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Abstract: Lead is one of the most toxic heavy metals that can create a severe risk to water ecosystem
health. Zero-valent iron is an effective material for Pb2+ removal treatments. In particular, nanoscopic
zero-valent iron (nZVI) particles are characterized by high reaction rates; nevertheless, their utilization
in water and groundwater remediation techniques requires further investigations. Indeed, it is
necessary to define effective methods able to avoid the drawbacks due to the aggregation tendency
of nanoparticles and their potential uncontrolled transport in groundwater. In this work, nZVI
was supported on magnesium oxide grains (MgO_nZVI) to synthesize an alternative material
for lead removal from aqueous solutions. Many experiments were conducted under several
operating conditions in order to analyze the effectiveness of the produced material in Pb2+ abatement.
The performance of MgO_nZVI was also compared with those detected using commercial microscopic
Fe0 (mZVI) as a reactive material. The experimental findings showed a much greater reactivity of
the supported nanoscopic iron particles. By means of a kinetic analysis of batch tests results, it was
verified that, both for MgO_nZVI and mZVI, the lead abatement follows a pseudo-second-order
kinetic law. The reaction rates were affected by the initial pH of the treatment solution and by the ratio
between the Fe0 amount and initial lead concentration. The efficiency of MgO_nZVI in a continuous
test was steadily around 97.5% for about 1000 exchanged pore volumes (PV) of reactive material,
while by using mZVI, the lead removal was approximately 88% for about 600 PV. X-ray diffraction
(XRD) and energy-dispersive spectroscopy EDS analyses suggested the formation of typical iron
corrosion products and the presence of metallic lead Pb0 and Pb2+ compounds on exhausted materials.
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1. Introduction

The contamination of water bodies and groundwater by toxic heavy metals represents an
extremely serious environmental and health issue. Lead is among the metallic pollutants largely
widespread in the environment. Indeed, Pb2+ ions are commonly found in aquatic systems due to their
extensive use in many industrial activities, such as battery manufacturing, mining, refining, painting,
metal plating and cleaning, agricultural treatments, and so forth [1,2]. This element is characterized
by a high toxicity and can accumulate in human organs, causing severe health harms [3]. Therefore,
many efforts are necessary to reduce the level of lead in the water and groundwater. The Pb2+ removal
treatments from contaminated water and wastewaters include chemical precipitation, ion exchange,
membrane filtration, adsorption, electrodialysis, and so forth [3]. Among these different techniques,
the use of zero-valent iron (ZVI) has recently gained great attention. Indeed, ZVI-based processes
work through many mechanisms including adsorption, reduction, and precipitation/immobilization.
For this reason, ZVI is an effective material for the removal of a wide range of both inorganic and
organic pollutants (chlorinated organic compounds, metals, and metalloids) [4–7]. In particular, ZVI
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is advantageous in the removal of heavy metal ions such as Cr6+, Pb2+, and so forth. In fact, these
elements, through the reaction with ZVI, are transformed into less toxic and low-solubility species [4].
The use of metallic iron is particularly suitable in decontamination processes because it is cheap,
easy to supply, and harmless. Moreover, ZVI technologies are generally very simple and easy to
operate and manage. Specifically, ZVI was widely applied as reactive material in permeable reactive
barrier (PRB) technologies [4,6]. Nanoscopic zero-valent iron (nZVI), with respect to microscopic ZVI
(mZVI), guarantees a higher reactivity, due to the greater specific surface and more active superficial
sites [8–10]. Nevertheless, iron nanoparticles, due to magnetic interactions and high surface energy,
tend to aggregate, forming larger agglomerates. This clearly could notably reduce the material
reactivity. Furthermore, in groundwater remediation, the residual nanoparticles could be delivered by
the flow, causing secondary polluting phenomena [11]. In order to solve these drawbacks, recently,
many works have been focused on the development of suitable supports able to fix on their surface
the nanoscopic iron particles. Different organic and inorganic supports, such as biochar composites,
clay minerals, zeolite, titanium nanotubes, carbon nanotubes, and so forth, have been tested in the
removal of many contaminants [2,12–21]. Nevertheless, the development of effective supporting
materials still represents a main issue in nZVI technologies [13]. For practical applications in PRB,
the reactive materials, besides a high effectiveness, must be economic, easy to prepare, and have
a proper granolumetry. Furthermore, the mechanisms and the kinetics of contaminant removal by
means of supported nZVI are complex and not well-clarified. Indeed, the process is affected by many
parameters, such as the type of support, the amount of supported nZVI, the level of pollutants, the
pH, the temperature, the presence of oxidants species, and so forth [8]. Recently, the authors have
developed a nZVI-supported material suitable for applications in the decontamination of water and
groundwater [22]. Magnesium oxide was exploited as supporting material owing to its ability to create
stable interactions with Fe ionic species [23,24]. Moreover, MgO is a common and economic material,
and according to the treatment requirements, it can be produced at different particle dimensions to
obtain an adequate porosity for in situ processes. Due to these characteristics, it could be suitable in
permeable reactive barriers. The reactive material can be easily produced at room conditions by means
of a two-phase procedure. In the first step, the MgO grains are impregnated with an iron solution in
order to allow the adsorption of Fe3+ on the material’s surface. In a second phase, the adsorbed Fe3+ is
reduced to nanoscopic metallic iron by means of the reaction with sodium borohydride NaBH4 [25].
In a previous work, the effectiveness of nanoscale zero-valent iron supported on MgO (MgO_nZVI)
in the removal of chromium from natural water was proven. In the present study, the applicability
of this material for the abatement of Pb2+ from aqueous solutions was investigated. The MgO_nZVI
performance was also compared with those detected using microscopic Fe0 (mZVI) as reactive material.
In this regard, many column tests were conducted to evaluate the effects of the reactive material
amount (MgO_nZVI or mZVI), initial Pb2+ concentration, and pH on the treatment performance.
The analysis of batch tests results allowed identification of the reaction kinetics and the process
mechanisms. The performance of reactive materials in continuous processes was also tested.

