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Abstract: K-means clustering and principal component analysis (PCA) are widely used in water
quality analysis and management. Nevertheless, numerous studies have pointed out that K-means
with the squared Euclidean distance is not suitable for high-dimensional datasets. We evaluate a
methodology (K-means based on PCA) for water quality evaluation. It is based on the PCA method
to reduce the dataset from high dimensional to low for the improvement of K-means clustering.
For this, a large dataset of 28 hydrogeochemical variables and 582 wells in the coastal aquifer are
classified with K-means clustering for high dimensional and K-means clustering based on PCA.
The proposed method achieved increased quality cluster cohesion according to the average Silhouette
index. It ranged from 0.13 for high dimensional k-means clustering to 5.94 for K-means based on
PCA and the practical spatial geographic information systems (GIS) evaluation of clustering indicates
more quality results for K-means clustering based on PCA. K-means based on PCA identified three
hydrogeochemical classes and their sources. High salinity was attributed to seawater intrusion and
the mineralization process, high levels of heavy metals related to domestic-industrial wastewater
discharge and low heavy metals concentrations were associated with industrial wastewater punctual
discharges. This approach allowed the demarcation of natural and anthropogenic variation sources
in the aquifer and provided greater certainty and accuracy to the data classification.

Keywords: K-means clustering; PCA; spatial analysis; water quality; hydrogeochemical; coastal aquifer

1. Introduction

Researchers use multivariate analysis to study the temporal and spatial characteristics of water
quality [1–8]. Because current water quality assessment standards are not uniform and there are
multiple and complex sources of water contamination, K-means clustering and principal component
analysis (PCA) are widely used in water quality analysis and management [3,5,9,10]. Traditional
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clustering and PCA methodology for the evaluation of water quality is performed on the entire high
dimensional hydrochemical dataset [3,9]. Clustering high dimensional data is the cluster analysis
of data with anywhere from a few dozen to many thousands of dimensions. This approach allows
identification of the significant characteristics or parameters that define the data structure by PCA and
K-means allows the grouping of monitoring stations by similarities between the samples. Nevertheless,
numerous studies have pointed out that K-means with the squared Euclidean distance is not suitable
for high-dimensional data clustering because of dimensionality [11,12]. One alternative to solving this
problem is to use alternative distance functions [13]. Another option to tackle this problem is to employ
dimension reduction for high dimensional data. It is achieved apart from the traditional methods
such as the Principal Component Analysis (PCA), with Multidimensional Scaling and Singular Value
Decomposition [11,12].

The frequent problem in the application of cluster analysis is to decide an optimal number of
clusters which suitably fit a data set. A significant advantage of the K-means algorithm is that it
can evaluate the clustering results with the application of cluster validity indexes quantitatively and
objectively, perceiving how many clusters are hidden in the dataset [11,14,15]. Cluster validity or
clustering evaluation is formally defined as giving objective evaluations to clustering results in a
quantitative way [16]. They are a necessary but challenging task in cluster analysis. It has even been
stated that clustering validation be regarded as decisive as the clustering itself [11]. Every clustering
algorithm will discover clusters even in a dataset that has no natural cluster structure. Indeed, cluster
validity has become the core task of cluster analysis, for which a significant number of validation
measures have been proposed and, with precision, analyzed in the literature [15]. Geographic
information systems (GIS) can provide helpful tools for the manipulation and analysis of spatial
information but is not complete for multivariate statistical and spatial studies [17]. The use of GIS as
a visual tool allows the researcher to explore statistical outputs that would otherwise be difficult to
interpret [18].

For the reasons previously mentioned, we present a methodology for water quality
evaluation—called the K-means based on PCA method—to reduce the dataset from high dimensional
to low for the improvement of K-means clustering in addition to spatial analysis (GIS). No systematic
study into its benefits over traditional clustering methods has been performed. It allows the
identification of the dominant hydrogeochemical processes controlling groundwater chemical
composition and to achieve more comprehension of natural and anthropogenic sources influencing
the spatial distribution of groundwater quality in the coastal aquifer Santo Domingo, Mexico.

2. Materials and Methods

2.1. Study Case: Santo Domingo Aquifer

The Valley of Santo Domingo (SD) is located in the state of Baja California Peninsula in Mexico
and it lies between 24.9◦36.1′30.3” of latitude north and 111◦23.8′26.8” of longitude west (Figure 1).
The SD Valley climate is arid, the mean annual temperature shows a broad span, between 1.9 ◦C and
43.3 ◦C. The average annual precipitation reaches only 150 mm, with minimum and maximum values
of 50 and 300 mm/year, respectively [19]. The rainfall period occurs between July and September
and the dry one from April to June. The annual evapotranspiration is 2270 mm/year, with maximum
values of 370 mm/month [20]. The SD basin is the most extensive agricultural region in the Baja
California Peninsula in Mexico. The agricultural extension covers an area of 72,409 ha, 49.4% of them
are irrigated. During the agricultural period from 2013 to 2014 water withdrawals were 158,579 m3 [21].
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Figure 1. Location map of the study area showing the distribution and identification of sampled wells,
main rivers, settlements and urban zones.

2.2. Geology Setting

The geology of the Valley of Santo Domingo encloses two regional geological provinces: Purísima
Sub-basin and The Giganta Volcanic Belt. The Purísima Sub-basin comprises Triassic sedimentary rocks
and partially serpentized ultramafic rocks [22]. There are three main lithological formations included in the
Purísima Sub-basin: Paleocene lutites from Santo Domingo Formation and Paleocene Eocene sandstone
and lutite sequences of Tepetate Formation. The geological structure of the Purísima Sub-basin consists of
a syncline around 600 km long, occupied by Upper Cretaceous to Lower Tertiary sediments [23].

