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Abstract: We consider the problem of identifying the source location of a contaminant via analyzing
changes in concentration levels observed by a sensor network in a river system. To address this
problem, we propose a framework including two main steps: (i) pre-processing data; and (ii) training
and testing a classification model. Specifically, we first obtain a data set presenting concentration
levels of a contaminant from a simulation model, and extract numerical characteristics from the
data set. Then, random forest models are generated and assessed to identify the source location of a
contaminant. By using the numerical characteristics from the prior step as their inputs, the models
provide outputs representing the possibility, i.e., a value between 0 and 1, of a spill event at each
candidate location. The performance of the framework is tested on a part of the Altamaha river
system in the state of Georgia, United States of America.
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1. Introduction

Many scholars and practitioners have explored technologies for monitoring water quality because
of urbanization, industrialization, climate change, and threats related to terrorism. Among these
technologies, identifying the source location of a contaminant in groundwater and river systems has
been significantly improved by the development of sensors and data analytics. Rapid identification
of contaminant source location enables us to reduce the risk of contaminant exposure by preventing
pollution events and providing fast responses to undesired phenomena caused by such events.

Most past research works on identifying contaminant source locations have focused on
groundwater systems. Gorelick et al. [1], Aral and Guan [2], Aral et al. [3], Sun et al. [4], and Singh and
Datta [5] adopted optimization algorithms, such as linear and non-linear programming algorithms
as well as meta-heuristic algorithms, to identify the source location of a contaminant in groundwater
systems. Instead of optimization algorithms, some statistical methods, such as a backward probability
model approach [6,7] and a geostatistical approach [8], were used for similar problems. In addition,
Singh et al. [9], Singh and Datta [10] and Srivastava and Singh [11] employed an artificial neural
network model to efficiently identify the source location of a contaminant in a groundwater system.

For river systems, there are relatively few studies regarding the identification of a contaminant
source because of the size of such systems and the complexity of the corresponding problems.
Boano et al. [12] used a geostatistical approach to generate historical information related to a pollutant
when the source location is known. Chen et al. [13] employed multivariate statistical methods to
determine spatial and temporal variations in water quality and to identify the contaminant source in a
lake. Ghane et al. [14] applied the backward probability method to identify the source location and the
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release time of pollutants in a river system. In this paper, we focused on a river system and sought to
identify the source location of a contaminant spill.

The research of Telci and Aral [15] is most closely related to ours. This work considers the problem
of identifying the source location of a single instantaneous contaminant among given candidate
locations in a river system while considering uncertainties in spill and rainfall events. They used
estimates of statistical changes in concentration levels over time, as shown in Grubner [16]. Then,
they applied an adaptive sequential feature selection algorithm developed by Jiang [17] to sequentially
screen possible candidate locations of the contaminant source in a river system. Although their sensor
network includes more than one sensor, Telci and Aral [15] do not consider relative information among
sensors as an input. Moreover, the final result of the adaptive sequential feature selection algorithm is
only a single source location index, and thus one cannot evaluate how reliable the identified location
is. In this paper, we suggest a way to preprocess data related to changes in contamination levels
and use relative information observed by pairs of sensors. We construct random forest models and
provide a measure of the possibility that each candidate location is identical to the correct location
of the contaminant source, reported as a number between 0 and 1. As a result, a decision maker can
quantitatively evaluate the possibility of the results from the model.

This paper is organized as follows. Section 2 provides notations and the problem description.
In Section 3, we provide a two-step framework to effectively identify the source location of a
contaminant including data pre-processing and model generation and assessment. Section 4 presents
experimental results of a case study, and concluding remarks follow in Section 5.

2. Background

2.1. Problem Description

In the river system, there are N candidate locations at which a monitoring sensor can be installed
or where a spill event may occur. Let D be the index set of the candidate locations, D = {1, 2, . . . , N}
and K be the number of sensors in the river system such that 2 ≤ K ≤ N because we consider a network
system with multiple sensors. A vector z represents location indices of K sensors, z = (z1, . . . , zK),
such that zj ∈ D, for j = 1, . . . , K and we assume z1 < z2 < . . . < zK to avoid repetition. In this
paper, we consider the case where K and z = (z1, . . . , zK) are given.