2. Materials and Methods

2.1. Reagents

The experiments were conducted using reagents of analytical grade. Specifically, magnesium
oxide (MgO), iron chloride hexahydrate (FeCl3·6H2O), and sodium borohydride (NaBH4) were
exploited for the preparation of MgO_nZVI particles; microscopic Fe0 (200–300 µm) was also tested as
reactive material. Lead nitrate (Pb(NO3)2), HCl (31%), and NaOH (10 N) were used to perform the
lead removal tests.
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2.2. Synthesis of MgO_nZVI

The synthesis of reactive material was conducted according a two-phase method. In the first step,
Fe3+ ions were adsorbed on the surface of MgO particles. For this purpose, 16 g of magnesium oxide
were added to a solution (0.5 M of Fe3+) obtained through the dissolution of 16.8 g of FeCl3·6H2O
in 90 mL of ethanol and 35 mL of distilled H2O. This mixture was then mixed at 400 rpm at room
conditions for about 24 h. After this period, the solid was filtered and flushed with distilled water.
During the second phase, the adsorbed Fe3+ ions were reduced to metallic iron through the following
reaction with NaBH4 [25]:

4Fe3+ + 3BH4
− + 9H2O→ 4Fe0 + 3H2BO3

− + 12H+ + 6H2 ↑ (1)

The solid obtained from the first step was added to a solution of sodium borohydride (1 M of B)
made by dissolving 4.7 g of NaBH4 into 90 mL of ethanol and 35 mL of distilled H2O. This mixture was
mixed at 200 rpm for about 4 h. After this reaction period, the solid was recovered by filtration and
washed with distilled water. The resulting wet MgO_nZVI particles were directly applied in column
tests for lead abatement.

2.3. Column Tests

The batch tests were conducted using a small laboratory pilot plant made of a Plexiglas column
whose diameter and total height were 2.7 cm and 16 cm, respectively (Figure 1a). The cross section
resulted at about 5.72 cm2. Two proper holes of 0.6 cm were made at the bottom and at a height of
approximately 8 cm for the inlet flow and the outflow, respectively (Figure 1a). A permeable membrane
was fixed at 2 cm from the base of the column to support the reactive material (Figure 1a).

Figure 1. Schemes of the systems used for batch tests (the depth of reactive material in the column was
1.7 cm and 0.6 cm for nanoscopic zero-valent iron supported on magnesium oxide grains (MgO_nZVI)
and microscopic zero-valent iron (mZVI), respectively) (a) and continuous tests (b).

In order to examine performance in lead abatement at typical temperatures of groundwater, the
experiments were carried out at a temperature of about 15 ± 1.0 ◦C. The investigations were aimed
at identifying the effects of the initial Pb2+ concentration, reactive material quantity, and pH on lead
removal. Obviously, the Fe0 content per unit of mass of MgO_nZVI (Section 3.1) was significantly
different compared to commercial mZVI. This made it impossible to conduct the experiments with
equal actual Fe0 amounts of MgO_nZVI and mZVI. Indeed, much more MgO_nZVI would be necessary,
and consequently, the equipment and the volumes of treatment solutions could not be the same
as used for mZVI. Therefore, the tests were performed keeping constant the overall quantity of
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reactive materials. In particular, two set of tests were carried out using 16 g of mZVI or MgO_nZVI.
The thickness of material in the column was about of 1.7 cm and 0.6 cm in the tests with MgO_nZVI
and mZVI, respectively. This difference was meaningless as the tests were conducted in batch mode.
For each set, a total of 15 experiments were carried out by treating standard solutions with initial lead
concentration of 5, 10, 30, 50, and 70 mg/L and initial pH of 3, 5, and 7. These pH values were set
as the ZVI processes are typically applied under initial conditions that range from strongly acidic to
neutral. In each test, the reactive material was put on the permeable membrane and then 300 mL of
Pb2+ standard solution was recirculated through the cylinder in upflow mode by using a peristaltic
pump. The flowrate was set to 52 mL/min in order to obtain a very quick recirculation of standard
solution and to therefore ensure the homogeneity of samples withdrawn during the tests for pollutant
concentration measurement.