The Giganta Volcanic Belt, located in the eastern region, is 500 km long by 30–50 km wide and
comprises volcanic material as well as pyroclasts, lava flows and breccias, in addition to continental
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sand from the Comondú Formation [24]. The Salt Formation is widespread mainly in the central area.
It is constituted by sand particles of quartz, feldspar and igneous rocks. The maximum thickness
(185 m) is found in the northern region and it depends on the subsoil structure since the Quaternary
sediments are assorted (fluvial, eolian and alluvial). Previous researchers reported high levels of
carbonates in some aquifer zones, such as calcrete layers and a cementing material [24,25].

2.3. Hydrogeology Setting

The study area comprises part of three hydrographic basins: in the North by the Santo Domingo
basin, in the middle part of the Las Bramonas watershed and to the South by the Santa Cruz
basin [20,26]. It is defined as an unconfined granular aquifer composed principally of the Salts
Formation and Quaternary sediments [27].

The distribution of hydraulic conductivity in the SD Basin is unequal. The amount of silt and clay
in the Salt Formation increases towards the west, so a low hydraulic conductivity can be deduced.

In the SD Basin groundwater system, water flows from recharge areas in the western edge of the
Sierra La Giganta Mountains towards the west in the Pacific Ocean [25].

In 1957, the elevation of the static water level in wells was above sea level (a.s.l.) in the entire SD
Valley, whereas in 1996 the water level was 20 m a.s.l. in the direction of the east, but, in the center of
the SD basin, the water level in wells was below mean sea level. Two local drawdown cones between
20 and 25 m below sea level (b.s.l.) are demarcated in the central area [25]. Previous studies in the
1980s reported high extractions reaching withdrawals of up to 450 Mm3/year (million m3 per year)
and around 2.4 times the annual average recharge [25]. In the following years, the average annual
recharge (188 Mm3) nearly equaled the extraction rate (168 Mm3) [26].

2.4. Water Sampling

Groundwater samples from 600 agricultural use wells (Figure 1) were collected at depths between
approximately 16 m and 83 m between March and July 2010 in the aquifer area. Duplicate 250 mL
polyethylene bottles were utilized; one contained HNO3 added to 2 mL of 0.02 N for metals
determination. The other sample was kept unacidified for anions and cations analysis [28,29].

2.5. Analytical Techniques

A total of 28 hydrogeochemical parameters were determined. The electrical conductivity (EC)
was measured using a conductivity meter in units of deciSiemens (dS) (Model 162A, Thermo-Orion,
Thermo Fisher Scientific, Waltham, MA, USA), and pH was measured with a pH meter (Metrohm E-632,
Metrohm, Herisau, Switzerland) and the total dissolved solids (TDS) with a multi-parameter WTW
(Wissenschaftlich-Technische-Werkstätten) (P3 MultiLine pH/LF-SET, Xylem Inc., Rye Brook, NY, USA).

Also, significant cations such as Ca2+, Mg2+, Na+ and K+ were determined by atomic absorption
(AAS) and a flame photometer (Model: Systronics Flame Photometer 128, SYSTRONICS, Ahmedabad,
India). A titration procedure determined the HCO3

− concentration with H2SO4 and the Cl− with
AgNO3, SO4

2− and NO3
− were measured by turbidimetry. Br−, B, F− and PO4

3− were determined
with an automated flow injection analyzer (FIA) (Model: Quik Chem 8000, Lachat Instruments,
Loveland, CO, USA). Trace metals concentrations (Al3+, Cd3+, Co2+, Cr3+, Cu2+, Fe3+, Li+, Mn2+, Ni2+,
Pb2+, Sr2+ and Zn2+) were obtained by inductively coupled plasma optical emission spectroscopy
(ICP-OES) (Mod-04 Lec-28, Shelton, CT, USA) [28]. The accuracy of the chemical analysis was validated
by calculating charge balance errors (%CBE) with Equation (1):

%CBE =
∑ cations−∑ anions
∑ cations + ∑ anions

× 100% (1)

where all cations and anions are specified as milliequivalents per liter. The ion balance errors for all
groundwater samples ranged from −1.7 to 9%.
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2.6. Multivariate Statistical Analysis

2.6.1. Research Approach

The approach used for this research involved five main components: Phase I Database
pretreatment; Phase II K-means clustering on the original high dimension dataset; Phase III, to reduce
dimensional space; Phase IV, K-means clustering on the low dimensional dataset; Phase V, cluster
evaluation. The RStudio v. 1.0.153 (Copyright RStudio Inc., Boston, MA, USA) was utilized to perform
descriptive statistics, study the distribution of the measured variables, the correlations matrix, perform
the principal components analysis (PCA) and the cluster analysis (CA) (Figure 2).

Figure 2. K-means clustering processes followed in the study.

2.6.2. Phase I Database Pretreatment

Eighteen wells exhibited incomplete data or were found to be outliers and they were removed
from the original dataset (600 registers). Data that included values frequently lower than the detection
limit of the method were excluded. When no recognition of ions was recorded, they were completed
by the mean values of the neighboring data [30].

