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Abstract: The characterization of flow in subsurface porous media is associated with high uncertainty.
To better quantify the uncertainty of groundwater systems, it is necessary to consider the model
uncertainty. Multi-model uncertainty analysis can be performed in the Bayesian model averaging
(BMA) framework. However, the BMA analysis via Monte Carlo method is time consuming because
it requires many forward model evaluations. A computationally efficient BMA analysis framework
is proposed by using the probabilistic collocation method to construct a response surface model,
where the log hydraulic conductivity field and hydraulic head are expanded into polynomials
through Karhunen–Loeve and polynomial chaos methods. A synthetic test is designed to validate the
proposed response surface analysis method. The results show that the posterior model weight and
the key statistics in BMA framework can be accurately estimated. The relative errors of mean and
total variance in the BMA analysis results are just approximately 0.013% and 1.18%, but the proposed
method can be 16 times more computationally efficient than the traditional BMA method.

Keywords: model uncertainty; Bayesian model averaging; probabilistic collocation method

1. Introduction

Groundwater flow and contaminant transport are the key issues in the groundwater resources
management. However, it is challenging to accurately predict the dynamic behavior of groundwater
flow and the distribution of the pollutant. This can commonly be attributed to the insufficient
knowledge to accurately understand the dynamic process of the groundwater system and the limited
size of the error-prone measurement data to fully characterize the properties of the subsurface system.
As such, stochastic methods have been developed to quantitatively solve the groundwater flow and
solute transport problems under uncertainty [1–3]. The uncertainty associated with the groundwater
modeling can arise from a variety of the factors, such as the mathematical model to represent the
physical and chemical processes in the groundwater system, the initial and boundary conditions,
the heterogeneity characterization of the hydrogeological parameters, and the static or dynamic
observation data to constrain the groundwater model [4,5].

The overall uncertainty in the groundwater system can be categorized into two forms [5–8].
One is the aleatory uncertainty, which is the consequence of the stochastic nature of the groundwater
system. It cannot be reduced by building a better model or collecting more data. Therefore,
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many efforts have been put into diminishing the other type of uncertainty—i.e., the so-called the
epistemic uncertainty. This process is usually referred to as model calibration or inverse modeling [9].
The function of inverse modeling is to constrain the predictive uncertainty on the static data
(e.g., the hydraulic conductivity measurements) or dynamic data (e.g., the hydraulic head or the
concentration of the contaminants). Many inverse modeling methods have been proposed in the
literature. The gradient-based inverse modeling methods have been developed in the non-linear
regression framework. These methods require computation of the derivative of the objective function
(a measure of the mismatch between the predictions and the observations) with respect to the
model parameters, e.g., maximum likelihood estimation method [10] and pilot point method [11,12].
The adjoint-state method is commonly used in the gradient-based inverse modeling methods to
alleviate the computational burden [13]. The ensemble- or sampling-based methods have been
developed in a Bayesian updating framework. These methods run an ensemble of realizations to
obtain the posterior distribution of the model parameters conditioning on the observations, such as
Markov chain Monte Carlo (MCMC) method [14,15], ensemble Kalman filter method (EnKF) [16,17],
and particle filter [18].

The aforementioned inverse modeling methods only take the parameter uncertainty and the
measurement data uncertainty into account, which implicitly assumes that the underlying model
structure is correct. In other words, only the parameter uncertainty and data uncertainty are propagated
into the predictive uncertainty, and the model uncertainty is ignored since a single best model is
used [19]. This is partially attributed to the fact that the parameter uncertainty and data uncertainty are
relatively easily integrated into a Bayesian inference or non-linear regression framework. The concept
of equifinality has been proposed by [20], which finds that the same observation dataset can fit
several models equally well. Due to the complexity of the natural groundwater system, it tends to
be interpreted with multiple models [21]. The generalized likelihood uncertainty estimator (GLUE)
was developed to deal with the equifinality issue [22], and has been applied in groundwater flow
and contaminant transport problems [23,24]. Even though the introduction of the GLUE method
has a huge impact on the uncertainty assessment concerning the integration of all the plausible
models, it suffers from the criticisms that GLUE is essentially an incoherent method and that subjective
decisions are required in the implementation of this method [25–27]. As an alternative, Bayesian model
averaging (BMA) is considered to be a rigorous Bayesian analysis framework that can account for
the model uncertainty [28,29]. BMA and its maximum likelihood version have been used widely in
hydrogeological research [21,30–34]. GLUE and BMA were integrated together by [35] in order to
make GLUE more coherent with the Bayesian analysis framework.

One critical issue hindering the implementation of the multi-model analysis framework is
computational effort. For a large-scale groundwater model with millions of numerical grid nodes,
even one simulation outcome can be tedious to obtain. Due to the requirement of fully exploring the
posterior predictive distribution, a large set of model evaluations must be performed in the multi-model
analysis framework, which will indisputably aggravate the situation. The construction of the response
surface for the original model has recently attracted more attention [36]. Polynomial chaos expansion is
an efficient method to construct the response surface model by using an orthonormal polynomial basis.
In this way, the original stochastic model can be approximated by a well-designed high-dimensional
polynomial. Since the computation of the polynomial is much more efficient than the original
simulation model, the computational efficiency of the ensemble-based stochastic methods can be greatly
improved. Due to the high computational efficiency, it has been integrated with several ensemble-based
inverse modeling methods, such as MCMC [37], ensemble Kalman filter [38,39], and bootstrap filter [40].
The response surface model can create a projection to represent the dependence of the model response
on model parameters. Construction of the response surface model requires that the model parameters
are statistically independent of each other. In the groundwater system, the hydrogeological properties
(e.g., hydraulic conductivity and porosity) are spatially correlated and heterogeneous. The spatial
distribution of the heterogeneous properties is characterized by a random field, where the spatial
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correlation can be described by geostatistical methods [41]. The Karhunen–Loeve expansion (KLE)
can be used to convert the spatial correlated random field of the hydrogeological properties into
independent uncorrelated random variables [42]. The evaluation of the polynomial coefficient of
PCE (polynomial chaos expansion) approximation is important. A stochastic finite element method
was developed in [43] to solve the PCE coefficients with Galerkin scheme, but it is a non-intrusive
method which requires manipulation of the governing equation and the solution of a coupled set of
deterministic equations. An intrusive method to obtain the PCE coefficient has been developed so that
the governing equation can be treated as a black box, and any existing solver can be easily adopted.
The probabilistic collocation method (PCM) is a non-intrusive method developed by [44] which uses
the points of numerical evaluation of the Galerkin integral as collocation points [45,46]. However,
the previous response-surface-based inverse modeling methods can only consider a single best model
as mentioned before, and thus the model uncertainty has been ignored.