The effectiveness of MgO_nZVI and microscopic iron in the removal of Pb2+ was further tested in
continuous processes. Because in typical PRB continuous applications the thickness of barrier must
be low with respect to the cross section, a larger column was used in these experiments. The system
had a diameter of 5.7 cm, a height of 16 cm, and a cross-section area of 25.51 cm2. The depth of the
reactive materials in the column was about 0.5 cm (Figure 1b). Specifically, 23.6 g of MgO_nZVI or
45.8 g of mZVI were used to treat standard solutions characterized by initial concentrations of 50 mg
Pb2+/L. The lead solutions were fed through the column in upflow mode with hydraulic flowrates of
5.4 mL/min. The tests were conducted at T = 15 ◦C ± 1.0 and initial pH = 5.

For each test, the pH was initially set by means of highly concentrated HCl (31%) and NaOH
(10N) to limit the solution’s dilution, then no further corrections were made. The temperature of the
standard lead solution was adjusted to the planned value by use of a heating plate; subsequently, the
equipment was placed in a thermostatic refrigerator for the experimental execution. No actions were
conducted to remove the dissolved O2 from the treatment solution.

During the treatments, 5 mL of solutions were periodically withdrawn, filtered at 0.45 µm, and
then characterized with regard to the concentration of Pb2+, Fe2+, and Mg2+ ions.

2.4. Analytical Methods and Presentation of Results

BET-N2 adsorption method (BET: Brunauer–Emmett–Teller) was used to measure the specific
surface area of MgO_nZVI and mZVI particles. The iron amount adsorbed on magnesium oxide was
determined by analyzing the solution detected through the solubilization, at a temperature of 60 ◦C, of
0.5 g of MgO_nZVI into 50 mL of H2SO4 (1:1). X-ray diffraction (XRD), scanning electron microscopy
(SEM) and energy-dispersive spectroscopy (EDS) were applied to analyze the reactive materials before
and after the reaction with Pb2+ solutions.

During the tests, temperature, pH, and O2 were measured by a multiparametric probe put inside
the column (Figure 1); the Pb2+, Fe2+, and Mg2+ amount was estimated through the atomic absorption
spectrometric methods [26]. Each analysis was conducted in triplicate and the mean value was
considered. The relative standard deviation was always less than 5%.

3. Results and Discussion

3.1. Reactive Materials

The magnesium oxide grains exploited in this study had dimensions comprised between 0.6 and
2 mm. As abovementioned, a two-step procedure was adopted to produce MgO_nZVI. After stirring
MgO with the FeCl3·6H2O solution, a red-brownish color appeared, indicating the adsorption of Fe3+

onto the surface of the supporting material. At the end of the reaction with NaBH4, the color of the
synthesized material turned to black, proving the reduction of adsorbed Fe3+ to Fe0. The XRD analysis
of the synthesized particles confirmed the presence of nanoscopic iron included in the grains of MgO
(Figure 2). In fact, typical peaks of zero-valent iron were observed. This can be easily noticed by
comparing the diffractograms of the synthesized material and commercial microscopic iron (Figure 3).
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Clearly, as the MgO is the main constituent of MgO_nZVI, its characteristic peaks were much more
marked compared to those of Fe0 (Figure 2). The EDS analysis further underlined the presence of iron
in the synthesized composite (Figure 4). In fact, the main constituents of the material’s surface were Fe
(50.81%), Mg (29.12%), and O (18.65%). The mass percentages of magnesium and oxygen suggest that
these elements were from MgO. Indeed, the low amount of oxygen indicates the absence of Fe oxides
and hydroxides and that the iron was in the form of Fe0, in agreement with the XRD data.

The EDS spectrum of commercial mZVI (Figure 5), obviously, confirmed that the material was
almost completely Fe0 (99.1%). In Figure 6 are shown the SEM images of both materials. Regarding
MgO_nZVI, the Fe particles are mainly located in the brighter areas that, as it can be noticed, are well
distributed on the grains’ surface (Figure 6a).

Figure 2. XRD diffractogram of MgO_nZVI particles.

Figure 3. XRD diffractogram of commercial mZVI particles.
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Figure 4. EDS spectrum of MgO_nZVI particles.

Figure 5. EDS spectrum of commercial mZVI particles.

Figure 6. Scanning electron microscopy (SEM) images of MgO_nZVI (a) and of commercial mZVI
particles (b).
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The actual amount of nanoscopic Fe0 incorporated into MgO_nZVI, measured as described in
the Materials and Methods section, was around 75 mg/g (7.5%). This value is comparable to those
detected in other works [27].