Most multivariate statistical methods require a log-normal data distribution. Therefore,
the Kolmogorov-Smirnov (K-S) statistics were applied to test the goodness-of-fit of the data to
a log-normal distribution. A 95% confidence log-normal distribution was obtained with a high
significance level for all the parameters (p < 0.05) according to the K-S test [31].
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Spearman’s rank was used to analyze the correlation between variables to account for the
non-normal distribution of water quality parameters [32]. Kaiser Meyer Olkin (KMO) and Bartlett’s
Sphericity statistics were performed to test the data accuracy and suitability for PCA, on the parameter
correlation matrix. KMO is used to measure the sampling adequacy, which indicates the proportion of
shared variance, that is, what might be caused by unknown factors. A high value (close to 1) commonly
indicates that PCA may be useful as confirmative in this study (KMO 0.79). Bartlett’s test of Sphericity
is employed to check the null hypothesis corresponding to uncorrelated variables [31]. It afforded a
significance level less than 0.05, indicating excellent relationships among variables.

2.6.3. Phase II K-Means on the Original High Dimensional Dataset

The R package NbClust provided 24 indexes (Table S1) to determine the optimal number of
clusters in a dataset [15]. The K-means algorithm based on within-cluster variation is a measure to
form homogeneous clusters [14]. The clustering process starts with initial choosing observations and
numbers the desired cluster to create initial centers—also called cluster centers—setting out from some
initial values known seed-points. Each observation was placed randomly in a cluster to which it is
closest, creating temporary clusters. K-means clustering was formulated as the sum of squared errors
as is shown in the below equation [14,33,34]:

K =
k

∑
l=1

∑
x∈Cl

||x−ml ||2 (2)

where X = {x1, . . . . . . . . . , xn} is the data; ml = ∑x∈Cl
x
nl

is known as the centroid of cluster
Cl , 1 ≤ l ≤ K; nl is the number of data objects in the cluster and K is the number of clusters.

The gravity centers of each temporary cluster are calculated and these become the new cluster
centers. The data are partitioned randomly and iteratively reassigned to another cluster based on the
nearest distance to the cluster’s center [14,33]. The procedure finishes when there is no reassignment
to any data from one cluster to another [35].

2.6.4. Phase III to Reduce Dimensional Space

Principal Component Analysis (PCA) was employed to identify the most meaningful
hydrochemical parameters.

The principal component (PC) approach is expressed as:

Zij = ai1x1j + ai2x2j + ai3x3j + . . . + aimxmj (3)

where is the component score; a is the component loading; x is the measured value of the variable; i is
the component number, j is the sample number and m indicate the total number of variables [9,36].
Similar studies were successfully applied to assess water quality [3,36,37].

2.6.5. Phase IV K-Means Clustering on the Low Dimensional Dataset

We analyzed the efficiency of the K-means clustering in low-dimensional space. It was integrated
by the reduced projected dataset (Ŷ) into a new coordinate axis by applying Ŵ to X.

Ŷ = ŴX (4)

where Ŵ is the transformation matrix consisting of the most significant PC and X is the matrix of the
measured values. Its computational complexity is dominated by the M-step. The distance between
each data point to all K centroids is computed: O(nKp), where n, K and p are the number of data
points, the number of clusters and the dimension of the data, respectively. Thus, our approach utilizes
this advantage because we work in the PCA subspace (Ŷ) with a small dimensionality.
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2.6.6. Phase V Cluster Evaluation of Technical Quality

Various measures are used to quantify the “goodness” of a cluster solution. In a good cluster
solution, the elements within a cluster are similar to one (cohesive) while the clusters themselves are
entirely different (separated) [38]. A popular measure is the silhouette coefficient, which is a measure
of both cohesion and separation [39]. The silhouette measure varies from −1 to +1. In a good solution,
the within-cluster distances are small and the between-cluster distances are extensive, resulting in
a silhouette measure close to the maximum value of 1. Clusters obtained were contrasted with the
spatial visualization of wells by ArcGIS v.10.3 (Copyright ESRI Inc., Redlands, CA, USA), to analyze
the relationship between their characteristics and the activities on the surface.

2.7. Spatial Analysis and Modeling

The hydrochemical characterization of the 582 groundwater samples were assessed using
the means of major cations (Ca2+, Mg2+, Na+, K+) and anions (Cl−, CO3

2−, HCO3
−, SO4

2−).
The hydrochemical data were subjected to graphical treatment by plotting them in Piper´s Trilinear
and using AquaChem v. 5.1 software (Copyright Waterloo Hydrogeologic, Waterloo, ON, Canada)
and Stiff plots mapping was carried out using AquaChem v. 5.1 and ArcGIS v. 10.3. These methods
were useful for understanding and identifying the water composition in different types.

3. Results and Discussion

3.1. Hydrochemical Analysis

Analysis of the 28 hydrochemical variables of groundwater in the study are presented in the
descriptive statistical summary in Table 1. The water samples were slightly acidic to alkaline with pH
values between 6.40 and 8.78 and electrical conductivity (EC) values ranging from 0.01 to 8.76 ∂S/m.
Total dissolved solids (TDS) showed wide ranges of values from 326.4 to 5606.4 mg/L, with an average
of 1285.10 and a standard deviation of 765.79 (Table 1), indicating wide variations in the concentrations
of TDS attributed mainly to the seawater intrusion also reported in previous research [25]. Chloride
concentrations with values ranging from 42.54 to 456.32 mg/L showed wide dissimilarities which are
observed in the standard deviation of 355.44 (Table 1). Therefore Na+, Ca2+, HCO3

−, Mg2+ and SO4
2−

concentrations presented wide variations with standard deviations of 126.50, 99.20, 60.83, 42.46 and
34.53 respectively.

