sifting increases. If after the k-th sifting, |Eerr| is
greater than that it was after the (k − 1)-th sifting, then it is considered that |Eerr| has reached its
minimum after the (k − 1)-th sifting, no more sifting is needed, and this round of sifting stops. The h(t)
obtained from the (k − 1)-th sifting is selected as an IMF, and the next step of the EEMD is executed to
obtain other IMFs and the residual. If the condition is not met, then sifting is repeated until an IMF
is obtained.

2.4. Improved EEMD-Based Decomposition-Prediction-Reconstruction Model

To forward predict or extend short observational runoff series in data-scarce catchments, an
improved EEMD-based method and the prediction model are combined in this paper to create
an improved EEMD prediction model according to the “decomposition-prediction-reconstruction”
principle. As follows from the previous analysis, the low-frequency components and residual terms
of runoff time series calculated using EEMD have regular and stable fluctuation. Thus, an AR model
prediction can provide high precision. In comparison, the high-frequency component (IMF1) has
significant fluctuations and strong non-linearity and the AR model prediction designed for a stable
series is hardly satisfactory. Therefore, in this study, a RBF neural network, which is suitable for
processing non-linear series, was employed for prediction. Moreover, it was also discovered that IMF1
components from original runoff series obtained by EEMD demonstrated fluctuations and variations
consistent with rainfall series in the same basin. To avoid the problem that runoff predictions have
only statistical significance instead of physical representations, the rainfall series in the same period
was used in this paper as one of the input vectors for the RBF neural network. Additionally, since
runoff series exhibit strong auto-correlation and this may still exist in IMF1, a partial autocorrelation
function (PACF) and the Akaike information criteria (AIC) [39] were employed for autocorrelation
analysis and to select the inputs of the RBF neural network (the strongest three orders as additional
input vectors).

In general, the procedure for the improved EEMD prediction model is summarized as follows:
a short observed runoff series undergoes orthogonal decomposition via the improved EEMD method
to obtain several IMFs and one residual; i.e., a non-stationary runoff time series is decomposed
into multiple quasi-stable components and one trend component. Then, IMF1 undergoes forward
prediction using the RBF neural network, and the terms from IMF2 to the residual undergo forward
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prediction via the AR model. The forward predicted components are reconstructed to obtain runoff
data for years when measured data are missing. After verification, the obtained runoff series are
combined with the original series to generate a runoff series that meets length requirements for water
resources engineering design or hydrological research.

3. Results and Discussion

3.1. Case Selection

In some remote regions of north-western China, hydrological stations are scarce, and the length
of hydrological data series is seriously insufficient. With poor rainfall-runoff relations, data scarcity
has become a major issue for hydraulic engineering design and hydrological research development in
the region. Zhaoshiyao hydrological station in the Wuding River basin and the Suide hydrological
station in the Dali River (a tributary of the Wuding River) basin in north-western China are typical of
data-scarce stations. Thus, they were selected as research stations in this paper. Annual runoff data
series (1971–2010) at two hydrological stations were selected as the study subject, in which annual
runoff data in 1981–2010 (30 years) were used as training data, and annual runoff data in 1971–1980
(10 years) were used as verification data. The data were collected from hydrological manuals published
by the Hydrological Bureau of the Yellow River Conservancy Commission (YRCC).

3.2. Calculation and Analysis

3.2.1. Improved EEMD

The annual runoff data in 1971–2010 at two hydrological stations were reversed and decomposed
using the improved EEMD method. The MTED was used as the stopping criteria for EEMD sifting.
To verify the decomposition performance by the improved EEMD method, the results were compared
with the results obtained by decomposition methods based on the SD criteria and the GR criteria,
as shown in Figures 1 and 2.