The novelty of this research is the integration of the probabilistic collocation method (PCM) into
a Bayesian model averaging framework (BMA) in order to improve the computational efficiency
and accuracy of the uncertainty quantification by considering model uncertainty in groundwater
systems. In this paper, the heterogeneous random field of the hydraulic conductivity field is
considered, and the conditional random field of hydraulic conductivity can be generated through
conditional Karhunen–Loeve expansion (KLE) when the direct measurements of hydraulic conductivity
are available. The consideration of the spatial heterogeneity of hydraulic conductivity renders
the parameterization of the groundwater system to be associated with a high-dimensionality.
To the authors’ knowledge, the performance of PCM-based response surface models with such
high-dimensionally parameterized groundwater problems has been rarely studied in the context
of multi-model Bayesian analysis.

The remainder of the paper is arranged as follows: (1) A computationally efficient multi-model
analysis framework is proposed in Section 2, which contains the BMA method to deal with model
uncertainty and the PCM method to establish a response surface model by using unconditional or
conditional KLE approximation for the random hydraulic conductivity field and PCE approximation
for the hydraulic head; (2) A synthetic test is designed to demonstrate the implementation of the
proposed method in Section 3, and the efficiency and accuracy of the proposed method are evaluated
by comparing the PCM-based BMA method with the traditional one that uses brute-force Monte Carlo
simulation; (3) Conclusions are drawn based on the analysis results in Section 4.

2. Methods

In this section, the key methods for this research are introduced. The general mathematical form
of the groundwater model is given first, the BMA method in groundwater modeling is then presented
with hydraulic conductivity as model parameter and hydraulic head as prediction variable, and finally
the PCM method for constructing the response surface model is demonstrated.

2.1. Governing Equations of Groudnwater Flow System

According to the continuity equation, the mathematical form of the transient groundwater flow
in a saturated aquifer system can be described as [2]:

Ss
∂h(x, t)

∂t
+∇ · q(x, t) = g(x, t) (1)

where h(x, t) ∈ R is the hydraulic head in location x ∈ Rn (n = 2 for two-dimensional problem and
n = 3 for three-dimensional problem) at time t ∈ R+, Ss ∈ R+ is the specific storage, and g(x, t) ∈ R
is the source (or sink) term. q(x, t) ∈ Rn (n = 2 for two-dimensional problem and n = 3 for
three-dimensional problem) is the flow rate, and can be expressed by using Darcy’s law:

q(x, t) = −K(x)∇h(x, t) (2)
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where K(x) ∈ R is the hydraulic conductivity in different locations. The spatial distribution of K(x) is
usually heterogeneous, and the heterogeneity can be described by using a geostatistical method where
the logarithm of K(x), Y = ln K(x), is assumed to be a multi-Gaussian stochastic process. In this case,
the governing equation becomes a stochastic partial differential equation [3].

The initial associated with the groundwater system can be written as:

h(x, 0) = H0(x) (3)

The boundary conditions (including Dirichlet boundary condition and Neumann boundary
condition) associated with the groundwater system can be written as:

h(x, t) = H(x, t), x ∈ ΓD (4)

q(x, t) · n(x) = Q(x, t), x ∈ ΓN (5)

where H(x, t) ∈ R is the prescribed head on the Dirichlet boundary ΓD, Q(x, t) ∈ R is the prescribed
flux across the Neumann boundary ΓN , and n(x) is the outward unit vector normal to the boundary.

2.2. Bayesian Model Averaging Method

Different conceptualizations of hydrogeological conditions and groundwater flow processes can
lead to different groundwater models (in this case, multiple interpretations of the hydrogeological
heterogeneity characterization and sink/source term are considered, as will be shown in Section 3).
Consider that a set of mutually independent groundwater models M = {1, 2, · · · , Mk, · · · , MK},
where k ∈ [1, K] is the index for a postulated model and K is the number of postulated models, can be
postulated to simulate a prescribed groundwater system. The hydraulic head h can be consistently
predicted through all the individual models in the postulated model set, then the predictive probability
of hydraulic head conditioning on available data h∗ can be given as [28,29]:

p(h|h∗) =
K

∑
k=1

p(h|Mk, h∗)p(Mk|h∗) (6)

where p(h|Mk, h∗) is the conditional predictive probability of the hydraulic head based on individual
models, and p(Mk|h∗) is the posterior model weight. This equation indicates that the multi-model
predictive probability is the summation of the predictive probability of individual models weighted by
their posterior model weights.

The predictive mean in the multi-model context can be written as:

E(h|h∗) = EMk |h∗E(h|h
∗, Mk)

=
K
∑

k=1
E(h|h∗, Mk)p(Mk|h∗)

(7)

The predictive variance can be written as:

Var(h|h∗) = EMk |h∗Var(h|h∗, Mk) + VarMk |h∗E(h|h
∗, Mk)

=
K
∑

k=1
Var(h|h∗, Mk)p(Mk|h∗)

+
K
∑

k=1
[E(h|h∗, Mk)− E(h|h∗)]2 p(Mk|h∗)

(8)

It can be found that the predictive variance is composed of EMk |h∗Var(h|h∗, Mk) (i.e.,
the within-model variance), and VarMk |h∗E(h|h

∗, Mk) is the between-model variance.
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According to Bayes’ rule, the posterior model weight can be written as:

p(Mk|h∗) =
p(h∗|Mk)p(Mk)

K
∑

l=1
p(h∗|Ml)p(Ml)

(9)

where p(Mk) is the prior model probability. Its value can be assigned if expert opinions are available;
otherwise, it can be assumed to follow a uniform distribution where each model is equally weighted.
p(h∗|Mk) is the marginal likelihood of a model.