The specific surface area of the MgO_nZVI grains was about 24.41 m2/g, similar to those of other
types of reactive materials containing nanoscopic Fe0 [3,27–29]. The above value was much greater
than the specific surface area of mZVI, equal around to 1.1 m2/g [30].

3.2. Batch Column Tests

3.2.1. Tests with MgO_nZVI

The results of experiments conducted with MgO_nZVI showed the time-decreasing curves
typical of batch systems. Satisfactory removals for every operating condition tested were obtained.
In particular, at pH = 3, yields of between 82% and 91.1% were achieved in about 30 min (Figure 7a).
Even higher abatements during the experiments carried out at initial pH = 5 were reached. Indeed,
with this condition, lead removals between 88% and 92.7% were detected after half an hour by treating
solutions with initial concentrations up to 30 mgPb/L (Figure 7b). Similar trends to those conducted at
pH = 3 were observed with Pb2+ amounts of 50 and 70 mgPb/L. However, the performance got worse
by increasing the initial pH to 7. In particular, during the experiments with initial lead concentrations
higher than 30 mg/L, in comparison with the trends detected at lower pH, a significant reduction of
reaction rates was observed (Figure 7c). Nevertheless, in a reaction time of about 1 h, also with the
higher initial concentrations, yields greater than 90% were achieved. These results proved the high
ability of the reactive material to remove lead ions. Indeed, the achieved performances, taking into
account the different operational conditions tested, are comparable with those observed using other
types of materials containing nanoscopic zero-valent iron [1,3]. The results detected in this work, being
the experiments carried out without the deoxygenation of treatment solutions, proved also that the
Pb2+ removal can occur efficiently in an aerobic environment [18].

Moreover, it can be observed that the lead abatement decreases in response to the Pb2+

concentration of the treatment solution and is affected by the initial pH. Similar statements were
reported in other works [1,3]. In particular, Arshadi et al. [3] observed that, using nZVI supported
on sineguelas waste, the removal performance decreased when treating solutions with initial
concentrations higher than 30 mgPb/L. Other authors stated the negative effect on process efficiency
caused by the initial amount of contaminant in the treatment solutions [1]. Furthermore, similar to our
results, many previous studies reported the positive influence of initial moderately acidic conditions on
Pb removal by means of nZVI [1,3]. However, during our experiments, trends of fast-increasing pH up
to alkaline values were always monitored. For example, Figure 8 shows the pH curves detected during
the tests conducted with a lead concentration of 30 mgPb/L. The pH enhancements are attributable
mainly to the iron corrosion in water. Despite this, the contaminant abatement proceeded past reaching
alkaline values (Figures 7 and 8). These outcomes indicate that the lead removal is attributable also to
the reaction products. This is clearly a positive aspect, because even with lower reaction rates, the Pb2+

removal can evolve at neutral and alkaline pH values.
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Figure 7. Pb2+ concentrations (C) detected during the tests conducted with MgO_nNZVI and different
initial lead concentrations (Ci) at initial pH levels of 3 (a), 5 (b), and 7 (c). The continuous trends
represent the modeling curves obtained by a second-order kinetic law. The R2 between the experimental
values and the modeling curves were always higher than 0.99.
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Figure 8. pH trends during the tests conducted with MgO_nZVI and initial Pb2+ concentration of
30 mg/L.

Furthermore, the basic pH achieved during the treatment permits limiting the solubilized Fe
amount in the treated solutions. In fact, the concentration of Fe ions increased during the initial
moments and then rapidly declined as a consequence of pH increase. For every operating condition
tested, the amount of solubilized Fe2+ was always less than 1.0 mg/L. As an example, in Figure 9
are reported the concentrations of Fe2+ monitored in the tests with Pb2+ concentration of 30 mgPb/L.
The low residual iron is obviously a positive aspect, because the danger of secondary pollution in
groundwater is limited. Moreover, only small amounts of Mg2+ in the treated solutions were observed.
Indeed, maximum amounts of around 3.0 mg/L were observed in the conducted experiments. The low
magnesium dissolution is due to the poor solubility of MgO particles. Furthermore, the adsorbed
iron nanoparticles reduce the interactions between the MgO grains and the liquid phase. Therefore,
the residual concentrations of magnesium ions were always lower than the characteristic values in
natural waters.

Figure 9. Fe2+ concentrations detected during the tests conducted with MgO_nZVI and initial Pb2+

concentration of 30 mg/L.