Table 2 shows the main parameters obtained by the Spearman’s rank correlation matrix, from
which can be observed a highly significant positive correlation of 0.90, 0.95, 0.92 and 0.82 between
Ca2+ and Mg2+, Cl− and TDS, Cl− and Mg2+, in addition to Ca2+ and TDS respectively (Figure 3a–d).
These demonstrate the significant contribution of these elements to the mineralization processes and
salinization. Reference [40] studied variations in coastal aquifer groundwater and reported similar
correlations (>0.9) between Cl−, Na+, Mg2+ and TDS.

A very high correlation (0.90) between Ca2+ and Mg2+ suggests the dissolution of calcite (CaCO3)
and dolomite CaMg(CO3)2 (Figure 3a) [41,42], the main component of sedimentary rocks, existing
in these zones. High correlations of 0.92 and 0.83 between Cl− with Mg2+ and Ca2+ (Figure 3e)
and low correlations between HCO3

− with Ca2+ and Mg2+ (Figure 3f) confirm that the salinization
process is crucial in the aquifer [43]. A good correlation (0.85) between Sr2+ and Cl− shows the aquifer
mineralization process. Also, Br− concentrations are well correlated with Cl− and Mg2+ (0.75 and
0.75, respectively). These facts corroborate that their high levels are attributed to seawater intrusion in
the aquifer.

Low concentrations of SO4
2− with an average of 29.23 mg/L (Table 1) were observed throughout

the aquifer. Despite NO3
− levels being mostly within the maximum permissible limits [44,45],

the highest values observed were between 20 and 30 mg/L. The NO3
− boost could originated from

agricultural and livestock activities when shallow static levels are present, allowing a direct infiltration
of pollutants.
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Therefore, high concentrations of Co2+, Cr3+, Cu2+, Fe3+, Mn2+, Ni2+ and Pb2+ (Table 1) were
located near to urban and agricultural areas, these concentrations exceed the permissible values for
drinking water [44] and irrigation [45] (Table S2 and Figure S1). Huge Cu2+ concentrations between
8.83 and 3.8 mg/L were observed nearby to settlements. High concentrations of Fe3+ between 3.2 and
4.2 mg/L also occur near urban areas. Moreover, critical levels of Pb2+ and Mn2+ (0.49 and 0.33 mg/L,
respectively) are observed in the North and East. A high positive correlation of 0.92 between Cr3+ and
Zn (Table 2) could indicate that industrial activities are its principal source.

Table 1. Statistical summary of hydrochemical parameters of groundwater.

Parameter Min Max Mean Value S.D.

pH 6.40 8.78 8.10 0.31
TDS 326.40 5606.40 1285.10 765.79
EC 0.01 8.76 2.01 1.20

HCO3
− 36.60 683.20 237.50 60.83

Cl− 42.54 2613.37 456.32 355.44
SO4

2− 2.73 325.73 29.23 34.53
Ca2+ 4.41 731.26 109.46 99.20
Mg2+ 11.79 238.50 64.68 42.46

K+ 1.17 24.24 6.90 3.49
Na+ 16.10 1051.10 194.00 126.50

NO3
− 0.01 30.30 6.85 4.14

PO4
3− 0.001 4.27 0.03 0.23

B 0.18 5.00 0.50 0.43
Fe3+ 0.001 5.06 0.23 0.56
Mn2+ 0.001 0.33 0.01 0.02

F− 0.03 0.95 0.34 0.14
Br− 0.02 5.67 0.98 0.66
Li+ 0.01 0.14 0.02 0.01
Sr2+ 0.07 4.33 0.64 0.52
Cu2+ 0.001 8.83 0.07 0.38
Zn2+ 0.0004 0.53 0.02 0.04
Al3+ 0.001 7.47 0.19 0.43
Cr3+ 0.001 0.53 0.02 0.04
Ni2+ 0.00 0.22 0.005 0.01
Pb2+ 0.0002 0.49 0.02 0.02
Co2+ 0.0002 0.08 0.01 0.0044
Cd3+ 0.00002 0.003 0.0001 0.0004

S.W.L. 16.91 81.00 55.89 14.00

Note: Ion concentration (mg/L), pH (Standard Units), EC (∂S/m), TDS (mg/L). S.W.L. (Static Water Level in meters).
S.D. indicates standard deviation.

Figure 3. Bivariate plots of the most significant parameters of groundwater samples in the study area, (a) Mg2+

vs. Ca2+, (b) TDS vs. Cl−, (c) Mg2+ vs. Cl−, (d) TDS vs Ca2+, (e) Ca2+ vs. Cl−, (f) Ca2+ + Mg2+ vs. HCO3
−.
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Table 2. Spearman’s rank correlation matrix for the groundwater quality data.

