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Abstract: A two-dimensional (2D) laboratory investigation on the horizontal and vertical hydrodynamic
forces induced by tsunami-like solitary waves on horizontal circular cylinders placed on a rigid sea
bed is presented. A series of 30 physical model tests was conducted in the wave channel of the
University of Calabria in which a rigid circular cylinder was equipped with 12 pressure transducers
placed along its external surface to determine the wave loads, with three wave gauges to record the
surface elevation. The observed experimental range was characterized by the prevalence of the inertia
component for the horizontal forces and of the lift component for the vertical ones. On the basis
of the performance of several time-domain methods, the wave loads and the undisturbed velocity
and acceleration derived from the surface elevation of the cylinder section were used to calculate
the drag, lift, and horizontal and vertical inertia coefficients in the practical Morison and transverse
semi-empirical equations.

Keywords: tsunami-like solitary waves; horizontal cylinders; hydrodynamic loads; experimental
tests; Morison and transverse equations; hydrodynamic coefficients

1. Introduction

The occurrence of tsunami events in coastal areas is a source of risk for already-vulnerable
marine structures subjected to the action of wind waves and currents. Hence, the stability of marine
structures under tsunami action depends on the accurate assessment of the hydrodynamic forces.
The reproduction of catastrophic tsunami waves like those that occurred in the Indian Ocean in 2004
and in Japan in 2011 was observed to be dependent upon the magnitude of the specific source, and
the resulting shapes of surface elevation can be quite different, leading to a generalized modelling
of tsunami waves (e.g., [1,2]). Owing to its robust and suitable approach, the modelling of the
leading wave of a tsunami event is usually reproduced by the generation of solitary waves both
experimentally and numerically (e.g., [3]). Indeed, when tsunami waves approach the coast, the wave
trough disappears and only a positive peak remains.

Different studies have been conducted to analyze the propagation of solitary waves and their
interaction with structures such as breakwaters or submerged barriers (e.g., [3,4]), although little
attention has been paid to the analysis of hydrodynamic forces in the case of horizontal cylindrical
bodies. Preliminary studies describe the general features of breaking and non-breaking solitary
wave-induced forces on horizontal cylinders ([5–7]) but without an extensive approach to study this
problem in various wave conditions and positions of the cylinder along the depth. In contrast,
for horizontal cylinders under the action of currents or regular and random waves, numerous
studies have researched this kind of wave–structure interaction process, adopting different degrees
of external roughness of the cylinder and of the sea bed (for a comprehensive review see [8,9]).
For bottom-mounted cylinders under the above kind of incident flows, values of hydrodynamic
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coefficients in Morison-type equations (e.g., [10]) were deduced from field tests [11] as well as small-
and large-scale laboratory experiments, and for wide ranges of Keulegan–Carpenter (KC) and Reynolds
(Re) numbers [12–19]. More complex models as compared to Morison-type ones and dealing with
an improved description of flow-cylinder interaction processes have been also developed [20,21]. More
recently, Aristodemo et al. [22] performed a laboratory study on non-breaking solitary wave forces
with respect to a horizontal cylinder placed at half-water depth that was supported by numerical
simulations based on the smoothed particle hydrodynamics technique (e.g., [23–29]). In this case,
the effect of the free surface was negligible, i.e., there was no scattering, and that related to the
bottom was weak. In this context, the horizontal and vertical force regime was dominated by inertia
components and the peaks of the horizontal forces were observed to be between about four and five
times higher than the vertical ones.

Here, a new laboratory investigation is presented in the case of a bottom-mounted horizontal
cylinder subjected to tsunami-like solitary waves. A set of 30 experimental tests was performed in the
wave channel of the University of Calabria. A rigid circular cylinder with longitudinal axis parallel to
the cross flume was located at the bed of the flume. The horizontal and vertical loads were deduced
from the records of 12 pressure sensors arranged along the external surface of the cylinder. Moreover,
three wave gauges were placed in correspondence to the vertical axis of the cylinder and close to it to
measure the surface elevation, while an ultrasonic sensor located behind the wavemaker was adopted
to measure its displacement. The experiments were conducted at intermediate water depths quite
close to shallow ones and for A/d ranging from about 0.08 to 0.18, where A is the wave amplitude and
d is the water depth, with KC ranging from about 4 to 7 and 1.83 × 104 < Re < 3.62 × 104. The resulting
force field was characterized by the prevalence of an inertial regime for the horizontal force and of the
lift component for the vertical one. It can be observed that, for Re of order of 103, the force regime is
completely dominated by the inertia components in both directions (no formation of vortex patters).
Moreover, for Re of order of 105, there is the prevalence of the drag force component in the horizontal
direction and of the lift force in the vertical direction (e.g., [9]). The present experimental values of
the free stream kinematics at the transversal axis of the cylinder and of the hydrodynamic forces
were adopted to calibrate the hydrodynamic coefficients in the Morison [10] and transverse (e.g., [13])
semi-empirical relationships through the application of ordinary and weighted least square approaches.