3.2.2. Tests with mZVI

The results of tests conducted with the microscopic iron particles showed lead removal trends
(Figure 10) notably slower compared to the curves observed with MgO_nZVI. This caused a reduction of
processing yields, particularly when treating solutions with lead concentrations higher than 10 mgPb/L
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(Figure 10). Indeed, with these initial pollutant amounts, the abatements were between 78.3% and 74.4%
at pH 3, between 87.7% and 75% at pH 5, and between 67.3% and 74.7% at pH 7 (Figure 10), smaller than
the values reached with supported nanoparticles. The better performance of MgO_nZVI is even clearer
when considering the quantities of Fe0 in each test. In fact, the actual amount of nanoparticles during
the experiments with MgO_nZVI was less than 10% of that of microscopic iron. The above results
also demonstrate that the negative effect of initial lead concentration on process performance was
more marked when using mZVI. The influence of initial pH was similar to that detected when using
nanoscopic iron. In fact, the best performances were obtained at pH = 5, but nevertheless, appreciable
abatements were also observed at initial pH=3 and neutral conditions (pH = 7).

Other authors, instead, observed a drastic decline in microscopic iron performance in response
to increasing process pH [31]. This discordance with our results is probably imputable to different
operating conditions applied for the experimental execution. Moreover, during the tests with mZVI,
the pH increases (Figure 11) were always less marked with respect to the trends monitored when using
MgO_nZVI. These slower pH increments confirm the weaker activity of microscopic iron particles
in lead removal. Moreover, as a consequence of final pH values, notable residual concentrations of
dissolved iron in the treated solutions were detected (Figure 12). This, obviously, is a negative aspect
of the treatment with mZVI that makes its applicability harder.

Figure 10. Cont.
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Figure 10. Pb2+ concentrations detected (C) during the tests conducted with mZVI and different
initial lead concentrations (Ci) at initial pH 3 (a), 5 (b), and 7 (c). The continuous trends represent the
modeling curves obtained by a second-order kinetic law. The R2 between the experimental values and
the modeling curves were always higher than 0.99.

Figure 11. pH trends during the tests conducted with mZVI and initial Pb2+ concentration of 30 mg/L.

Figure 12. Fe2+ concentrations detected during the tests conducted with mZVI and initial Pb2+

concentration of 30 mg/L.
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3.3. Reaction Mechanisms

The XRD diffractograms of reactive materials after Pb2+ removal are shown in Figures 13 and 14.
Clearly, their interpretation is made complicated by the presence of different oxides and oxyhydroxides
on exhausted materials. Nevertheless, with regard to MgO_nZVI, it can be observed that the peaks
of MgO became less marked and those of Fe0 almost disappeared (Figure 13). On the contrary, some
peaks attributable to iron corrosion products, such as γ-FeO(OH), Fe(OH)2, and Fe2O3 appeared.
Moreover, the XRD analysis indicates the existence of metallic lead Pb0 and Pb2+, probably in the forms
of Pb(OH)2, PbO, and PbFe2O4 [24] (Figure 13). The diffractogram of mZVI still shows the peaks of
Fe0, suggesting that part of the microscopic particles, probably the inner core, did not react during the
treatment (Figure 14). The other peaks indicate the presence of the same compounds identified in the
case of the supported composite (Figure 14).

Figure 13. XRD diffractogram of MgO_nZVI after the test conducted with Pb2+ concentration of
70 mg/L and initial pH = 5.

Figure 14. XRD diffractogram of mZVI after the test conducted with Pb2+ concentration of 70 mg/L
and initial pH = 5.

The EDS analysis of exhausted MgO_nZVI confirmed the presence of lead (16.9%) and suggests
the formation of oxides and hydroxides of Fe and Pb (Figure 15). Indeed, compared to the values of
fresh MgO_nZVI, the amount of magnesium and iron dropped to 13.4% and 33.8%, respectively, while
the quantity of oxygen notably increased up to 34.9%. This, clearly, can be explained by the formation
of the reaction products identified by the XRD diffractogram. Also for mZVI the presence of lead was



Water 2018, 10, 404 13 of 21

observed (19.7%) and, in comparison to fresh material, the increase of oxygen amount (18.2%) and the
decrease of iron (60.9%) was detected (Figure 16). For both materials, the lead was mainly located in
the more luminous zones of the SEM images (Figure 17).

Figure 15. EDS spectrum of MgO_nZVI particles after the lead removal treatment.

Figure 16. EDS spectrum of commercial mZVI particles after the lead removal treatment.

Figure 17. SEM images of MgO_nZVI (a) and of commercial mZVI particles (b) after the lead
removal treatment.