Variable EC TDS Ca2+ Mg2+ Na+ K+ Cl− SO4
2− Br Li Sr Zn Cr Static Level

EC 1
TDS 0.99 1
Ca2+ 0.82 0.82 1
Mg2+ 0.91 0.91 0.90 1
Na+ 0.72 0.72 0.37 0.58 1
K+ 0.46 0.46 0.36 0.38 0.49 1

Cl− 0.95 0.95 0.83 0.92 0.72 0.49 1
SO4

2− 0.77 0.77 0.61 0.75 0.66 0.28 0.72 1
Br 0.74 0.74 0.66 0.75 0.48 0.24 0.75 0.53 1
Li 0.65 0.65 0.71 0.63 0.35 0.28 0.66 0.38 0.57 1
Sr 0.84 0.84 0.85 0.84 0.53 0.55 0.85 0.57 0.69 0.80 1
Zn −0.04 −0.04 −0.04 −0.03 0.01 −0.02 −0.02 −0.06 −0.02 −0.02 −0.03 1
Cr −0.03 −0.03 −0.03 −0.02 0.00 −0.05 −0.02 −0.05 −0.01 −0.02 −0.03 0.92 1

Static water Level 0.04 0.04 0.11 0.01 −0.06 0.50 0.07 −0.13 0.03 −0.03 0.18 −0.04 −0.03 1

Note: Coefficients greater than 0.5 are underlined.
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3.2. Water Types

The hydrochemical data analysis of the samples was plotted using Piper’ Trilinear diagram
(Figure S2). Also, the samples were plotted with a Stiff diagram and projected with ArcGIS v. 10.3
(Figure 4). Piper’s diagram is a suitable method to reveal the relations, dissimilarities and to classify
water types based on the ionic composition of different groundwater samples [46].

Figure 4. Spatial distribution map of the water types demonstrated by Stiff diagram.
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The main water types were identified and categorized on the basis of significant ion concentrations,
arranged in decreasing order of abundance, where the percentage reveals the amount of groundwater
samples that fall into a water type. The Piper’s diagram shows that the main water types identified in
the SD basin are mixed water types where these types cannot be recognized, due to neither anions nor
cations being dominant, considering that no one cation−anion pair exceeds 50%.

3.2.1. Mixed of Ca2+-Mg2+-Na+-Cl−-HCO3
− (38%)

The plot showed that 38% of the groundwater samples belong to mixed water of
Ca2+-Mg2+-Na+-Cl−-HCO3

−. This water type covers the central and northeastern areas,
in intermediate-depth wells between 30 to 60 m. It observed that this combined water is located
nearby to SD and Bramonas rivers, irrigation canals and natural flow streams (Figure 4). The spatial
location of wells suggests that this water class is related to urban, industrial and agricultural wastewater
discharges in water bodies.

3.2.2. Mixed of Ca2+-Mg2+-Na+-Cl− (30.8%)

The Piper´s diagram revealed that 30.8% of groundwater samples pertain to a combined water of
Ca2+-Mg2+-Na+-Cl−. This water class includes the northern and western regions, where deep wells
(60 to 80 m) are located near to settlements and shallow wells (16.91 to 30 m) occur nearby coastal zones
(Figure 4). The spatial location of wells indicates that this water type is associated with wastewater
discharge from anthropogenic sources and in addition to natural processes (intrusion seawater and
mineral dissolution) in deep wells and shallow wells respectively.

3.2.3. Mixed of Na+-Mg2+-Cl−-HCO3
− (13.7%)

The plot showed that only a few groundwater samples (13.7%) belong to mixed water of
Na+-Mg2+-Cl−-HCO3

−. This water type covers most of the northern region, intermediate-depth
wells between 30 and 60 m, generally located near agricultural zones and far from urban settlements
(Figure 4). The spatial location of wells suggests that this water type is related to anthropogenic
wastewater discharges from agricultural, industrial and urban activities. The results are similar to
those reported in Reference [25].

3.3. K-Means Clustering on High Dimensional Dataset

Partition method K-means clustering was applied to a large dataset of 28 hydrogeochemical
variables and 582 wells. Ten indexes from the R package NbClust suggested that wells are grouped in
three clusters (See Table S3). Hence, further non-spatial and spatial analyses were performed based on
this criterion.

The partition method K-means clustering, employed on a big dataset, resulted in three groups of
wells. The spatial analysis showed high scattering among wells that belong to the same group (Figure 5).
Wells within each group disclosed dissimilar hydrogeochemical characteristics. The cluster validity
was carried out with the Silhouette index, which was from 0.13 as shown in Figure S3. Therefore,
K-means clustering used on a large dataset revealed a grouping that was not suitable.
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Figure 5. Spatial distribution of groups using K-means clustering on high dimensional dataset.

3.4. Principal Component Analyst (PCA)

Principal component analysis was used to decrease the dimensional space of the large dataset
in order to improve the clustering. PCA considerably reduced 28 hydrogeochemical variables to
16 variables. PCA revealed that four components explain 71.6% of the total variance, with the
salinization process and anthropogenic activities being the main factors controlling the groundwater
quality variability. The PCA results are shown in Table 3. The PCA approach identified four
components that have the most critical loading (Figure 6).
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Table 3. Principal component and varimax rotated component matrix.

Variables
Component Matrix

PC1 PC2 PC3 PC4 Communality

pH 0.155 0.147 0.360 0.110 0.187
TDS −0.952 0.364 −0.043 −0.007 1.041
EC −0.950 0.303 −0.033 −0.007 1.036

HCO3
− 0.543 −0.030 −0.843 0.250 0.929

Cl− −0.954 −0.059 −0.250 0.020 0.916
SO4

2− −0.800 −0.121 −0.210 0.163 0.725
Ca2+ −0.819 0.197 0.112 −0.201 0.762
Mg2+ −0.843 0.285 −0.042 −0.057 0.797

K+ −0.203 −0.100 0.764 0.153 0.659
Na+ −0.864 −0.010 −0.323 0.302 0.888

NO3
− −0.081 0.047 −0.399 −0.293 0.254

Fe3+ −0.134 −0.187 0.120 0.768 0.658
Mn2+ −0.238 −0.053 0.142 0.896 0.883
Cu2+ 0.310 0.865 −0.039 0.018 0.846
Zn2+ 0.201 0.794 −0.033 −0.164 0.698
Cr3+ 0.216 0.910 −0.049 −0.141 0.897
Pb2+ 0.059 0.792 −0.029 0.010 0.631

Static water level 0.372 −0.044 0.823 −0.137 0.836
Eigen values 6.113 3.311 2.414 1.804

Variability (%) 33.96 16.553 12.072 9.021
Cumulative (%) 33.96 50.514 62.586 71.607

Note: A Rotation method: varimax with Kaiser normalization.