The contents of the paper are organized in the following manner. The adopted theory to model
tsunami-like solitary waves is summarised in Section 2. The experimental investigation in a laboratory
wave channel to determine the horizontal and vertical loads induced by solitary waves on a horizontal
cylinder placed on a horizontal bottom is illustrated in Section 3. The adopted semi-empirical formulas
for a practical evaluation of the wave forces are explained in Section 4. The characteristics of the incident
flow field and the hydrodynamic forces are respectively analysed in Sections 5.1 and 5.2. The calibration
of the semi-empirical equations through the assessment of the hydrodynamic coefficients and their
application to assess the contribution of the force components in the present wave–structure interaction
phenomenon are respectively described in Sections 5.3 and 5.4. Finally, conclusions are drawn in
Section 6.

2. Tsunami-Like Solitary Waves

Robust and widespread modelling of the leading wave of a tsunami event is given by the solitary
wave theory. The time variation of the surface elevation, η, is taken as equal to (e.g., [30]):

η(t) = Asech2(βct/2) (1)

where β is defined as the outskirts decay coefficient and c represents the wave celerity.
The Rayleigh theory to model a solitary wave is here selected due to the stable evolution of

this kind of wave along a plane wave flume [31]. Under this approach, β and c in Equation (1) are
respectively determined as:
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β = 2

√
3A

4d2(A + d)
, c =

√
g(A + d) (2)

where β = 2k and k is the wave number which is considered a finite quantity for engineering purposes
even if the wave length, L, of a solitary wave is theoretically taken as equal to infinity. As a result,
an apparent wave period is defined as T = L/c and an apparent wave length L = 2π/k is then used.
The above quantity is determined assuming, at a distance of L/2 away from the wave crest, the value
of η is reduced to 1% of its maximum value (e.g., [22,32]). Other heuristic methods to define a finite
wave length lead to negligible differences in defining a finite time window to analyse the present
physical process (e.g., [33]).

Following the Rayleigh theory, the horizontal (u) and vertical (v) velocity values induced by the
passage of a solitary wave are calculated as (e.g., [34]):
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where z is the vertical coordinate starting from the bed and B1, B2, B3, B4, B5, and B6 are equal to:
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The analytical expressions to calculate the horizontal (aH = du/dt) and vertical (aV = dv/dt)
accelerations read as:
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The second-order solution given by Equation (3) leads to a small variation of u and v along z.
This is in agreement with the intermediate water depth conditions close to shallow ones as observed
through the present laboratory experiments. The free stream velocity field, in conjunction with the
acceleration one, will be used in the practical Morison and transverse equations in order to calculate
the hydrodynamic coefficients.

A non-linear solution of the horizontal movement for a piston-type paddle, X, able to generate
a solitary wave based on the Rayleigh solution is used [31]:

X(t) =
2A
βd

tanh{β[ct− X(t)]/2} (6)
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3. Experimental Tests

Two-dimensional experimental tests were conducted in the wave flume at the GMI Laboratory of
the University of Calabria. The wave channel is 41.0 m long, 1.2 m deep, and 1.0 m wide, with the
sidewalls and bottom made of glass. It is equipped with a piston-type wavemaker with a maximum
stroke S = 0.5 m, and a rubble mound breakwater (slope of 1:4) to dissipate the incoming waves.
More specifically, the paddle movement is controlled indirectly by the rotation of a joint of the
mechanical chain, which is connected to the paddle. The rotation angle is measured with a resistive
encoder that provides a proportional analogue voltage signal. This signal, as well as the set-point signal,
is processed by a properly tuned proportional integral derivative (PID) controller. The PID acts in order
to minimize the error, i.e., the difference between the set-point and the feedback signals. The output of
the PID is connected to the kinematic chain through a hydro-pneumatic actuator. The set-point signal
is generated by a Data AcQuision Board (DAQ), thanks to a digital-to-analog converter (DAC) (see,
for more details, Tripepi et al. [35]). The longitudinal profile of the experimental layout is highlighted
in Figure 1.