Each sensor returns a concentration level of the contaminant at time index t for t = 1, .., T.
Let Yt

(
zj
)

denote the concentration level at time index t that is monitored by the sensor located at zj
for t = 1, .., T and j = 1, .., K. Then, a collection of the concentration levels monitored by K sensors
over all time indices is denoted by:

Y(z) =

 Y1(z1) . . . YT(z1)
...

. . .
...

Y1(zK) . . . YT(zK)

 (1)

For all d ∈ D, we denote P(d) as a measure representing the possibility that location d is identical
to the correct spill location. Note that 0 ≤ P(d) ≤ 1 for all d ∈ D. The closer P(d) is to 1, the more
likely it is that a spill event has occurred at location index d. Let P denote a vector of P(d) as follows:

P =

 P(1)
...

P(N)

 (2)

The main purpose of the paper is to construct a data-driven model which evaluates P for a given
Y(z) as shown in Figure 1. To construct the data-driven model, we first need to prepare large-sized



Water 2018, 10, 391 3 of 16

training data that can be obtained from a hydrodynamics simulation. In the next section, we briefly
describe the hydrodynamics simulation considering random contaminant spill and rainfall events.

Figure 1. Schematic diagram of the problem.

2.2. Hydrodynamics Simulation

A simulation software package was employed to get observations of Y(z) and P. The Storm
Water Management Model (SWMM) is a popular software package for simulating the hydrodynamics
and contaminant transportation in a river system. The SWMM was developed and released by the
Environmental Protection Agency (EPA) of the United States of America, and it was designed for
simulating hydrodynamic systems around urban areas under dynamic flow, including rainfall events
and various watershed conditions as described in Rossman [18]. To construct a simulation model
within the SWMM, we need (i) fixed information representing geological and geometrical properties of
the system and fundamental hydrodynamics in the system; and (ii) variable information representing
random spill and rainfall events based on historical data.

For each SWMM run, fixed information is modeled as a set of constants, and variable information
is modeled as a set of random variables. Note that a single instantaneous spill is considered for
a spill event. The random variables describe spill and rainfall events. To describe the spill event,
we denote random variables Qi and Mi as the spill starting time and spill intensity of the ith simulation,
respectively. In the case of rainfall events, we employed the method described in Telci et al. [19].
We partitioned the entire area of the river system into ω number of regions, which are called
sub-catchments. Each sub-catchment has a number of pre-generated rain patterns based on historical
data. Then, a rain pattern of each sub-catchment is randomly selected among the pre-generated
patterns. An ω—dimensional vector Ii denotes an instance of rain patterns over the entire river
network in the ith simulation run.

For the ith simulation, a set of random variables (Qi, Mi, Ii) was generated and combined
with fixed information in an input file. After executing the SWMM software with the input file,
we obtained a large output file that includes concentration levels as well as various quantities regarding
hydrodynamics at each candidate location at every inter-reporting time of the simulation clock.
We denote Yi(z) and Pi as the ith simulation observation of Y(z) and P. Similarly, Yi

t
(
zj
)

and Pi(d)
represent the ith simulation observation of Yt

(
zj
)

and P(d). Therefore,

Yi(z) =

 Yi
1(z1) . . . Yi

T(z1)
...

. . .
...

Yi
1(zK) . . . Yi

T(zK)

 and Pi =

 Pi(1)
...

Pi(N)

. (3)

We obtained values of Yi(z) from the large output and constructed Pi by assigning 1 for the
correct spill location and 0 elsewhere.

3. Method

3.1. Overall Workflow

In this section, we suggest a framework to identify the source location of a contaminant spill
through a classification model with simulation data. The overall workflow of the proposed framework



Water 2018, 10, 391 4 of 16

is presented in Figure 2. The framework consists of two main steps, including pre-processing simulation
data and generating and evaluating a classification model. As described in Section 2.2, a SWMM
run with an input file returns Yi(z) and Pi. We quantitatively characterize changes of non-zero
concentration levels whose shape is called the breakthrough curve, and we calculated relative time
indices observed by each pair of sensors (see Section 3.2). After pre-processing Yi(z), we constructed
and evaluated a classification model (see Section 3.3).

Figure 2. Workflow of the proposed framework.