In this study, the hydraulic conductivity is considered as the sole uncertainty parameter, and the
marginal likelihood can be written as:

p(h∗|Mk) =
∫

p(h∗|Mk, Yk)p(Yk|Mk)dYk (10)

where p(h∗|Mk, Yk) is the likelihood function. There are many types of likelihood measures, such as
model efficiency likelihood function and Fuzzy likelihood function, but a Gaussian-type likelihood
function is commonly used [35]:

p(h∗|Mk, Yk) = (2π)−N/2|Ch∗ |1/2 · exp
[
−1

2
(h(Yk)− h∗)TC−1

h∗ (h(Yk)− h∗)
]

(11)

where Ch∗ is the covariance matrix of hydraulic head measurements.
The evaluation of the integral in Equation (10) requires Monte Carlo simulations with a large

number of parameter realizations to ensure the convergence. In some large-scale cases, even one
prediction outcome takes a long time to run. The large parameter realizations set combined with
the alternatively postulated model set may make the problem infeasible to solve, even with modern
computational facility. It is urgent to develop a suitable algorithm to alleviate the computational
burden. In the following subsections, the PCM-based response surface model is introduced to serve
that purpose.

2.3. Unconditional and Conditional Karhunen–Loeve Expansion Methods

The Karhunen–Loeve expansion method can convert a correlated random function into a
polynomial with independent and identically distributed Gaussian random variables [45,46]. Since
the log hydraulic conductivity, Y, is heterogeneous and spatial correlated. The spatial correlation can
be characterized with a known covariance function C(x1, x2). The covariance function is bounded,
symmetric, and positive definite; thus, it can be expanded as:

CY(x1, x2)
.
= CY(s) =

∞

∑
n=1

λn fn(x1) fn(x2) (12)

where x1, x2 are the spatial coordinates with the lag distance as s = |x1 − x2|, λn is the eigenvalue,
and fn(x) is the eigenfunction.

The eigenfunctions are orthogonal, and form a complete set. They satisfy the condition:∫
fn(x) fm(x)dx = δnm (13)

where δnm is the Kronecker delta function.
The KLE of a zero-mean stochastic process can be expressed as:

Y(x; θ) =
∞

∑
n=1

ξn(θ)
√
λn fn(x) (14)
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where ξn(θ) is the standard Gaussian random variable following the normal distribution N(0, 1)
and θ is the parameter in a probability space. Note that eigenvalues λn and eigenfunctions fn(x) are
deterministic terms. The unconditional random field can be generated by finding its eigenvalues
and eigenfunctions.

The eigenvalues and eigenfunctions of the covariance function can be solved from the
Fredholm equation: ∫

CY(x, y) f (x)dx = λ f (y) (15)

If there are nY measurements Y1(x1), Y2(x2), · · · , YnY (xnY ), it may require the generation of
random field conditioning on these measurements. The generation of the conditional random field can
be achieved by conditional Kriging. The conditional Kriging covariance is [2]:

C(c)
Y (x, y) = CY(x, y)−

nY

∑
i=1
µi(x)CY(xi, y) (16)

where µi(x) are weighting functions, and the subscript c represents “conditional”.
The weighting function can be computed by using the following Kriging equations:

nY

∑
i=1
µi(x)CY(xi, y) = CY(x, y), j = 1, 2, · · · , nY (17)

Similar to unconditional case, the conditional eigenvalues λ(c)n and eigenfunctions f (c)n (x) of the
conditional covariance functions C(c)

Y (x, y) can be solved from the following Fredholm equation:∫
C(c)

Y (x, y) f (c)(x)dx = λ(c) f (c)(y) (18)

Once the eigenvalue λ(c) and eigenfunction f (c)n (x) of the conditional covariance function are
obtained, the conditional log hydraulic conductivity random field can be generated using:

Y(c)(x; θ) =
∞

∑
n=1

ξn(θ)

√
λ
(c)
n f (c)n (x) (19)

In Equations (14) and (19) for the unconditional and conditional cases, the polynomials are known
because the covariance function is known and the eigenvalues and eigenfunctions are solvable. Both
equations are associated with infinite terms. In practice, the truncated KLE up to a desired accuracy
with the first N largest eigenvalues can be used. The preserved energy of the random process Y(x; θ)
is [47]:

EN =

N
∑

i=1
λi

∞
∑

i=1
λi

or

N
∑

i=1
λ
(c)
i

∞
∑

i=1
λ
(c)
i

(20)
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2.4. Polynomial Chaos Expansion Method

The distribution of hydraulic head is usually non-Gaussian, and the covariance structure is
unknown; thus, it cannot be expanded using the KLE method. A more general method called
polynomial chaos expansion can be used [45,46]:

h(x, t; θ) = a0(x, t) +
∞
∑

i1=1
ai1(x, t)Γ1

(
ξi1(θ)

)
+

∞
∑

i1=1

i1
∑

i2=1
ai1i2(x, t)Γ2

(
ξi1(θ), ξi2(θ)

)
+

∞
∑

i1=1

i1
∑

i2=1

i2
∑

i3=1
ai1i2i3(x, t)Γ3

(
ξi1(θ), ξi2(θ), ξi3(θ)

)
+ · · ·

(21)

where ai1i2i3···iP(x, t) is the deterministic coefficient, and the multivariate basis
ΓP
(
ξi1(θ), ξi2(θ), · · · , ξiN (θ)

)
denotes the polynomial chaos of degree P with respect to N

independent random variables ξi1(θ), ξi2(θ), · · · , ξiN (θ).
The finite form of polynomial chaos of order P can be written more compactly:

ĥ(x, t; θ) = ∑
i∈Λ

ai(x, t)Ψi(ξ(θ)) (22)

where i is a multi-index with the norm as |i| =
N
∑

i=1
i in the set Λ =

{
i ∈ NN : |i| ≤ p

}
. Ψi(ξ(θ)) is the

compacted expression form of the multivariate polynomial basis function. ξ(θ) =
(
ξi1(θ), · · · , ξiN (θ)

)
,

and there is one-to-one correspondence between Ψi(ξ(θ)) and ΓP
(
ξi1(θ), ξi2(θ), · · · , ξiN (θ)

)
; Q is the

number of PCE terms determined by random input dimensionality N and polynomial chaos up to
degree P:

Q =
(N + P)!

N!P!
(23)

The multivariate polynomial basis function can be constructed from the tensor product of
univariate basis functions:

Ψi(ξ(θ)) =
N

∏
j=1

ψ
(i)
j ξ j(θ) (24)

where ψ(i)
j is the polynomial of degree i in the j-th dimension.