Figure 6. Principal component analysis (PCA) plot of variable space deduced from the
geochemical analysis.

3.4.1. PCA1

The first component (PCA1) explains 33.96% of the total variance and encompasses the following
main ions: Cl− (0.95), TDS (0.95), EC (0.95), Na+ (0.86), Mg2+ (0.84), Ca2+ (0.82) and SO4

2− (0.80) were
strongly related (Table 3 and Figure 6). The significant variables (Na+, Mg2+, Ca2+, SO4

2−, Cl− TDS
and EC) within PCA1 followed the same direction and showed a major increase related to salinity.
PCA1 demonstrates that the salinization process is the main factor controlling the groundwater quality
variability and the importance of mineralization process. Natural processes such as seawater intrusion,
cations exchange, calcite dissolution, dolomitization and sulfate reduction occur and they are increased
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by anthropogenic activities. Other researchers reported assessed water quality in coastal aquifers and
found the same parameters representativeness TDS, Cl−, Na+, Mg2+, SO4

2− and Ca2+ as PCA1 with
42.30% [2,10,40].

3.4.2. PCA2

The second component (PCA2) explains 16.55% of the total variance and was assembled by Cr3+

(0.91), Cu2+ (0.86), Pb2+ (0.79) and Zn (0.79), showing high correlations among themselves toward the
same direction (Table 3). The main variables (Cr3+, Cu2+, Pb2+ and Zn2+) within PCA2 demonstrated
an increase caused by metal pollution in the Valley (Figure 6). High concentrations occur near urban
areas and small settlements. In this component, the primary cause of pollution is industrial activity.
Furthermore, this process is reinforced by the high levels of Cl− in the aquifer through Chloride
complexation. This process makes metal mobility in the aquifer easy [47].

3.4.3. PCA3

The third component (PCA3) accounts for 12.07% of the total variance and describes the significant
contributions of HCO3

− (−0.84), K+ (0.76) and the static water level (0.82) (Table 3 and Figure 6),
disclosing good correlations among themselves. PCA3 revealed an inverse correlation between HCO3

−

and the static water level, demonstrating that when increasing the static water level, concentrations
of HCO3

− decrease. High concentrations of HCO3
− are found in shallow wells. Commonly,

K+ concentrations in aquifers are low (<10 mg/L); otherwise, external sources overcome the permitted
limit [48,49]. The high K+ concentrations (10 to 24.24 mg/L) occur in urban areas and near agricultural
zones. This result indicates that domestic wastewater discharges and potassium fertilizers are essential
sources (Figure 7).

Figure 7. Clustering wells (class 1, class 2 and class 3), related to the hydrogeochemical dataset resulted.
(a) Parameters mainly linked to salinity (b) Parameters linked to heavy metals pollution.
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3.4.4. PCA4

The fourth component (PCA4) explains 9.02% of the variance and shows the highest correlation
between Mn2+ (0.89) Fe3+ and (0.76) (Table 3 and Figure 6), conducted toward the same direction.
Both elements are naturally simultaneous and PCA4 stated the same source for Fe3+ and Mn2+ ions.
Higher concentrations are observed near the urban areas; they could be released to the environment by
any industrial and domestic wastewater punctual discharge, as there is no mining activity in the zone.

3.5. K-Means Clustering on Low Dimensional Dataset

The low dimensional dataset was obtained by Equation (4), where Ŵ is the matrix of the main four
PCs found and X is the matrix of values observed and (Ŷ) is the matrix of transformed data (582 X 4).
We realized K-means clustering on a low dimensional dataset and showed significant improvement
in the grouping. K-means clustering on a low dimensional dataset was achieved to increase quality
cluster cohesion according to an average Silhouette index. The index ranged from 0.13 (Figure S3) for
high dimensional K-means clustering to 5.94 (Figure S4) for K-means based on PCA. Both groupings
were projected spatially for practical evaluation. K-means based on PCA clustered samples with
similar hydrogeochemical characteristics, showing higher quality results (Figure 8 and Table 4).

Figure 8. Spatial distribution of clusters: class 1, class 2 and class 3.
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Table 4. Statistics of the three categories found from the K-means clustering analysis.

Parameter
Class 1 (n = 160) Class 2 (n = 166) Class 3 (n = 256)

Min Max Mean Median S.D. Min Max Mean Median S.D. Min Max Mean Median S.D.

pH 6.40 8.38 7.85 7.84 0.24 7.14 8.78 8.21 8.21 0.32 6.97 8.78 8.18 8.15 0.26
TDS 6.40 5606.40 2169.94 1926.40 883.22 326.40 998.40 671.77 665.60 130.56 576.00 2035.20 1126.48 1100.80 280.38
EC 0.01 8.76 3.39 3.01 1.38 0.51 1.56 1.05 1.04 0.20 0.90 3.18 1.76 1.72 0.44