3.2. Data Pre-Processing

Using Yi(z) to directly construct a data-driven model causes two main issues. First, the size of
Yi(z) is K × T, and it becomes extremely large as the number of discretized time indices increases.
Note that T is often a couple of thousand in practice, and thus it is problematic. Second, when we keep
track of Yi

1
(
zj
)
, . . . , Yi

T
(
zj
)

for a fixed zj, most of the values are reported as zeros, and non-zero
values consecutively appear under a single, instantaneous spill. Therefore, we need to handle
Yi

1
(
zj
)
, . . . , Yi

T
(
zj
)

for a fixed zj efficiently.
We focused on characterizing non-zero values of Yi

t
(
zj
)

if any contaminant mass is observed at zj.
Let a and b represent the time indices at which the sensor starts and ends the detection of non-zero
concentration levels for the contaminant, respectively. They are expressed in the following equations:

a = min
{

t; Yi
t
(
zj
)
> 0, t = 1, . . . , T

}
, (4)

b = min
{

t; Yi
t
(
zj
)
> 0 & Yi

t+1
(
zj
)
= 0, t = 1, . . . , T

}
. (5)

Figure 3 shows a scatter plot of samples of Yi
t
(
zj
)

for t = a, . . . , b, and the plot has a curved and
unimodal shape. Note that the curve is referred to as a breakthrough curve [11,15]. The breakthrough
curve can be interpreted as a constant multiple of a probability density function, and thus it is
characterized by using definitions of a series of statistical moments for the probability density
function [15,16].
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Figure 3. Example of non-zero Yi
t

(
zj

)
over time.

As described in Telci and Aral [15], we first estimate the central statistical moment,
standard deviation, skewness, and kurtosis of the breakthrough curve by approximation using the
trapezoid rule. Let rt be the time in simulation clock corresponding to time index t. For Yi

t
(
zj
)
,

t = a, . . . , b, the estimated first moment is denoted by µi
1
(
zj
)
, and it is calculated by:

µi
1
(
zj
)
=

∑b−1
t=a
[
Yi

t
(
zj
)
rt + Yi

t+1
(
zj
)
rt+1

]
(rt+1 − rt)

∑b−1
t=a
[
Yi

t
(
zj
)
+ Yi

t+1
(
zj
)]
(rt+1 − rt)

. (6)

For Yi
t
(
zj
)
, t = a, . . . , b, the estimated kth central moment, for k = 2, 3, . . ., is denoted by mi

k
(
zj
)

and it is calculated by:

mi
k
(
zj
)
=

∑b−1
t=a

[
Yi

t
(
zj
)(

rt − µi
1
(
zj
))k

+ Yi
t+1
(
zj
)(

rt − µi
1
(
zj
))k
]
(rt+1 − rt)

∑b−1
t=a
[
Yi

t
(
zj
)
+ Yi

t+1
(
zj
)]
(rt+1 − rt)

. (7)

Let σi(zj
)
, Si(zj

)
, and Ei(zj

)
be the estimated standard deviation, skewness and kurtosis of the

breakthrough curve corresponding to Yi
t
(
zj
)
, t = a, . . . , b. Using Equations (6) and (7), σi(zj

)
, Si(zj

)
,

and Ei(zj
)

are calculated as follows:

σi(zj
)
=
√

mi
2
(
zj
)
, (8)

Si(zj
)
=

mi
3
(
zj
)(

σi
(
zj
))3 , (9)

Ei(zj
)
=

mi
4
(
zj
)(

σi
(
zj
))4 − 3. (10)

If there is no positive Yi
t
(
zj
)

for all t = 1, . . . , T, one may assign σi(zj
)
= C, Si(zj

)
= −C,

and i(zj
)
= −C, where C is a large positive constant.