In Figure 1a,b and Figure 2a,b show SD and GR criteria-based EEMD components, respectively,
and Figures 1c and 2c shows the MTED-based components. These figures show that with the three
sifting stopping criteria, four IMFs and one residual can be obtained from decomposition. However,
the same original series were decomposed into different components (different IMFs and different
residuals) based on the three sifting stopping criteria. When the SD criteria or the GR criteria was
used as the EEMD sifting stopping criteria, the decomposed components were highly fluctuating and
irregular. In particular, in the low frequency component (such as IMF4), the decomposed components
exhibited irregular waveforms. In other words, SD and GR criteria-based components exhibited severe
mode mixing such that this did not accurately show hydrological fluctuations or periodical changes.
Such fluctuating and irregular components were difficult to predict due to their weak regularity.
In contrast, the components obtained by the MTED were relatively stable, fluctuating around 0, and
had regular waveforms. After several rounds of sifting, the low-frequency components demonstrated
regular sinusoidal fluctuations. This means that the EEMD results obtained by the MTED were better
because mode mixing in the process was suppressed effectively, and the decomposed IMF component
was more stable, which provided a solid foundation for forward prediction in the next stage. It is worth
mentioning that the extraction of each component except IMF1 is based on the previous extracted
component in the decomposition process of EMD. Different sifting stopping criteria could make
extraction different, and the difference will enlarge along with the decomposition. Although the
difference is not obvious among the high-frequency components (such as IMF1 and IMF2) obtained
under three criteria, it is an objective reality and would lead to the curves of the low-frequency
components being obviously different, as shown in Figures 1 and 2. Compared with the MTED,
the low-frequency component obtained through SD- and GR-criteria show irregular fluctuations,
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which indicates that the MTED-based EMD performs better than SD and GR criteria-based EMD in
separating the multi-time scale information from the original series.

Figure 1. The decomposition results of runoff series based on (a) standard deviation (SD) criteria;
(b) G. Rilling (GR) criteria; and (c) the method of tracking energy differences (MTED) at the
Zhaoshiyao station.

Figure 2. The decomposition results of runoff series based on (a) standard deviation (SD) criteria;
(b) G. Rilling (GR) criteria; and (c) the method of tracking energy differences (MTED) at the
Suide station.
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To further verify the above statement, the orthogonality index Ort was used to evaluate the
superiority of the three sifting stopping criteria. Ort is an index that evaluates the orthogonality of the
IMF components, and its value closer to zero means that the IMF components are more orthogonal [40].
The principle is illustrated as follows [41]:

Original runoff data undergo EEMD, and then n IMF components and one residual are obtained.
The corresponding formula is as follows:

X(t) = ∑n
q=1 cq(t) + r(t) (10)

where cq(t) is the q-th IMF and r(t) is the residual which is defined as the last IMF component, i.e., r(t) is
defined as cn+1(t). Then, the original runoff data are represented as follows:

X(t) = ∑n+1
q=1 cq(t) (11)

The runoff data X(t) in the form of a square are as follows:

X2(t) = ∑n+1
q=1 c2

q(t) + 2∑n+1
q=1 ∑n+1

p=1 cq(t)cp(t)(q 6= p) (12)

If all the IMF components are orthogonal, then the second term on the right side of the equal sign
in above formula should be zero. Therefore, the definition of the orthogonality index Ort is as follows:

Ort = ∑N
t=1

(
∑n+1

p=1 ∑n+1
q=1 cp(t)cq(t)

X2(t)

)
(p 6= q) (13)

where N is the length of the runoff series.
Next, all IMFs and residuals decomposed with the three sifting stopping criteria are taken through

the Hilbert–Huang transform (HHT) to obtain their Hilbert spectrum [26]. After integrating the Hilbert
spectrum with respect to time, their Hilbert marginal spectrum is obtained, respectively, as shown
in Figures 3 and 4, in which it is seen that the Hilbert spectrum accurately reflects variations in the
component’s amplitude with time and frequency. The marginal spectrum statistically represents the
accumulated amplitude distribution of each component along the frequency. The orthogonality of
the components is represented by the coincidence of major frequencies in the marginal spectrum.
A smaller coincidence means the orthogonality is superior.

Figure 3. Cont.
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Figure 3. Hilbert spectrums and marginal spectrums of runoff components obtained based on (a) SD
criteria; (b) GR criteria; and (c) MTED at the Zhaoshiyao station.

Figure 4. Hilbert spectrums and marginal spectrums of runoff components obtained based on (a) SD
criteria; (b) GR criteria; and (c) MTED at the Suide station.