HCO3
− 85.40 683.20 235.29 228.14 71.91 131.76 475.80 247.56 244.00 54.45 36.60 500.20 232.45 231.80 56.44

Cl− 141.80 2613.37 872.41 754.02 409.32 42.54 384.99 169.31 170.16 53.60 192.49 811.45 380.81 357.69 117.91
SO4

2− 4.64 325.73 57.07 40.32 51.97 2.89 35.91 11.15 9.22 6.65 2.73 99.23 23.50 19.32 16.51
Ca2+ 46.89 731.26 217.96 183.57 123.91 4.41 129.06 43.51 40.48 21.20 16.83 257.71 83.81 76.25 40.77
Mg2+ 18.58 238.50 116.16 107.77 41.84 11.79 61.11 29.14 28.37 9.60 17.62 123.44 55.35 53.22 19.79

K+ 1.95 24.24 9.18 8.60 4.23 1.17 9.78 4.55 4.30 2.03 1.96 15.25 6.98 7.04 2.63
Na+ 80.50 1051.10 287.90 239.20 185.26 16.10 264.50 119.84 112.70 44.62 66.70 533.60 183.21 174.80 67.49

NO3
− 0.01 29.60 8.38 7.41 4.93 0.43 30.30 6.83 5.90 4.10 0.37 23.70 5.90 5.17 3.26

PO4
3− 0.001 2.49 0.03 0.01 0.20 0.002 4.27 0.06 0.02 0.39 0.001 0.19 0.02 0.01 0.02

B 0.18 3.47 0.01 0.42 0.55 0.18 5.00 0.005 0.36 0.44 0.19 2.45 0.005 0.37 0.30
Fe3+ 0.002 4.13 0.29 0.07 0.65 0.003 3.82 0.23 0.05 0.54 0.001 5.06 0.20 0.04 0.52
Mn2+ 0.001 0.11 0.01 0.01 0.01 0.001 0.06 0.01 0.01 0.01 0.001 0.33 0.01 0.01 0.02

F− 0.091 0.66 0.30 0.30 0.10 0.11 0.95 0.39 0.38 0.15 0.03 0.76 0.34 0.34 0.13
Br− 0.04 5.67 0.02 1.61 0.73 0.02 2.86 0.005 0.45 0.29 0.24 2.30 0.01 0.88 0.39
Li+ 0.01 0.14 0.03 0.03 0.01 0.01 0.03 0.02 0.02 0.00 0.01 0.04 0.02 0.02 0.01
Sr2+ 0.29 4.33 0.01 1.10 0.62 0.07 0.68 0.003 0.25 0.09 0.13 1.50 0.01 0.50 0.19
Cu2+ 0.001 0.66 0.07 0.07 0.11 0.001 8.83 0.13 0.07 0.70 0.001 0.65 0.04 0.07 0.05
Zn2+ 0.0004 0.45 0.02 0.02 0.05 0.001 0.53 0.02 0.02 0.04 0.001 0.30 0.02 0.01 0.02
Al3+ 0.001 1.22 0.17 0.19 0.15 0.001 7.47 0.25 0.19 0.67 0.002 4.76 0.16 0.12 0.35
Cr3+ 0.001 0.45 0.02 0.02 0.04 0.001 0.53 0.02 0.02 0.04 0.001 0.30 0.02 0.02 0.02
Ni2+ 0.001 0.22 0.01 0.00 0.02 0.001 0.05 0.004 0.002 0.01 0.001 0.12 0.01 0.01 0.01
Pb2+ 0.0002 0.09 0.02 0.02 0.01 0.001 0.49 0.02 0.02 0.04 0.001 0.14 0.02 0.02 0.01
Co2+ 0.0002 0.08 0.01 0.01 0.01 0.001 0.01 0.01 0.01 0.001 0.001 0.07 0.01 0.01 0.005
Cd3+ 0.00002 0.0029 0.0001 0.00002 0.0005 0.00002 0.002 0.00005 0.00002 0.0002 0.00002 0.003 0.0001 0.00002 0.0004

S.W.L. 16.91 77.105 54.69 61.01 16.67 17.76 74.76 52.39 54.09 12.54 21.18 81.00 58.89 61.28 12.91

Note: Ion concentration (mg/L), pH (Standard Units), EC (∂S/m), TDS (mg/L). S.W.L. signal static level (meters). S.D. indicates standard deviation. n indicate number wells by cluster.
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3.5.1. First Class: 160 Wells

Dominant parameters are EC, TDS, Cl−, Ca2+, K+ and Na+ with average values of 3.39, 2169.94,
872.41, 217.96, 9.18 and 287.90 respectively (See Table 4). The groundwater class is mostly affected by
salinity, caused by different factors such as the mineralization process, seawater intrusion, industrial
and urban wastewater discharges, infiltration of leachates from open dumps and poorly designed
sanitary landfills, fertilizer application and water over pumping in deep wells. Deep wells are located
near to urban and agricultural areas while shallow wells are proximate to coastal zones (see red zones
in Figure 8).

For example, high concentrations of K+ are observed mainly in class 1 (Figure 7a) and could be
attributed to domestic and agricultural wastewater discharges. Groundwater samples from class 1
and class 3 collected from wells belong to agricultural and livestock zones and urban zones (Figure 8).
Smaller concentrations of K+ showed in class 2 (Figure 7a) due to the fact that pollutants do not reach
distant zones. Water samples from class 2 were collected from regions further away from settlements
and agricultural activities.