For Gaussian random variables, the univariate basis can be Hermite polynomials [48]:

ψ
(i)
j = Hi

(
ξj(θ)

)
= (−1)ie

1
2 ξ2

j (θ)

e
1
2

di

d
(
ξj(θ)

)i e−
1
2ξ

2
j (θ) (25)

Other distribution types of random variables are also allowed in the generalized polynomial
chaos method [48], and the polynomial basis can be selected from the hypergeometric polynomials
of Askey scheme; e.g., the Legendre polynomial can be selected for uniform variables, and Laguerre
polynomials can be selected for Gamma variables.

2.5. Probabilistic Collocation Method

The expansion coefficient for log hydraulic conductivity by using KLE method is known, but
the coefficient in PCE for the hydraulic head is unknown. To obtain the coefficients, the probabilistic
collocation method can be used, which is derived on the basis of weighted residual method. Denoting
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` as the differential operator in Equation (1), the stochastic partial differential equation of groundwater
flow model can be written as [44,46]:

`h(x, t; θ) = g(x, t; θ) (26)

If the hydraulic head is approximated by using PCE with finite terms in Equation (22), the residual
can be computed as:

R(x, t; θ) = `ĥ(x, t; θ)− g(x, t; θ) (27)

The minimization of residual in probability space yields:∫
R(x, t; θ)ω(ξ(θ))ρ(ξ(θ))dθ = 0 (28)

where ω(ξ(θ)) is the weight function and ρ(ξ(θ)) is the probability density function. In PCM, the
weight function is chosen as the Dirac delta function:

ωq(ξ(θ)) = δ
(
ξ(θ)− ξq(θ)

)
(29)

The residual minimization equation in the integral form can be rewritten as:

R
(
x, t;ξq(θ)

)
= 0 (30)

This indicates that PCM does not require the residual function to be defined in the full probability
space, and only needs to evaluate the value of the residual at the given collocation points. This results
in a set of uncoupled equations to solve the coefficients in the PCE approximation for hydraulic head.

The selection of the collocation points is crucial to obtain the PCE coefficients accurately. Here, we
adopt a heuristic method presented in [45]. The collocation points ξq(θ) are chosen to take the roots
of the higher-order Hermite polynomial. When the number of roots exceeds the number of required
collocation points, the roots that are closer to the origin are selected due to its higher probability in
a univariate normal distribution. The number of the collocation points shall be equal to the number
of the unknown coefficients in PCE; i.e., the value of Q in Equation (23). With each set of collocation
points ξq(θ), q = 1, 2, · · · , Q, we can construct a log hydraulic conductivity field by using KLE, and
a corresponding hydraulic head field h(x, t; θ) can be obtained by running the original groundwater
model. The PCE coefficient, aq(x, t), can be solved by using linear regression:

Q

∑
q=1

aq(x, t)Ψq
(
ξq(θ)

)
= h(x, t; θ) (31)

Once the PCE coefficients of the hydraulic head are obtained, the response surface model ĥ(x, t; θ)
is built, which means that we do not need to run the original groundwater model any more. The
likelihood function in Equation (11) can then be evaluated as:

p(h∗|Mk, Yk) = (2π)−N/2|Ch∗ |1/2 · exp
[
−1

2

(
ĥ(Yk)− h∗

)T
C−1

h∗

(
ĥ(Yk)− h∗

)]
(32)

The predictive mean and variance of the hydraulic head in Equations (7) and (8) can be directly
computed from the PCE coefficients:

E
(

ĥ|h∗, Mk

)
= a1(x, t) (33)

Var
(

ĥ|h∗, Mk

)
=

Q

∑
q=2

a2
q(x, t) (34)
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In this way, all the terms in the multi-model analysis can be evaluated efficiently with the aid of
the built response surface model of the hydraulic head. The efficiency and accuracy of the PCM-based
multi-model analysis are demonstrated through comparison with the brute-force Monte-Carlo-based
(MC) method. The flowcharts for PCM-based and MC-based multi-model analysis methods are
presented in Figures 1 and 2.

Figure 1. Flowchart for Monte Carlo (MC)-based multi-model analysis.

Figure 2. Flowchart for probabilistic collocation method (PCM)-based multi-model analysis.

3. Results and Discussion

A two-dimensional saturated transient groundwater flow problem was designed to investigate
the performance of the proposed PCM-based multi-model analysis method. In this section, the
establishment of the reference model and alternative models, the detailed procedures to implement the
proposed PCM-based multi-model analysis method, and the comparison results between PCM-based
and MC-based multi-model analysis methods are presented.
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3.1. Establishment of the Reference Model and Alternative Model Set

In the designed synthetic test, the domain was uniformly discretized into a 40 × 40 grid. Each cell
had a square shape with a unit length (all quantities are given in consistent spatial length and temporal
units, and the units for all the variables were ignored for concision). The zero-mean unconditional
reference field of log hydraulic conductivity was generated using modified sequential Gaussian
simulation code [41]. The reference variogram model used to generate the reference random field
of log hydraulic conductivity was selected as the truncated power variogram model with Gaussian
modes (TpvG) [32,49]:

γ(s) = σ2(λu)

1− exp

[
−π

4

(
s
λu

)2
]
+

[
π

4

(
s
λu

)2
]H

Γ

[
1− H,

π

4

(
s
λu

)2
] (35)

where s is the separation distance (lag) between any two points, λu is an upper cutoff scale proportional
to domain size, H is a Hurst scaling exponent—for this model 0 < H < 1. σ2(λu) = Aλ2H

u /2H is
variance, A is a coefficient so that the variance increases as a power of the upper cutoff scale, and
Γ(·, ·) is the incomplete gamma function. The corresponding integral scale is I(λu) = 2Hλu/(1 + 2H).
Note that for a random field with constant finite variance σ2, the relationship between variogram and
covariance functions can be expressed as:

γ(s) = σ2 − C(s) (36)

We set the parameters of the TpvG model equal to (A, H, λu) = (0.1, 0.25, 25). The generated
Y field can be found in Figure 3a. The reference flow model was designed with the left and right
boundaries as the prescribed head ones and the upper and bottom boundaries as impervious ones.
The prescribed head values were 10 (on the left) and 5 (on the right). A pumping well with a constant
pumping rate of 5 was located at the center of the domain. The storage coefficient (i.e., the volume of
water released from storage per unit decline in hydraulic head per unit area of the aquifer) was set to
be 0.05. A rectangular recharge window with high permeability in the impermeable upper confining
layer was used to reflect the effect of the geological discontinuity [34]. Its location can be found in
Figure 3a. The flow problem was numerically solved using MODFLOW based on the reference log
hydraulic conductivity field, and 20 time steps were simulated for the flow problem. The reference
flow field at the last simulation step corresponding to the reference Y field is depicted in Figure 3b.