The above observations denote that the treatment products resulted from the natural iron corrosion
in water, from adsorption mechanisms, and from redox reactions between Fe0 and Pb2+. Actually, the



Water 2018, 10, 404 14 of 21

removal of lead ions by means of ZVI can evolve according to several reactions that can simultaneously
occur. In aqueous solutions, Fe0 is oxidized by water and oxygen:

2Fe0 + O2 + 2H2O→ 2Fe2+ + 4OH− (2)

4Fe2+ + 4H+ + O2 → 4Fe3+ + 2H2O (3)

The Pb2+ ions are adsorbed on the surface of the reactive material and then they are reduced by
metallic iron [14,28]:

2Fe0 + 3Pb2+ + 4H2O→ 3Pb0 + 2FeOOH + 6H+ (4)

2Fe0 + 3Pb2+ + 3H2O→ 3Pb0 + Fe2O3 + 6H+ (5)

Under neutral or alkaline conditions, Pb2+ and iron species can form insoluble hydroxides:

Pb2+ + 2OH− → P(OH)2 (6)

Fe2+ + 2OH− → Fe(OH)2 (7)

Fe3+ + 3OH− → Fe(OH)3 (8)

Iron hydroxides may be further transformed into metal oxides with release of water [32]:

Fe(OH)3 → FeOOH + H2O (9)

By considering our results, in agreement with Pojananukij et al. [29], it is conceivable that iron
corrosion products can react with the Pb2+ to produce several types of oxide:

2FeOOH + Pb2+ → PbFe2O4 + 2H+ (10)

FeOOH + Pb2+ → PbO + Fe3+ + OH− (11)

Fe2O3 + 3Pb2+ → 3PbO + 2Fe3+ (12)

The interactions between iron oxyhydroxides and metallic ions have been considered in many
other works [7,33–35]. Indeed, Jeen et al. [33] hypothesized the substitution of Fe3+ into iron corrosion
products and consequently, the formation of insoluble compounds of metallic pollutant. Pratt et al. [34]
observed that contaminants can be incorporated in the particulate phase due to the interaction with
Fe3+ solid species. Manning et al. [35] argued that γ-FeO(OH) acts as a substrate for the production
and precipitation of metallic compounds. By considering the above reactions, it can be assumed that
the pH increase monitored during the tests is attributable mainly to iron oxidation in water from Fe0 to
Fe2+ and Fe3+, as stated also by Kim et al. [13]. Indeed, the H+ ions released in some reactions [14,28]
can be neutralized by the OH− produced in other ones.

The proposed mechanisms agree with the detected XRD data as well as with the statements
of previous studies [2,13,14,29]. Nevertheless, further investigations are necessary to confirm
these statements.

3.4. Kinetic Analysis

3.4.1. Tests Conducted with MgO_nZVI

The findings of experiments conducted in the present work proved that many factors affect lead
removal by means of MgO_nZVI. In order to better evaluate these influences, a detailed kinetic study
was carried out. With this aim, the removal curves obtained during the tests were interpolated using
different kinetic equations. The first-order law is commonly applied to model the abatement of several
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types of pollutants [7,14,36–38]. In this study, however, the finest fitting between the experimental
trends and the simulating curves was achieved with the second-order kinetic [22,36,39]:

dC
dt

= −kobs · C2 (13)

where C is the Pb2+ concentration and kobs is the observed kinetic constant. From this differential
equation, the expression of lead concentration as a function of time can be easily obtained:

C =
Ci

kobs · Ci· t + 1
(14)

where Ci is the initial Pb2+ concentration.
The good matching between the experimental trends and the simulating curves (Figures 7 and 10)

proves the appropriateness of the proposed kinetic law.
Through a careful analysis of data obtained by the interpolating of experimental results, a strict

relation between the kinetic constants (kobs) and the ratio RIL = Fe/Ci was identified (Figure 18).
Specifically, the following function was defined:

kobs= kmax

(
1 − e−α·Fe/Ci

)
(15)

where kmax is the maximum kinetic constant and α the rise factor.

Figure 18. Observed kinetic constant (kobs), detected during the tests with MgO_nZVI, vs. Fe/Ci ratio.

This relation clearly shows that, for a given initial pH, the reaction rate increases with the Fe0

quantity and declines as consequence of higher initial Pb2+ concentration. Indeed, lead ions are
oxidants and passivators of metallic iron, therefore, when a greater Pb2+ amount is available in the
initial solution, more Fe0 would be quickly oxidized with a consequent activity reduction and a
decrease of the kinetic constant. Moreover, for a set reactive material dosage, the increase of the initial
pollutant concentration causes an increase in the ratio between initial Pb2+ mole numbers and the
available active sites of the surface area. Nevertheless, the trends in Figure 18 show a rapid increase of
kobs for small values of the Fe/Ci ratio that underlines the high ability of MgO_nZVI to remove lead.
In other studies, on the contrary, much slower increases of the kinetic constant were detected [14].