Figure 1. Sketch of the longitudinal profile of the experimental setup.

At about 9 m from the wave paddle, a circular cylinder with diameter D = 0.127 m was placed
at the bottom flume (e/D = 0, where e is the distance between the bottom of the cylinder and the
bed) with its longitudinal axis orthogonal to the wave direction (Figure 2a). This physical model
was installed in the channel by means of a steel support equipped by a pulley system in order to
accurately choose a specific location along the depth. To ensure unwanted displacements of the
cylinder, C-shaped PVC supports were used at its edges (see Figure 2b). Moreover, a special glue
was adopted to fix the cylinder at the bottom in order to inhibit the passage of water flows below
it. Twelve pressure transducers (PDCR1830 model by Druck) were acquired in differential mode
due to the Wheatstone-bridge configuration and mounted along the external surface of the cylinder
at 30◦ intervals. Similar to the experimental tests with wind waves and currents performed by
Aristodemo et al. [19,20], the transducers were slightly staggered along the longitudinal axis of the
central part of the cylinder to avoid the use of a too-large diameter (see Figure 2a). The obtained
dynamic pressures, ∆p, were determined by subtracting the static pressures from the records of total
pressures measured by the transducers. The values of ∆p were assumed constant over the influence
areas and evaluated as a function of the position of the transducers. Then, the horizontal (FH) and
vertical (FV ,) hydrodynamic forces were deduced as:
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FH(t) = a1[∆p1(t) + ∆p6(t)− ∆p7(t)− ∆p12(t)]+
+a2[∆p2(t) + ∆p5(t)− ∆p8(t)− ∆p11(t)]+
+a3[∆p3(t) + ∆p4(t)− ∆p9(t)− ∆p10(t)]

FV(t) = a1[∆p3(t) + ∆p10(t)− ∆p4(t)− ∆p9(t)]+
+a2[∆p2(t) + ∆p11(t)− ∆p5(t)− ∆p8(t)]+
+a3[∆p1(t) + ∆p12(t)− ∆p6(t)− ∆p7(t)]

(7)

where the influence areas a1, a2 and a3 are evaluated as:

a1 =
∫ π/2

π/3

D
2

cosβdβ, a2 =
∫ π/3

π/6

D
2

cosβdβ, a3 =
∫ π/6

0

D
2

cosβdβ (8)

The reference angle, β, was considered starting from the lower side of the cylinder in clockwise
direction (Figure 2c).

Figure 2. (a) Front view from the paddle of the cylinder and the staggered transducer arrangement in
the wave channel; (b) View of the cylinder placement during the experiments; (c) Representative cross
section of the transducers around the bottom-mounted cylinder.

A resistive wave gauge by Edif Instruments was located in correspondence to the vertical axis
of the cylinder to measure the surface elevation and successively deduce the undisturbed kinematic
field at the transversal axis of the cylinder for the application of semi-empirical equations. A further
two wave gauges were placed 1.1 m before and after the vertical axis of the considered structure
in order to check the value of c obtained by Equation (2) on the basis of the time shifts observed
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during the propagation of the solitary waves. The wave gauges were acquired in single-ended
mode. The sampling frequency ( f ) of the transducers and gauges was set at 1000 Hz. Both types of
instruments were calibrated in static conditions using a water tank equipped with a digital water
gauge and a bottom spillway. Measurements were performed every 0.02 m and, for each water level,
the signals were acquired for 10 min. All instruments provided a linear calibration function. To verify
the correct generation of the solitary wave by applying Equation (6), the horizontal displacement of
the piston, X, was measured by an ultrasonic sensor located behind the position at rest of the paddle
using f = 50 Hz (see Figure 1).

A set of 30 different experimental tests at increasing A was performed by changing the motion
law in the possible range of the stroke S of the present piston-type paddle. Each wave amplitude was
generated two times in order to check for repeatability of the experiments. The still water depth, d,
of the experimental tests was 0.4 m. Table 1 shows the resulting values of A, T, A/d, KC = umaxT/D,
Re = umaxD/ν and d/L (relative depth), where umax is the maximum value of the free stream horizontal
velocity at the transversal axis of the cylinder, and ν is the kinematic viscosity.

Table 1. Characteristics of the experimental tests.