The obtained reference model was used to represent a typical real groundwater system in nature.
However, in reality, the true groundwater system is unknown. To understand the system, we need
to collect some samples from the true system. To simulate the sampling process, in this case, 10 log
hydraulic conductivity data were randomly sampled from the reference Y field, and 20 randomly
assigned monitoring wells provided dynamic hydraulic head data after the pumping well started
pumping the groundwater out of the aquifer. The locations of the sampling process for log hydraulic
conductivity data and hydraulic head data are shown in Figure 4. As discussed in Section 2, head
observation data need to be perturbed with measurement errors. In this example, a measurement error
with a magnitude of 1% of the observed hydraulic head value was added to perturb the observed
hydraulic head data. These sampled data were considered as the only known information in the
multi-model analysis.
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Figure 3. Reference log hydraulic conductivity field and hydraulic head field distribution: (a) the
reference log hydraulic conductivity field; (b) the reference hydraulic head field at the 20th time step.
The black rectangle represents the location of the recharge window.

Figure 4. Sampling locations of log hydraulic conductivity and hydraulic head. Y denotes the
log hydraulic conductivity sampling locations and H represents the hydraulic head monitoring
well location.
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During the multi-model analysis, the model uncertainty needs to be considered; thus, a set of
alternative models need to be postulated to analyze the obtained sampling information. Six alternative
models are postulated in terms of the model uncertainty associated with the variogram types and
the existence of the recharge window. The postulated model was intentionally selected in such a
way that it was different from the reference one. The uncertainty associated with the existence of
the recharge window lies in the fact that the geological discontinuity of the upper confining layer is
difficult to detect by the current geophysical techniques. Several variogram models in geostatistics can
characterize the correlation of the log hydraulic conductivity field. The selected variogram models are
widely accepted exponential Gaussian and spherical models [41].

The exponential variogram can be written as:

γ(s) = σ2
(

1− e−
3s
I

)
(37)

The Gaussian variogram can be written as:

γ(s) = σ2
(

1− e−
3s2

I2

)
(38)

The spherical variogram can be written as:

γ(s) =

σ2
[

3
2
( s

I
)
− 1

2
( s

I
)3
]

s < I

σ2 otherwise
(39)

The combination of three potential variogram models and two recharge window characterizations
(existence or non-existence) resulted in six postulated models in the alternative model set. They are
denoted as “Exp0” (exponential variogram without recharge window), “Exp1” (exponential variogram
with recharge window), “Gau0” (Gaussian variogram without recharge window), “Gau1” (Gaussian
variogram with recharge window), “Sph0” (spherical variogram without recharge window), and
“Sph1” (spherical variogram without recharge window), respectively. All the settings of the problem
design are summarized in Table 1.

Table 1. Setting of the synthetic test to implement multi-model analysis.

Parameter Value

Discretization

Row 40
Column 40

Grid spacing 1
Stress period 1

Time step 20

Reference geostatistical model

Type TpvG
A 0.1
H 0.25
λu 25

Reference flow condition

Prescribed head on left boundary 10
Prescribed head on right boundary 5

Impervious upper and bottom boundaries 0
Pumping rate 5
Recharge rate 0.01

Storage coefficient 0.05
Porosity 0.15
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Table 1. Cont.

Parameter Value

Sampling information

Number of lnK measurements 10
Number of head measurements 20

Measurement error 1% of the observed head value

Setting of multi-model analysis

Number of postulated models 6
Exp0
Exp1

Labels of the postulated models Gau0
Gau1
Sph0
Sph1

3.2. Construction of PCM-Based Response Surface Model in BMA Multi-Model Analysis

The BMA multi-model analysis can be implemented in the standard manner with MC
simulation [35] by using the above problem setting. The implementation procedures are summarized
in Figure 1. However, it is well known that a large set of Y random realizations need to be generated
in order to ensure the convergence of MC simulation results [50]. Here, after the convergence test
introduced in [50], it was found that it required at least 10,000 realizations for each model to ensure the
MC result convergence. Thus, it requires at least 60,000 groundwater simulation models to be run in
order to obtain a reasonably converged result for the BMA multi-model analysis with six postulated
alternative models. Even for a simple groundwater model such as the two-dimensional synthetic
model here, it is tedious to obtain the results. Therefore, it is necessary to construct a response surface
model to improve the efficiency of the BMA multi-model analysis.

The parameters in the three postulated variogram models need to be derived in order to conduct
the geostatistical analysis. A sample variogram was obtained from 10 log hydraulic conductivity
values, and the Levenberg–Marquardt non-linear regression algorithm was used to calibrate these
three variogram models using the obtained the sample variogram. The calibration results can be found
in Figure 5.

Figure 5. Results of variogram model calibrations against sample variogram. Solid lines denote the
calibrated variogram model curves, and black dots represent the sample variogram.

To construct the response surface model, we need to determine the proper truncated terms that
can be retained in the KLE in Equation (12) for the unconditional case or (19) for the conditional case.
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Since there are 10 Y measurements, we need to use the conditional case. As mentioned in Section 2,
the KLE to generate the conditional Y realizations is based on eigenvalues and eigenfunctions in the
polynomial expansion. The generated conditional Y realization is mainly determined by the terms
associated with the large eigenvalues. The computed eigenvalues for three calibrated variogram
models were ranked from largest to smallest, and are depicted in Figure 6.

Figure 6. Ranked eigenvalues for three postulated variograms.

It can be found that the first 30 eigenvalue terms were dominant in the KLE. The remaining
eigenvalues can be safely ignored since they are too small to affect the final results of the KLE. The
approach based on the visual inspection of the eigenvalue curve to determine the retained terms for
KLE is effective, but rather qualitative.