In addition to σi(zj
)
, Si(zj

)
, and Ei(zj

)
, we introduce two more quantitative characteristics Ui(zj

)
and Ai(zj

)
, which represent estimates of the total area and the time-averaged area between the horizon
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axis and the breakthrough curve, respectively, as described in Srivastava and Singh [11]. Using the left
Riemann sum, they can be calculated by:

Ui(zj
)
=

b−1

∑
t=a

Yi
t
(
zj
)
(rt+1 − rt), (11)

Ai(zj
)
=

∑b−1
t=a Yi

t
(
zj
)
(rt+1 − rt)

(rb − ra)
. (12)

Using Equations (8)–(12), a series of data sets Yi
1
(
zj
)
, . . . , Yi

T
(
zj
)

for a fixed zj can be transformed
into a 5-dimensional vector as follows:

Bi(zj
)
=
[
σi(zj

)
, Si(zj

)
, Ei(zj

)
, Ui(zj

)
, Ai(zj

)]
. (13)

Therefore, when considering K sensors whose locations are specified by vector z, Yi(z) can be
transformed into the 5K dimensional vector Bi(z) as follows:

Bi(z) =
[
Bi(z1), . . . , Bi(zK)

]
. (14)

Since the sensor network includes at least two sensors, we may utilize relative information over
different sensors regarding when non-zero Yi

t
(
zj
)

is first detected at each sensor. Let Ri(zj
)

denote the
time index for first detected non-zero Yi

t
(
zj
)

such that:

Ri(zj
)
=

{
T, if the sensor does not detect a contaminant;
min

{
t
∣∣ Yi

t
(
zj
)
>0, t = 1, . . . , T

}
, otherwise.

(15)

Then, we define Ri(zp, zq
)

as the difference between the times with non-zero concentration levels
first detected by sensors located at zp and zq, calculated by:

Ri(zp, zq
)
=



0 , if Ri(zp
)
= Ri(zq

)
;

Ri(zp
)
− Ri(zq

)
, if Ri(zp

)
> Ri(zq

)
and Ri(zq

)
6= T;

Ri(zp
)
− Ri(zq

)
, if Ri(zp

)
< Ri(zq

)
and Ri(zq

)
= T;

Ri(zq
)
− Ri(zp

)
, if Ri(zp

)
< Ri(zq

)
and Ri(zp

)
6= T;

Ri(zq
)
− Ri(zp

)
, if Ri(zp

)
> Ri(zq

)
and Ri(zp

)
= T.

(16)

To exclude meaningless values of Ri(zp, zq
)

that are due to the structure of the river system,
we only considered pairs of sensors satisfying the following conditions: (i) one of the sensors should be
located upstream of the other sensor; and (ii) there is no other sensor between a pair of sensors located
at zp and zq. We denote Ri(z) as the collection of Ri(zp, zq

)
for all possible pairs satisfying the above

two conditions. After the pre-processing,
[
Bi(z), Ri(z)

]
becomes an input vector of the classification

model described in the next section.

3.3. Model Generation and Assessment

A random forest model is a popular classification model that contains a collection of
tree-structured classifiers. As mentioned in Breiman [20], the random forest model has several
advantages regarding accuracy, robustness and computational efficiency, compared with other
classification models. Figure 4 shows the schematic flow diagram of the generation of a random
forest model.

The first step of model generation is referred to as bootstrapping. In this step, the bootstrapping
algorithm generates L number of sample data sets from all the training data. Each sample data set
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exactly corresponds to a tree classifier. Approximately 2/3 of a sample data set is used as the training
data to construct a tree classifier, and the remaining 1/3 of the sample data set is used as out-of-bag
(OOB) data to evaluate the generalized error of the random forest model [21]. An estimate of the
generalized error is called the OOB error, which is calculated by the ratio of the number of misclassified
OOB data to the total number of OOB data.

In the second step of the model generation, we constructed tree classifiers represented by nodes
and edges, and we trained them. In a tree classifier, there are two types of nodes, an internal node and
a terminal node. At each internal node, F number of input variables are randomly selected and linearly
combined with their coefficients. We checked whether a linear combination of the input variables is
greater than a certain constant threshold or not, and then moved to the next node. Constant thresholds
and coefficients of the linear combination at each internal node can be determined by a randomized
node-optimization algorithm developed by Ho [22]. This process is called training. Each terminal
node corresponds to a certain final class (e.g., location index), and no further decisions or movements
can occur at the terminal node.

Figure 4. Schematic flow diagram of generating a random forest model.