3.5.2. Second Class: 166 Wells

Groundwater quality is perturbed by metals such as Al3+, Cr3+, Co2+, Cu2+, Fe3+, Pb2+ and Zn2+

with average values of 0.02, 0.01, 0.13, 0.23, 0.02 and 0.02 mg/L respectively (Table 4 and Figure 7b).
Figure 7b shows high concentrations of Al3+, Pb2+, Cu2+ and Cr3+ in class 2. Industrial and

domestic wastewater are poured into drainage irrigation canals and natural flow streams and cause
damage [50]. Wells have intermediate depths, located near channels and flow streams such as Bramonas
and the Santo Domingo rivers (see yellow zones in Figure 8).

3.5.3. Third Class: 256 Wells

Class 3 has better water quality and therefore it is less influenced by industrial and domestic
wastewater discharges. The slight increases of 0.01, 0.01, 0.01 and 0.02 mg/L (Table 4) in ion
concentrations such as Co2+, Mn2+, Ni2+ and Pb2+ respectively could be attributed to industrial
wastewater punctual discharges and agriculture and natural geological conditions. Deeper wells are
mainly dedicated to agricultural irrigations and are located in this zone (see orange zones in Figure 8).

3.6. Discussion

K-means clustering based on PCA allows the finding of the location of 160 wells (class 1). Shallow
wells are located mainly in coastal zones and deep wells are located in urban and agricultural areas
of the aquifer. They are related to variables highly significant for PCA1 (TDS, EC, Cl−, Na+, Mg2+,
Ca2+ and SO4

2−) and PCA3 (HCO3
−, K+ and static level). High concentrations of these species found

in wells belong to class 1 and class 3 respectively. The water quality of the wells is related to the
salinization process and seawater intrusion, the primary source controlling the groundwater quality
variability in the aquifer.

The K-means algorithm grouped 166 wells (class 2) near to drainage irrigation canals and flow
streams. They were linked to the significant variables of PCA2 (Cu2+, Zn2+ and Cr3+) and PCA4 (Fe3+).
High levels of these ions observed in wells belong to class 2 and class 1 respectively. In these wells, the
water quality influenced by heavy metals sourced from industrial and domestic wastewater poured
into surface streams.

The third class includes 250 wells (class 3) located mainly in agricultural zones in the center and
north aquifers. They correlated with the variables of PCA2 (Pb2+ and Zn2+) and PCA4 (Mn2+). High
concentrations of these species found in wells belong to class 3. In this group of wells, the primary
source influencing the groundwater quality is the location of industrial wastewater punctual discharges.
Class 3 has better water quality than classes 1 and 2.
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In addition to the previous results, the improved method (K-means clustering based on
PCA) allowed definition of the characteristics and hydrogeochemical processes of the aquifer.
The determination of hydrogeochemistry is essential for establishing a conceptual model and
distinguishing the natural processes of an aquifer. However, the factors that affect hydrochemistry
are mainly controlled by stochastic processes, so they vary in time and space. For these reasons, the
sources of variation must identify for the correct determination of the hydrogeochemical model. In this
case study, there is excellent spatial coverage, 600 wells distributed throughout the aquifer. However,
little attention is paid to temporal variation, so the analysis does not allow us to analyze the temporal
factors that cause variation in water quality, such as a change due to randomness (storm, rainfall) and
changes due to climatic seasons (temperature, rainfall). Therefore, these monitoring systems show
a static but excellent spatial representation of the hydrochemical structure of the aquifer and allow
us to analyze the principal sources of variability by cross-referencing with the spatial distribution of
water quality.

4. Conclusions

The proposed method achieved improvement of the cluster cohesion Silhouette index ranging
from 0.13 for high dimensional k-means clustering to 5.94 for K-means clustering based on PCA and
practical spatial GIS evaluation of clustering indicated high-quality results for K-means based on PCA.

K-means clustering based on PCA identified three hydrogeochemical classes and their sources.
High salinity was attributed to seawater intrusion and mineralization process, high levels of heavy
metals related to domestic-industrial wastewater discharge and low heavy metals concentrations were
associated with industrial wastewater punctual discharges. This approach allowed the demarcation of
natural and anthropogenic variation sources in the aquifer and provided greater certainty and accuracy
of the data classification.

Three hydrochemical classes of groundwater were identified. The first class (Cluster 1): Shallow
wells and deeper wells consistent with proximity to the coast and urban zones respectively. This class
of water was associated with high salinity, which comes from seawater intrusion and the mineralization
process. The second class (Cluster 2): Intermediate and deep wells located in urban-industrial zones
and settlements. This type of water correlated with high concentrations of heavy metals, which it
could attribute to domestic-industrial wastewater discharge in drains and flow streams. The third
class (Cluster 3): Deeper wells located mainly in agricultural and urban areas. This water-type
related to a slight increase in some heavy metals, which was attributed to industrial wastewater
punctual discharges.

The proposed method showed a static but excellent spatial representation of the hydrochemical
structure of the aquifer and allowed us to analyze the principal sources of variability by
cross-referencing with the spatial distribution of water quality. The improved method could be
applied to optimize sampling and to schemes monitoring groundwater quality.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/10/4/437/s1,
Figure S1: Comparison between the concentrations of ions and Maximum Permissible Limit (MPL) recommended
by national standards for drinking water and irrigation water, Figure S2: Groundwater types plotted on a Piper
trilinear diagram, Table S1: Indexes provided by R NbClust Package, Table S2: Comparison of the groundwater
quality in relation to drinking water and irrigations standards, Figure S3: Silhouette plot of the clustering with
high-dimensional dataset, Figure S4: Silhouette plot of the clustering with low-dimensional dataset, Table S3:
Number of clusters suggested by each index.
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