A more quantitative way to determine the retained terms is to compute how much energy can be
reserved for the corresponding retained terms by using Equation (20). The reserved energy curves are
plotted in Figure 7. It can be found that if 85% of the total energy is deemed to be sufficiently reserved,
then 26 terms need to be retained for the exponential variogram model, 18 terms for the Gaussian
variogram model, and 12 terms for the spherical variogram model.

Figure 7. Reserved energy curves for three postulated variograms.
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After determining the proper number of the retained terms N in KLE for Y field, we need to
select the proper polynomial order in PCE for hydraulic head. In this synthetic case, it can be shown
that second order PCE (i.e., P = 2) was sufficient to approximate the hydraulic head. To obtain the
collocations points, the roots of third-order univariate Hermite polynomial were used:

H3(x) = ξ3 − 3ξ (40)

The roots of this univariate polynomial are
(

0,
√

3,−
√

3
)

. Therefore, the combination of these
three roots can form a collocation point set for the PCM method. As a general rule, 0 can be selected
with priority since it is closer to the origin and has higher probability in a standard normal distribution.
As mentioned in Section 2, the number of the collocation points is (N + P)!/N!/P!. For Exp0 and
Exp1 model, it requires 325 collocation points. For Gau0 and Gau1 model, it requires 66 collocation
points. For Sph0 and Sph1 model, it requires 153 collocation points. It can be inferred that the total
number of forward groundwater modeling runs is 1088. Compared to the 60,000 forward runs in the
MC-based multi-model analysis, the PCM-based analysis can reduce the number of model runs by a
factor of 55. A huge amount of model evaluations can be saved, because once the response surface
model is constructed, we do not need to evaluate the original groundwater model, but only to use the
constructed response surface model to perform the multi-model analysis.

3.3. Comparison Results

To ensure the accuracy of the constructed response surface model, the posterior model probability
of each model obtained through the PCM-based method was compared with that obtained through
the MC-based method. The result is shown in Figure 8, from which it can be seen that PCM method
could approximate the MC method very well in terms of the posterior model weight.

Figure 8. Comparison of posterior model weight for each postulated model.

We then compared the obtained key statistics in the BMA multi-model analysis on the basis of the
MC-based and PCM-based methods. The comparison results of the multi-model mean, within-model
variance, between-model variance, and total variance are shown in Figures 9–12, respectively. It can be
found that the PCM-based analysis results with 1088 forward model runs could be as accurate as the
MC-based results with 60,000 forward model runs.
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Figure 9. Comparison of model averaged mean based on: (a) MC method; (b) PCM method.

Figure 10. Comparison of model averaged within-model variance based on: (a) MC method;
(b) PCM method.
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Figure 11. Comparison of model averaged between-model variance based on: (a) MC method;
(b) PCM method.

Figure 12. Comparison of model averaged total variance based on: (a) MC method; (b) PCM method.
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In addition to the visual inspection of the accuracy, we summarize the comparison results in terms
of a scalar measure to get a more quantitative sense of accuracy. The scalar measurement is defined as
the spatial average of the statistics (AVG) here, and it can be computed as:

AVG =
1

Ng

Ng

∑
i=1

STATi (41)

where Ng is the number of the grid nodes, and STAT can be the value of multi-model
mean, within-model variance, between-model variance, and total variance on the ith grid node.
The comparison results are listed in Table 2. It can be found that the multi-model mean can be
computed with the highest accuracy by using the PCM-based response surface model. This can be
attributed to the fact that mean is a first-order statistical moment. For higher-order statistical moments,
between-model variance had the largest error. However, the magnitude of the between-model variance
was small relative to the within-model variance, and thus it did not significantly affect the total
variance. The relative error was approximately 1%, which is acceptable. Overall, it is beneficial to use
PCM-based response surface method to conduct BMA multi-model analysis.

Table 2. Setting of the synthetic test to implement multi-model analysis.

Statistics MC-Based PCM-Based Relative Error

Multi-model mean 7.3546 7.3536 0.013%
Within-model variance 0.1560 0.1585 1.586%

Between-model variance 0.0066 0.0061 8.274%
Total variance 0.1626 0.1645 1.182%

In the previous subsection, the computational efficiency was compared in terms of the number
of model evaluations. This is a theoretical measure of how much computational effort can be saved.
Here, the computational time is further compared to show the computational efficiency. On the same
computer with a 2.4 GHz CPU, the real computational time is demonstrated in Figure 13, where it
can be found that the PCM-based method was almost 16 times more efficient than the MC-based one.
The computational time was not proportionally reduced with the number of model evaluations, which
is attributed to the fact that a large matrix inversion is required in Equation (31), and this step can be
time-consuming. However, in this synthetic test, one forward run took less than 1 s. In a large-scale
problem, a regional groundwater model can take hours to run. With the increase of the run time
for each model evaluation, the time-consuming matrix inversion can become less significant and the
computational efficiency can approach its theoretical measure.

Figure 13. Computational time for MC- and PCM-based multimodel analysis methods
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4. Conclusions

A groundwater system is a complex natural system. Due to the data scarcity and limited
knowledge, the characterization of groundwater systems tends to be interpreted with multiple models.
Therefore, the model uncertainty may significantly affect the prediction of the groundwater system
behavior. A Bayesian model averaging framework was developed to deal with the model uncertainty
issue. However, the traditional BMA analysis is based on Monte Carlo simulation, which requires
a large amount of forward model evaluations. To alleviate the computational burden, an efficient
response surface model-based BMA analysis framework was proposed. The response surface model
was constructed by using polynomial approximation, where the log hydraulic conductivity could be
expanded into polynomials through Karhunen–Loeve method, hydraulic head could be expanded
into polynomials through polynomial chaos method, and the PCE coefficients could be solved using
probabilistic collocation method.