After training, we get a combined classifier including L number of tree classifiers. Note that
different tree classifiers have different structures (e.g., number of nodes and arcs) and different decision
rules at each internal node of the classifiers. When a vector of input values (e.g.,

[
Bi(z), Ri(z)

]
) is

entered into the model, each tree classifier selects one of the classes (e.g., location index) as a result.
Figure 5 shows an example of a trained tree classifier for z = (9, 19, 26) and F = 1. A vector of input
values,

[
Bi(9, 19, 26), Ri(9, 19, 26)

]
, is first entered into the node on the top of the tree, and then it

moves along the edges. If Ui(19) ≤ 7.46 and Ei(26) ≤ −0.773, then the example tree concludes that
location index 26 is the spill location. Each tree classifier votes for one of the classes (e.g., the location
index from 1 to N) based on its conclusion, and the proportions of the number of votes out of the total
number of tree classifiers are returned as output values (e.g., Pi(d) for all d ∈ D) as shown in Figure 6.

Recall that L represents the number of tree classifiers, and F represents the number of input
variables or input features randomly selected at each node. Selecting two parameters, L and F,
may affect the performance of the combined classifier. As L increases, the generalization error gradually
decreases and converges to a number. In this paper, we selected an L that makes OOB errors converge.
A small value of F may reduce the accuracy of individual tree classifiers, but it may also reduce
correlation among the trees, which decreases the generalization error. When M is the number of
values in an input vector, F is typically selected as

√
M [23,24] or log2M + 1 [20,23]. We used the F

selection strategy described in Breiman [25]. Based on this strategy, we checked OOB errors with F
values, which are all possible integers between 0.5

√
M and 2

√
M as well as between 0.5(log2M + 1)

and 2(log2M + 1). Then, we selected the F value with the lowest OOB error. In addition, we noted
that a random forest model performs well when the number of classes is 32 or fewer [25], and thus
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we constructed a unified model with multiple random forest models based on partitioned classes.
One way to achieve this for our problem is described in Section 4.2.

Figure 5. Example of a tree classifier for z = (9, 19, 26).

Figure 6. Overall structure of the combined classifier for the source location identification.

4. Case Study

4.1. Study Area and Simulation Setup

In this section, we briefly review the study area, the Altamaha river system, and explain the
method used to generate a SWMM input file for the river system. The Altamaha river system has the
largest watershed in the state of Georgia, United Sates of America (31◦57′33′′ N; 82◦32′37′′ W), and it
flows south-eastward to the Atlantic Ocean. The length and size of the river system are approximately
760 km (470 miles) and 36,260 km2 (14,000 square miles). The system consists of the Ocmulgee
river, the Oconee river, the Ohoopee river, and their confluence, and it includes 60 river reaches and
62 junctions, as shown in Figure 7. We selected 100 candidate locations (marked by small circles in
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Figure 7) which include the most upstream locations, locations of confluences, and locations evenly
spaced along with each river reach. The details regarding the selection of candidate locations in the
Altamaha river system are shown in Telci et al. [19].

Fixed information for the SWMM input file, which includes geological, geometrical,
and fundamental hydrodynamics data of the river system, was obtained from the United States
Geological Survey (USGS) in the National Elevation Dataset. The fundamental hydrodynamics of the
river system included a steady-state hydraulic system, which was calibrated by data obtained from
annual average flow rates measured in 2006 at twenty USGS gauging stations. Note that all lakes and
impoundments were approximated as river reaches to simplify the network. Detailed information
related to the river system and the corresponding fixed information used to construct the corresponding
SWMM model is provided in Telci et al. [19].

We used two random events, spill and rainfall events, as variable information in the SWMM input
file. For a spill event, the spill starting time and spill intensity, Qi and Mi, respectively, were assumed to
be uniformly distributed between their lower and upper limits. The lower and upper limits of Qi are set
to 0 and 10 days, respectively, and the lower and upper limits of Mi were set to 10 and 1000 grams per
liter. For rainfall events, the whole region of the river system was partitioned into 10 sub-catchments
(i.e., ω = 10). The rain pattern of each sub-catchment was randomly selected among five pre-generated
rain patterns. Note that each pre-generated rain pattern represented time-dependent rain events
causing dynamic changes of hydrological conditions of the sub-catchment. Detailed information
related to generating random variables to run a SWMM model is provided in Park et al. [26].

Figure 7. Shape of the Altamaha river [19].