Table 1 lists the orthogonality indexes of the EEMD results with three sifting stopping criteria
at the two hydrological stations. “With the residual” means the residual is used as the last IMF
component in the calculation, and “without the residual” represents the fact that the residual has been
removed, and other IMFs are used in the calculation. It can be found whether or not the residual
is taken into the calculation, the MTED-based orthogonality index is closer to 0 than the indexes by
the SD criteria and the GR criteria. This indicates that, compared with the SD criteria-based or GR
criteria-based decomposition components, the MTED-based components are more orthogonal or with
less mode mixing. This statement is also supported to a certain extent in Figures 3 and 4. In the Hilbert
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spectrum of two figures, the horizontal axis represents time, the vertical axis represents frequency,
and the depth of the color describes the magnitude of the amplitude. Although the Hilbert spectrums
of three stopping criteria do not show a significant difference, it can be seen that the spectrum of
the MTED-based components are more recognizable and regular than SD criteria-based and GR
criteria-based components. Furthermore, a more significant superiority of MTED to SD criteria and GR
criteria can be seen in the marginal spectrum, in which the dominant frequency and frequency band
of each component can be recognized well. As shown in the marginal spectrum of Figures 3 and 4,
the dominant frequency of MTED-based components is significant while that of SD criteria-based and
GR criteria-based components is difficult to distinguish. The detailed representation is as follows:
the frequency band of MTED-based components is distributed relatively independently on different
frequencies while that of SD criteria-based and GR criteria-based components overlap in the frequency
range. In other words, Figures 3 and 4 show that MTED-based decomposition is superior to SD
criteria-based and GR criteria-based decomposition in decomposing the original series into several
components corresponding to different frequency bands (different time scales). All these indicate that
the SD criteria-based and GR criteria-based decomposition components have serious mode mixing and
poor orthogonality. Fortunately, the MTED-based improved EEMD method can suppress mode mixing
in the EEMD effectively, generating stable IMFs representing multi-scale physical information and
thereby illustrating hydrological periodical change hidden in the runoff data to the extent possible.

Table 1. Orthogonality index of runoff components based on three stopping criteria.

Orthogonality Index
Zhaoshiyao Station Suide Station

SD Criteria GR Criteria MTED SD Criteria GR Criteria MTED

Without residual −0.10 −0.10 −0.08 −1.24 −0.95 −0.23
With residual −1.72 −3.57 −0.66 −8.63 −9.86 −5.64

3.2.2. Radial Basis Function (RBF) Neural Network and Autoregression (AR) Model Prediction

The data of runoff components (1981–2010) decomposed by the improved EEMD were used as
training data. Through training, a RBF neural network and AR model was built and used for the
prediction, in which the RBF neural network was employed to forward predict or extend the IMF1
data during non-observed period (1971–1980) by coupling the rainfall data in the same period, and the
AR model was used to forward predict or extend other components’ data (IMF2–4 and the residual)
during the non-observed period. Next, all the predicted runoff components were combined to obtain
the predicted annual runoff data for the non-observed period.

To verify the prediction effect and compare the impact of three sifting stopping criteria (the SD
criteria, the GR criteria and the MTED) on runoff prediction, the prediction results by the EEMD
prediction models with three criteria were compared, as listed in Table 2. Here, measured runoff data
in the verification period were used as the benchmark for error analysis, and the relative average
deviation (RAD) and the Nash–Sutcliffe efficiency (NSE) were used as error evaluation indexes to
undertake comprehensive measurement and evaluation of the prediction performance. A smaller RAD
and a larger NSE represent higher prediction precision.

Table 2 shows the prediction performance of EEMD prediction models based on the SD criteria,
the GR criteria and the MTED, where it is clear that the MTED-based EEMD prediction model has
significantly more precision than the SD-based and GR-based models. This also supports the inference
about the applicability and superiority of MTED as a stopping criteria for EMD sifting.
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Table 2. Error assessment of improved EEMD prediction models based on three stopping criteria.

Error Evaluation Index
Zhaoshiyao Station Suide Station

SD Criteria GR Criteria MTED SD Criteria GR Criteria MTED

Relative average deviation (RAD)/% 9.45 9.39 6.86 25.24 25.60 11.10
Nash–Sutcliffe efficiency (NSE) 0.19 −0.24 0.40 0.34 0.29 0.89

3.3. Result Verification

To further verify the prediction performance of the improved EEMD prediction model,
two common forward prediction methods used in engineering design (the rainfall-runoff method and
the AR model) were selected for comparison, and measured runoff data during 1971–1980 were used
for verification. The rainfall-runoff method is primarily based on the rainfall-runoff correlation in the
research basin. Rainfall data was measured data in the study basin, and hence the missing annual
runoff data can be predicted by the rainfall-runoff regression equation established in the training
period (1981–2010). In the AR model, the measured runoff data from 1981 to 2010 were first sorted in
reverse time order. After determining the three most significant orders as model inputs, the reverse
data were implemented in the AR procedure to estimate the missing runoff data from 1980 to 1971.
Table 3 lists the results of evaluation by error in the prediction by the three forward prediction methods.
It shows that compared with the conventional rainfall-runoff method and the AR model method, the
improved EEMD prediction model had more precise prediction.