A two-dimensional synthetic groundwater flow problem was designed to demonstrate the
procedures of the proposed analysis framework. The postulated multi-model set was developed based
on the uncertainty of a variogram model to describe the heterogeneity of the hydraulic conductivity
and geological discontinuity of the upper confining layer. To construct the polynomial response surface
model, the proper retained terms in Karhunen–Loeve expansion for log hydraulic conductivity field
and the order of polynomial in polynomial chaos expansion for hydraulic head need to be determined.
In this case, the analysis shows that a polynomial with 26, 12, and 18 retained terms for exponential,
Gaussian, and spherical variogram models and the second order is suitable to represent the original
model. The accuracy of the proposed method was validated through comparison with the traditional
method. The comparison results show that the computed posterior model probability and the key
statistics (e.g., mean, within-model variance, between-model variance, and total variance) can all agree
with those obtained through the traditional method very well. The relative errors of mean and total
variance in the multi-model analysis were just 0.013% and 1.18%, respectively. By using the proposed
method, the computational efficiency could be improved by 55 times in terms of the number of model
evaluations and 16 times in terms of the CPU time.
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7. Sun, S.; Fu, G.; Djordjević, S.; Khu, S.T. Separating aleatory and epistemic uncertainties: Probabilistic sewer
flooding evaluation using probability box. J. Hydrol. 2012, 420, 360–372. [CrossRef]

8. Srinivasan, G.; Tartakovsky, D.M.; Robinson, B.A.; Aceves, A.B. Quantification of uncertainty in geochemical
reactions. Water Resour. Res. 2007, 43, 497–507. [CrossRef]

9. Sun, N.-Z. Inverse Problems in Groundwater Modeling; Springer: New York, NY, USA, 2013; Volume 6.
10. Carrera, J.; Neuman, S.P. Estimation of aquifer parameters under transient and steady state conditions:

1. Maximum likelihood method incorporating prior information. Water Resour. Res. 1986, 22, 199–210.
[CrossRef]

11. Marsily, G.D.; Delay, F.; Gonçalvès, J.; Renard, P.; Teles, V.; Violette, S. Dealing with spatial heterogeneity.
Hydrogeol. J. 2005, 13, 161–183. [CrossRef]

12. Alcolea, A.; Carrera, J.; Medina, A. Pilot points method incorporating prior information for solving the
groundwater flow inverse problem. Adv. Water Res. 2006, 29, 1678–1689. [CrossRef]

13. Medina, A.; Carrera, J. Geostatistical inversion of coupled problems: Dealing with computational burden
and different types of data. J. Hydrol. 2003, 281, 251–264. [CrossRef]

14. Oliver, D.S.; Cunha, L.B.; Reynolds, A.C. Markov chain monte carlo methods for conditioning a permeability
field to pressure data. Math. Geol. 1997, 29, 61–91. [CrossRef]

15. Vrugt, J.A. Dream(d): An adaptive markov chain monte carlo simulation algorithm to solve discrete,
noncontinuous, posterior parameter estimation problems. Hydrol. Earth Syst. Sci. 2011, 8, 3701–3713.
[CrossRef]

16. Chen, Y.; Zhang, D. Data assimilation for transient flow in geologic formations via ensemble kalman filter.
Adv. Water Res. 2006, 29, 1107–1122. [CrossRef]

17. Erdal, D.; Cirpka, O.A. Joint inference of groundwater-recharge and hydraulic-conductivity fields from head
data using the ensemble kalman filter. Hydrol. Earth Syst. Sci. 2015, 12, 5565–5599. [CrossRef]

18. Chang, S.-Y.; Chowhan, T.; Latif, S. State and parameter estimation with an sir particle filter in a
three-dimensional groundwater pollutant transport model. J. Environ. Eng. 2012, 138, 1114–1121. [CrossRef]

19. Zhou, H.; Gómez-Hernández, J.J.; Li, L. Inverse methods in hydrogeology: Evolution and recent trends. Adv.
Water Res. 2014, 63, 22–37. [CrossRef]

20. Beven, K.; Binley, A. The future of distributed models—Model calibration and uncertainty prediction.
Hydrol. Process. 2010, 6, 279–298. [CrossRef]

21. Neuman, S.P. Maximum likelihood bayesian averaging of uncertain model predictions. Stoch. Environ. Res.
Risk Assess. 2003, 17, 291–305. [CrossRef]

22. Beven, K.; Freer, J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of
complex environmental systems using the glue methodology. J. Hydrol. 2001, 249, 11–29. [CrossRef]

23. Binley, A.; Beven, K. Vadose zone flow model uncertainty as conditioned on geophysical data. Ground Water
2003, 41, 119–127. [CrossRef] [PubMed]

24. Morse, B.S.; Pohll, G.; Huntington, J.; Castillo, R.R. Stochastic capture zone analysis of an
arsenic-contaminated well using the generalized likelihood uncertainty estimator (glue) methodology.
Water Resour. Res. 2003, 39, 377–380. [CrossRef]

25. Montanari, A. Large sample behaviors of the generalized likelihood uncertainty estimation (glue) in assessing
the uncertainty of rainfall-runoff simulations. Water Resour. Res. 2005, 41, 224–236. [CrossRef]

26. Beven, K.J.; Smith, P.J.; Freer, J.E. So just why would a modeller choose to be incoherent? J. Hydrol. 2008, 354,
15–32. [CrossRef]

27. Mcconnell, P. Hydrological forecasting uncertainty assessment: Incoherence of the glue methodology.
J. Hydrol. 2006, 330, 368–381.

28. Draper, D. Assessment and propagation of model uncertainty. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57,
45–97.

29. Hoeting, J.A.; Madigan, D.; Raftery, A.E.; Volinsky, C.T. Bayesian model averaging: A tutorial. Stat. Sci. 1999,
14, 382–401.

30. Poeter, E.; Anderson, D. Multimodel ranking and inference in ground water modeling. Ground Water 2005,
43, 597–605. [CrossRef] [PubMed]

31. Nowak, W.; Barros, F.P.J.D.; Rubin, Y. Bayesian geostatistical design: Task-driven optimal site investigation
when the geostatistical model is uncertain. Water Resour. Res. 2010, 46, 374–381. [CrossRef]

http://dx.doi.org/10.1016/j.jhydrol.2011.12.027
http://dx.doi.org/10.1029/2007WR006003
http://dx.doi.org/10.1029/WR022i002p00199
http://dx.doi.org/10.1007/s10040-004-0432-3
http://dx.doi.org/10.1016/j.advwatres.2005.12.009
http://dx.doi.org/10.1016/S0022-1694(03)00190-2
http://dx.doi.org/10.1007/BF02769620
http://dx.doi.org/10.5194/hess-15-3701-2011
http://dx.doi.org/10.1016/j.advwatres.2005.09.007
http://dx.doi.org/10.5194/hessd-12-5565-2015
http://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0000584
http://dx.doi.org/10.1016/j.advwatres.2013.10.014
http://dx.doi.org/10.1002/hyp.3360060305
http://dx.doi.org/10.1007/s00477-003-0151-7
http://dx.doi.org/10.1016/S0022-1694(01)00421-8
http://dx.doi.org/10.1111/j.1745-6584.2003.tb02576.x
http://www.ncbi.nlm.nih.gov/pubmed/12656279
http://dx.doi.org/10.1029/2002WR001470
http://dx.doi.org/10.1029/2004WR003826
http://dx.doi.org/10.1016/j.jhydrol.2008.02.007
http://dx.doi.org/10.1111/j.1745-6584.2005.0061.x
http://www.ncbi.nlm.nih.gov/pubmed/16029184
http://dx.doi.org/10.1029/2009WR008312