An input file of a SWMM run for the Altamaha river system is structured by combining fixed
information and variable information, and then the SWMM is executed with the input file. Each SWMM
run simulates changes in hydrodynamics and contamination levels during the 40 days and reports
related quantitative values (e.g., concentration levels, flow rates, and the amounts of overflows) at
each candidate location every 15 min in the simulation clock.
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4.2. Random Forest Model Generation

As seen in Figure 8, we considered the set of candidate locations D = {1, 2, . . . , 53}, at which
a spill event can occur. Since a random forest model performs well when the number of classes is
32 or fewer [25], we partitioned the set D into D1 = {1, 2, . . . , 26} and D2 = {27, 28, . . . , 53} and
constructed the corresponding random forest models. In Figure 8, the region encircled by the solid
line includes candidate locations of D1, which are located upstream, and the region encircled by the
dotted line includes candidate locations of D2, which are located downstream. For p = 1 or 2, let zp be
a vector representing location indices of sensors which deliver direct information to detect a source
location in Dp and let Φp

(
zp
)

be a random forest model whose input is
[
Bi(zp

)
, Ri(zp

)]
and output

is Pi(d), for d ∈ Dp. That is, the input of Φp
(
zp
)

is information obtained from sensors located at zp,
and the output of Φp

(
zp
)

is a measure of the possibility that the correct spill location is d for all d ∈ Dp.
Note that z1 may consist of sensor locations included by D2 because some sensors located in D2 can
observe non-zero concentration levels for spill events that occurred in D1. After training Φ1(z1) and
Φ2(z2), a unified model was constructed, as described in Figure 9.

For experiments, we considered three different unified models with respect to the number of
sensors: (i) two sensors at z = (26, 53), (ii) four sensors at z = (9, 26, 46, 53), and (iii) six sensors
at z = (9, 19, 26, 33, 46, 53). See Figure 8 for the locations of the sensors. Sensor locations of the
first and second unified model are determined based on a part of the optimal sensor locations from
Park et al. [26]. In unified model 3, we arbitrarily added two more sensor locations 19 and 33 to unified
model 2. Note that all unified models consider location index 26 as zD in Figure 9.

To train the random forest models, we first ran the SWMM model for the Altamaha river system
under a single instantaneous spill at each candidate location with 500 random scenarios. Then,
we constructed data sets for training each random forest model. The number of observations to
construct Φ1(z1) and Φ2(z2) were 26× 500 and 27× 500, respectively. For all random forest models,
we set L = 500. To train each random forest model, we used the “randomForest” package in R version
3.3.0 with a personal computer (Intel core i7-4790 CPU; RAM 8 GB). The average time required to
construct a unified classification model was 17.87 s. Table 1 shows detailed information related to the
three models with model parameter F and OOB errors, which are training errors of each random forest
model. Note that OOB errors significantly decreased as the number of sensors increased.

Table 1. Details of unified classification models with parameters and out-of-bag (OOB) errors.

Unified Model # Sensor Locations Set of Candidate
Spill Locations Random Forest Models F OOB Error (%)

1 (26, 53)
D1 Φ1(26, 53) 8 26.11
D2 Φ2(53) 3 29.37

2 (9, 26, 46, 53)
D1 Φ1(9, 26, 53) 9 7.09
D2 Φ2(46, 53) 7 10.56

3 (9, 19, 26, 33, 46, 53)
D1 Φ1(9, 19, 26, 33, 53) 10 4.87
D2 Φ2(33, 46, 53) 9 2.43



Water 2018, 10, 391 11 of 16

Figure 8. Candidate locations of a spill event and of sensor locations [15].

Figure 9. Unified classification model with random forest models Φ1(z1) and Φ2(z2).

4.3. Model Assessment 1: Spill at a Candidate Location

To evaluate the performance of our unified classification model, we first tested our models
on the case that a single instantaneous spill occurs exactly at one of the candidate locations under
uncertainties including the spill starting time, the spill intensity, and the rain patterns. The SWMM
model was executed with the spill event at each candidate location with 100 random scenarios with
spill and rainfall events, and thus the number of observations for testing our models was 53× 100.
In Figure 10a–c, the horizontal axis represents the spill location indices, and the vertical axis represents
the percentage that the location with the maximum Pi(d) is exactly the same as the correct spill
location. Overall, the percentages at all candidate locations become higher as the number of sensors
considered in a model increases. The accuracy and robustness of unified model 3 with 6 sensors was
significantly enhanced when compared with those of unified model 1 with 2 sensors. The proportions
of misclassifications among the total number of test data were 28%, 8%, and 4% with unified models 1,
2 and 3, respectively.
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Figure 10. Percentage that the location with the maximum Pi(d) is identical to the correct spill location:
(a) unified model 1 with 2 sensors at (26, 53); (b) unified model 2 with 4 sensors at (9, 26, 46, 53);
and (c) unified model 3 with 6 sensors (9, 19, 26, 33, 46, 53).