From the curves in Figure 18, the effect of initial pH on lead removal reaction rate can be also
noticed. This effect is even more explicit by analyzing the values (Table 1) of rise factor α (Equation (1))
detected by interpolating the curves representative of experiments conducted at different initial pH
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values (Figure 18). The results, as above discussed, clearly indicate that the maximum reaction rate is
achievable at pH values of around 5. Indeed, this initial pH promotes a more rapid lead abatement
during the first minutes of treatment. These findings are in agreement with the statements of other
authors [1,3]. In fact, at initial moderately acidic conditions, the electrostatic attraction between the
reactive material and lead ions, that increases the adsorption capacity, is favored. Moreover, in this
condition, the natural Fe0 oxidation and passivation in water is less marked. At more highly acidic
pH levels, the lead removal decreases because the H+ competes with Pb2+ for adsorption sites [1].
Therefore, due to electrostatic repulsion, the pollutant ions have more difficulty moving toward
the MgO_nZVI surface, and consequently, also the reaction between Fe0 and Pb2+ is less effective.
A stronger reduction of process performance occurs at higher pH (pH > 5). In these conditions, the
increase in the hydroxyl (OH−) concentration produces the precipitation of lead and iron-insoluble
compounds on the MgO_nZVI surface, which negatively affects the material’s reactivity. Despite the
effects of initial pH values, as already discussed, the lead abatement proceeds, even if less quickly,
beyond the corrosion products formation (Figures 7 and 8). Therefore, in agreement with Alowitz
et al. [7] and Cheng et al. [40], it can be stated also that iron corrosion products are responsible for a
certain abatement of metal pollutants.

Table 1. Kinetic parameters obtained through the interpolation, by means of Equations (15) and (16), of
kobs values expressed as function of the Fe/Ci ratio.

pH 3 5 7

MgO_nZVI

A (gFe)−1(mgPb/L) 2.33 3.14 1.81
α (molFe)−1(mmolPb/L) 0.629 0.848 0.489

kmax (mgPb/L)−1d−1 139.1 138 136.9
kmax (mmolPb/m3)−1d−1 28.8 28.6 28.4

mZVI

β (gFe)−1(mgPb/L) 4.15 4.46 3.54
β (molFe)−1(mmolPb/L) 1.12 1.204 0.956

kmax (mgPb/L)−1d−1 36.1 38.5 24.6
kmax (mmolPb/m3)−1d−1 7.5 8 5.1

k0 (mgPb/L)−1d−1 0.091 0.21 0.15
kmax (mmolPb/m3)−1d−1 0.019 0.043 0.031

3.4.2. Tests Conducted with mZVI

The second-order kinetic law permitted us to accurately model also the results obtained during
the tests carried out using mZVI as the reactive material (Figure 10). In this case, the values of kobs
obtained through the interpolations showed typical logistic trends which can be expressed by the
following function of the Fe/Ci ratio (Figure 19):

kobs =
kmax · k0 · e β·Fe/Ci

kmax − k0
(
1 − e β·Fe/Ci

) (16)

where kmax and k0 are, respectively, the maximum and minimum value of the kinetic constant, and
β the growth factor. The kobs values increased with exponential trends beyond a threshold value of
RIL close to 0.5 gFe/(mgPb/L) [1.85 molFe/(mmolPb/L)] (Figure 19). Below this value, the kinetic
constants were quite low for every tested pH level (Figure 19). This suggests that at RIL ratios lower
than the critical value, the active surface sites of zero-valent iron are quickly saturated and the pollutant
transport to the reactive material becomes rate-limiting [14]. This behavior was not observed in the
tests with supported nanoscopic iron, which underlines the higher activity of MgO_nZVI. Indeed,
the specific surface, notably greater than that of the microscopic iron used in this study, avoids the
saturation of the reactive material for low values of the Fe/Ci ratio. Therefore, with supported nZVI, as
previously discussed, the kobs values rapidly grew without an initial lag phase (Figure 18). The greater
performance of MgO_nZVI is even clearer when considering that a given value of kobs can be reached
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with an actual Fe0 nanoparticle amount of one order of magnitude lower than the required quantity of
microscopic iron (Figures 18 and 19).

The effects of pH on reaction rates were similar to those observed with supported nanoparticles.
In fact, the higher kobs were detected at initial moderately acidic conditions (pH = 5), while slower reaction
rates at more highly acidic pH values (pH = 3) and at neutral conditions (pH = 7) were monitored.

Figure 19. Observed kinetic constant (kobs), detected during the tests with mZVI, vs. Fe/Ci ratio.

3.5. Continuous Tests

The potential application of a reactive material in permeable reactive barriers (PRBs) depends
on many factors. Besides the reaction rates, the capacity to treat a high quantity of pollutant and
the durability of material are meaningful aspects. In order to evaluate the actual applicability of
synthesized MgO_nZVI and commercial mZVI for lead removal in PRBs, two different tests in a
continuous mode were carried out.