Water 2018, 10, 412 21 of 21

32. Xue, L.; Zhang, D. A multimodel data assimilation framework via the ensemble kalman filter.
Water Resour. Res. 2014, 50, 4197–4219. [CrossRef]

33. Xue, L. Application of the multimodel ensemble kalman filter method in groundwater system. Water 2015, 7,
528–545. [CrossRef]

34. Xue, L.; Zhang, D.; Guadagnini, A.; Neuman, S.P. Multimodel bayesian analysis of groundwater data worth.
Water Resour. Res. 2015, 50, 8481–8496. [CrossRef]

35. Rojas, R.; Feyen, L.; Dassargues, A. Conceptual model uncertainty in groundwater modeling: Combining
generalized likelihood uncertainty estimation and bayesian model averaging. Water Resour. Res. 2008,
44, W12418. [CrossRef]

36. Razavi, S.; Tolson, B.A.; Burn, D.H. Review of surrogate modeling in water resources. Water Resour. Res.
2012, 48, 7401. [CrossRef]

37. Laloy, E.; Rogiers, B.; Vrugt, J.A.; Mallants, D.; Jacques, D. Efficient posterior exploration of a
high-dimensional groundwater model from two-stage markov chain monte carlo simulation and polynomial
chaos expansion. Water Resour. Res. 2013, 49, 2664–2682. [CrossRef]

38. Li, W.; Oyerinde, A.; Stern, D.; Wu, X.H.; Zhang, D. Probabilistic collocation based kalman filter for
assisted history matching—A case study. In Proceedings of the SPE Reservoir Simulation Symposium,
The Woodlands, TX, USA, 21–23 February 2011.

39. Dai, C.; Xue, L.; Zhang, D.; Guadagnini, A. Data-worth analysis through probabilistic collocation-based
ensemble kalman filter. J. Hydrol. 2016, 540, 488–503. [CrossRef]

40. Oladyshkin, S.; Class, H.; Nowak, W. Bayesian updating via bootstrap filtering combined with data-driven
polynomial chaos expansions: Methodology and application to history matching for carbon dioxide storage
in geological formations. Comput. Geosci. 2013, 17, 671–687. [CrossRef]

41. Deutsch, C.; Journel, A. Gslib: Geostatistical Software Library and User’s Guide, 2nd ed.; Oxford University
Press: Oxford, UK, 1998.

42. Sarma, P.; Durlofsky, L.J.; Aziz, K.; Chen, W.H. Efficient real-time reservoir management using adjoint-based
optimal control and model updating. Comput. Geosci. 2006, 10, 3–36. [CrossRef]

43. Ghanem, R.G.; Spanos, P.D. Stochastic Finite Elements: A Spectral Approach; Springer: Berlin, Gremany,
1991; p. 224.

44. Tatang, M.A.; Pan, W.; Prinn, R.G.; Mcrae, G.J. An efficient method for parametric uncertainty analysis of
numerical geophysical models. J. Geophys. Res. Atmos. 1997, 102, 21925–21932. [CrossRef]

45. Li, H.; Zhang, D. Probabilistic collocation method for flow in porous media: Comparisons with other
stochastic methods. Water Resour. Res. 2007, 43, 6627–6632. [CrossRef]

46. Liao, Q.; Zhang, D. Probabilistic collocation method for strongly nonlinear problems: 1. Transform by
location. Water Resour. Res. 2013, 49, 7911–7928. [CrossRef]

47. Chang, H.; Zhang, D. A comparative study of stochastic collocation methods for flow in spatially correlated
random fields. Commun. Comput. Phys. 2009, 6, 509–535.

48. Xiu, D.; Karniadakis, G.E. Modeling uncertainty in steady state diffusion problems via generalized
polynomial chaos. Comput. Methods Appl. Mech. Eng. 2002, 191, 4927–4948. [CrossRef]

49. Di Federico, V.; Neuman, S.P. Scaling of random fields by means of truncated power variograms and
associated spectra. Water Resour. Res. 1997, 33, 1075–1085. [CrossRef]

50. Ballio, F.; Guadagnini, A. Convergence assessment of numerical monte carlo simulations in groundwater
hydrology. Water Resour. Res. 2004, 40, 285. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/2013WR014525
http://dx.doi.org/10.3390/w7020528
http://dx.doi.org/10.1002/2014WR015503
http://dx.doi.org/10.1029/2008WR006908
http://dx.doi.org/10.1029/2011WR011527
http://dx.doi.org/10.1002/wrcr.20226
http://dx.doi.org/10.1016/j.jhydrol.2016.06.037
http://dx.doi.org/10.1007/s10596-013-9350-6
http://dx.doi.org/10.1007/s10596-005-9009-z
http://dx.doi.org/10.1029/97JD01654
http://dx.doi.org/10.1029/2006WR005673
http://dx.doi.org/10.1002/2013WR014055
http://dx.doi.org/10.1016/S0045-7825(02)00421-8
http://dx.doi.org/10.1029/97WR00299
http://dx.doi.org/10.1029/2003WR002876
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Governing Equations of Groudnwater Flow System 
	Bayesian Model Averaging Method 
	Unconditional and Conditional Karhunen–Loeve Expansion Methods 
	Polynomial Chaos Expansion Method 
	Probabilistic Collocation Method 

	Results and Discussion 
	Establishment of the Reference Model and Alternative Model Set 
	Construction of PCM-Based Response Surface Model in BMA Multi-Model Analysis 
	Comparison Results 

	Conclusions 
	References