Figure 11 shows the percentage of time that the correct spill location index was included in the
top κ locations when we ordered all candidate locations based on Pi(d). Unified model 1 includes the
correct spill location within the top 5 locations and unified models 2 and 3 include the correct spill
location within the top 2 locations with 100% accuracy over 100 random scenarios.

Figure 11. Percentage that the correct spill location is included by the top κ locations with respect to
the ranking of the value Pi(d).
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4.4. Model Assessment 2: Spill Near a Candidate Location

Another part of the model assessment was designed with a spill event near candidate locations,
as in Telci and Aral [15]. We selected 19 spill locations, marked as R1 to R19, as shown in
Figure 12 and assessed the values of Pi(d) for all d ∈ D. In this assessment, both the nearest
upstream and downstream locations from the spill location were accepted as the correct spill location.
Figure 13 shows the percentage that any of the correct spill locations were included in the top κ

locations under decreasingly ordered Pi(d). All unified models performed better than the model in
Telci and Aral [15]. Obviously, higher percentages of correct identifications were achieved if more
sensors were installed.

As described in Telci and Aral [15], it is difficult to recognize the correct spill location with
respect to R13 because the base flow from location index 32 is much smaller than the discharged flow
from location index 33 in the hydrodynamics simulation. This is the main reason that the model in
Telci and Aral [15] cannot achieve 100% accuracy for spill location R13 even with an increase in κ.
Figure 14a–c represent the reported values of Pi(d) at candidate locations in D2 from unified models 1,
2, and 3, respectively. As shown in Figure 14a, unified model 1 with two sensors cannot significantly
recognize either location index 32 or 33 as the correct spill location. Nevertheless, when considering
unified models 2 and 3, the value of Pi(32) increases up to 0.7. Location 32 can be quantitatively
identified as the correct source location based on the Pi(32) values.

Figure 12. The 19 spill locations (from R1 to R19) near candidate locations [15].
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Figure 13. Percentage in which the correct spill location is included by the top κ with respect to Pi(d).

Figure 14. Values of Pi(d) at location indices from 27 to 53 under realization R13: (a) unified model 1
with 2 sensors at (26, 53); (b) unified model 2 with 4 sensors at (9, 26, 46, 53); and (c) unified model 3
with 6 sensors (9, 19, 26, 33, 46, 53).

5. Conclusions

In this study, we proposed a framework to identify the source location of a contaminant
spill, when changes in concentration levels can be observed at multiple sensors in a river system,
via simulation. Specifically, the targeted river system was simulated to obtain a large data set under
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various random scenarios involving spill and rainfall events. To improve data-handling efficiency,
the large data set was pre-processed and condensed into breakthrough curves and relative information
on detection times at each pair of sensors. Random forest models were constructed and trained based
on the pre-processed data. The random forest models were tested on the Altamaha river. Our model
performs better than an existing model in terms of source identification. In addition, our model
provides quantitative measures indicating that a selected location is the correct spill location.

We employed simulation data to test our framework in this study. Since the real data tend
to include more noises in various types than the simulation data do, one may consider adopting
noise-handling techniques (e.g., see Kim et al. [27]) to enhance the accuracy of our framework with
real data.

Park et al. [26] presented a model to determine the best locations of sensors that minimize
detection times while maintaining a certain level of detection reliability. We presented a model to
identify a contaminant source location when the number and locations of sensors are given. As we
have done so in this study, users may apply the method from Park et al. [26] to determine the
optimal locations of sensors first, and then apply our framework to identify a source location based
on the data obtained from the sensors. However, since fast contaminant detection and accurate
source identification are closely related to each other and are often considered together in practical
applications, a meaningful extension can be made by finding the optimal number and locations of
sensors while considering detection time, detection reliability, and accuracy of source identification
simultaneously. This is an ongoing work.
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