In the test with MgO_nZVI, the porosity of the reactive material in the column was approximately
0.57 and the hydraulic velocity resulted equal to 6.8 m/d. This high value was set to limit the extent
of the experiment. The overall volume of lead solution fed through the system was 16.2 L, which
corresponds to about 1865 pore volumes (PV) of reactive material. In Figure 20 is shown the change
of normalized Pb2+ concentration in the effluent during the overall treatment. Nevertheless the test
was conducted with a hydraulic velocity much greater respect the typical values of groundwater [33],
a notable performance of the reactive material was detected. Indeed, an average lead removal of about
97.5% was maintained for approximately 1000 exchanged pore volumes (PV). After the breakpoint, a
rapid increase of effluent concentration was monitored and the material was completely exhausted at
2200 PV (Figure 20). This value was tenfold higher than that reached in other works, in which zeolite
was used as the reactive material and operating conditions comparable to those of the present study
were applied [41]. Therefore, the experimental findings prove the high longevity of the synthesized
material. Indeed, on the basis of the results of this study, a PRB of 1 m thickness filled with MgO_nZVI,
assuming a field flowrate of 0.5 m/d and a concentration of Pb2+ in the groundwater of 50 mg/L,
could operate for more than five years.
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Figure 20. Normalized Pb2+ concentration in the effluent (C/Ci) vs. number of exchanged pore
volumes (PV) of MgO_nZVI.

The total mass of removed contaminant per amount of the reactive material was about
23.2 mgPb2+/g(MgO_nZVI), while, by referring to the actual amount of nZVI included in MgO_nZVI,
the removal capacity resulted at 309.55 mgPb2+/g(nZVI) [83.6 mmolPb2+/mol(nZVI)]. From these
values, it is easily understood that the overall performance of MgO_nZVI could be further enhanced by
using smaller MgO particles to synthesize the composite. Indeed, the size decrease of the supporting
material would allow increasing the quantity of incorporated nZVI, and consequently, to treat even
higher amounts of contaminant. Actually, in situ treatments could be exploited MgO_nZVI particles
significantly smaller than those used in this work without risks of clogging the reactive material.

During the experiment with mZVI, a volume of Pb2+ solution of 7.3 L was fed through the column
with a hydraulic velocity of about 6.4 m/d. The porosity of the reactive material in the column was
approximately 0.48. The experimental results confirmed the worse efficiency of microscopic iron
particles. In fact, in this test, lead abatements of around 88% were reached (Figure 21), about 10%
lower with respect to those obtained with MgO_nZVI. The performance remained stable up to a
volume of lead solution fed through the column equal to about 600 PV, beyond which the Pb2+ in the
effluent rapidly increased, and the reactive material was totally exhausted after 1200 PV (Figure 21).
The removal ability was 4.80 mg(Pb2+)/g(mZVI) [1.29 mmolPb2+/mol(nZVI)], one magnitude order
lower compared to that of nZVI incorporated into MgO_nZVI. The greater amount of removed
lead per quantity of ZVI by using supported nZVI, as previously stated, is attributable to its higher
specific surface.

Figure 21. Normalized Pb2+ concentration in the effluent (C/Ci) vs. number of exchanged pore
volumes (PV) of mZVI.
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4. Conclusions

In this paper, the efficiency of lead removal of an alternative reactive material synthesized by
supporting iron nanoparticles on MgO grains (MgO_nZVI) was investigated. The characterization
of the composite confirmed the presence of iron in the form of Fe0. The specific surface was about
24.41 m2/g and the actual amount of Fe0 resulted at around 75 mgFe/g. The synthesized material
showed much better performance than that achieved with commercial microscopic Fe0 particles, in
particular when treating solutions with lead concentrations higher than 10 mgPb/L. Through an
analysis of trends detected during many batch column tests, it was identified that a second-order
kinetic-type reaction was representative of lead removal using both MgO_nZVI and mZVI. For a given
pH, the observed kinetic constants were found to be a function of the Fe/Ci ratio. In particular, by
using MgO_nZVI, a rapid increasing of kobs in response to higher Fe/Ci was identified. With mZVI,
on the contrary, the relation between kobs and Fe/Ci ratio was a logistic type function characterized
by a threshold value below which the kinetic constants increased very slowly. Moreover, by using
MgO_nZVI, a given value of kobs can be obtained with an actual Fe0 nanoparticles quantity of one
order of magnitude lower than the required amount of mZVI. For both the reactive materials, the
higher reaction rates were obtained at initial moderately acidic conditions (initial pH = 5). Nevertheless,
the lead removal evolved also at neutral and basic conditions. The XRD and EDS analyses of exhausted
materials allowed identification of the process products. Moreover, the reaction mechanisms have
been analyzed and proposed.

The conducted experiments proved also the applicability of MgO_nZVI in continuous treatments.
Indeed, abatements of about 97.5% were maintained for about 1000 pore volumes of reactive material,
and the overall mass of removed lead was of 309.55 mg(Pb2+)/g(nZVI) [83.6 mmolPb2+/mol(nZVI)].
These values were notably higher than those monitored with microscopic iron. Therefore, the results
of this study support the effectiveness of MgO_nZVI composite as a reactive material for Pb2+ removal
in PRBs. Nevertheless, further investigations at pilot scale are needed to verify the actual applicability
in field conditions.
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