Table 3. Error assessment of forward prediction by three models.

Error Evaluation
Index

Zhaoshiyao Station Suide Station

AR Model
Method

Rainfall-Runoff
Method

Improved EEMD
Prediction Model

AR Model
Method

Rainfall-Runoff
Method

Improved EEMD
Prediction Model

RAD/% 11.03 15.13 6.86 27.76 19.67 11.10
NSE −0.87 −1.54 0.40 −0.02 −0.11 0.89

To test the usefulness of these three forward prediction methods in engineering design, 40-year
(1971–2010) runoff data series were generated, including 10-year predicted runoff data and 30-year
measured data, and these were then compared with 40-year measured runoff data via statistical
parameters. The results are shown in Table 4.

The table shows that the extended long runoff series by the improved EEMD model had similar
statistical parameters with the measured runoff data. If the designer used the extended data by the
improved EEMD prediction model for engineering design, he would get a better hydrological design
value to meet the engineering design requirements than by using the other two methods. However,
the designer is likely to result in design deviation and put the project at risk if he adopted the extended
data by the other two methods in order to undertake engineering design. Therefore, the improved
EEMD model is undoubtedly a better choice for engineering design and hydrological research when
hydrological data is scarce in a basin or region similar to north-west China, by which the obtained
design value has a significant advantage for the regional water resource supply-demand balance and
the safety of hydraulic project operation.

Table 4. Statistical parameters between extended runoff series by different models and observed series
at the Zhaoshiyao and Suide stations.

Statistical Parameters
Zhaoshiyao Station Suide Station

Mean Mean Square
Error

Coefficient of
Variation Mean Mean Square

Error
Coefficient of

Variation

Original sequence 3.86 0.51 0.13 1.28 0.40 0.31
Improved EEMD prediction model 3.84 0.44 0.11 1.29 0.39 0.30

Rainfall-runoff method 3.70 0.38 0.10 1.22 0.33 0.27
AR model 3.75 0.37 0.10 1.26 0.33 0.26
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4. Conclusions

In this paper a new method, called the improved EEMD prediction model, is proposed to
forward predict or extend runoff series in data-scarce basins for serving regional hydraulic engineering
design. The model combines ensemble empirical mode decomposition (EEMD), a radial basis function
(RBF) neural network, and an auto-regression (AR) model, whereby the EEMD is employed for
decomposition and reconstruction, and the RBF and AR model are employed for forward predicting or
extending the IMFs and residual components. Also, three EMD sifting stopping criteria (the SD criteria,
the GR criteria and the MTED) are discussed and compared in this study to find the best criteria to
solve the problem of mode mixing and improve the decomposition quality of EEMD. Additionally,
two quantitative evaluation measures, the relative average deviation (RAD) and the Nash–Sutcliffe
efficiency (NSE), are used to evaluate the performance of the improved prediction model and compare
them with the AR model and a rainfall-runoff method.

The case study at two hydrological gauges located in north-west China, the Zhaoshiyao and
Suide stations, indicates that: (1) the improved EEMD using the MTED as sifting stopping criteria
suppresses mode mixing effectively (|Ort| < 0.23), ensuring that the IMFs are quasi-stable to preserve
the physical information and periodical change contained in the runoff data to the extent possible;
(2) the improved EEMD prediction model has lower RAD and NSE statistics, 6.86% and 0.40 at the
Zhaoshiyao station, respectively, and 11.10% and 0.89 at the Suide station, respectively, and these are
significantly better than the rainfall-runoff method and the AR model.

Comparative results indicate that this forward prediction model is undoubtedly a better choice
for engineering design and hydrological research when hydrological data is scarce in a basin or region
similar to north-west China.
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