Test Number A (m) T (s) A/d KC Re d/L

1 0.033 3.73 0.083 4.43 1.83 × 104 0.052
2 0.034 3.84 0.085 4.69 1.87 × 104 0.051
3 0.034 3.82 0.085 4.74 1.91 × 104 0.051
4 0.035 3.83 0.088 4.86 1.95 × 104 0.051
5 0.037 3.91 0.093 5.17 2.03 × 104 0.050
6 0.041 3.99 0.103 5.86 2.26 × 104 0.048
7 0.041 3.78 0.103 5.60 2.27 × 104 0.051
8 0.042 3.87 0.105 5.76 2.29 × 104 0.050
9 0.042 4.06 0.105 6.06 2.29 × 104 0.047

10 0.043 3.37 0.108 5.10 2.33 × 104 0.057
11 0.044 3.73 0.110 5.77 2.38 × 104 0.051
12 0.044 3.64 0.110 5.70 2.41 × 104 0.053
13 0.045 3.90 0.113 6.19 2.44 × 104 0.049
14 0.046 3.79 0.115 6.17 2.50 × 104 0.050
15 0.046 3.47 0.115 5.67 2.51 × 104 0.055
16 0.048 4.05 0.120 6.87 2.61 × 104 0.047
17 0.049 3.88 0.123 6.66 2.64 × 104 0.049
18 0.052 3.86 0.130 7.00 2.78 × 104 0.049
19 0.054 3.56 0.135 6.62 2.86 × 104 0.053
20 0.055 3.59 0.138 6.84 2.92 × 104 0.053
21 0.055 3.69 0.138 7.03 2.93 × 104 0.051
22 0.058 3.26 0.145 6.45 3.04 × 104 0.058
23 0.058 3.58 0.145 7.14 3.06 × 104 0.053
24 0.058 3.36 0.145 6.71 3.07 × 104 0.056
25 0.064 3.22 0.160 6.99 3.33 × 104 0.058
26 0.065 3.26 0.163 7.11 3.35 × 104 0.058
27 0.065 3.28 0.163 7.18 3.36 × 104 0.057
28 0.066 3.09 0.165 6.87 3.42 × 104 0.061
29 0.071 3.01 0.178 7.07 3.61 × 104 0.062
30 0.071 2.86 0.178 6.74 3.62 × 104 0.065

It is worth noting that the experimental values of T sometimes highlight a deviation from
a decreasing theoretical trend when A increases. This is due to the significant spreading of η around
the undisturbed free surface because of the occurrence of the so-called trailing waves [31]. However,
the maximum amplitudes of trailing waves are up to 2% of those related to the solitary waves, leading
to a slight influence on the final part of the wave loads for which the magnitude is usually low and
then irrelevant for stability purposes. The values of the experimental trailing waves were observed
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to be under the critical threshold suggested by Guizien and Barthélemy [31]. The above features
also influence the values of KC and, similarly to the definition of an apparent wave period, it is
possible to define an apparent Keulegan–Carpenter number [22]. This parameter was generally
linked to the occurrence of vortices around the cylinder and, more generally, used to study the
wave-cylinder interaction processes (e.g., [8]). The values of KC will be successively adopted for
comparisons with regular wave cases in the literature. It can also be noted that the range of d/L
refers to intermediate water depths quite close to shallow ones, allowing for the use of Equation (3) to
represent the undisturbed kinematic field at the cylinder location.

4. Semi-Empirical Formulas

For engineering purposes, the use of semi-empirical formulas represents a simple and suitable
tool to determine the horizontal and vertical hydrodynamic loads acting on offshore and coastal
structures. Owing to their mathematical representation, these formulas require a specific calibration of
the hydrodynamic coefficients for their correct application. In the case of in-line loads, the Morison
equation [10] is widely adopted for various incident flows and kinds of structures, while the transverse
equation (e.g., [13,35]) is adopted to model the vertical forces. It is worth noting that the use of
Morison and transverse formulas is here possible since no diffraction effects occur, i.e., the presence
of the physical model of the bottom-mounted cylinder does not affect the local free surface, which is
considered as a rigid lid [6].

In this context, the in-line force, FH , is evaluated as the sum of a drag component, FD, due to
the resistance of a solid body to the incident flow motion, and an inertia component, FHI , depending
on the horizontal acceleration of the oscillatory flow. The total horizontal force, FH , is calculated
as follows [10]:

FH = FD + FHI =
1
2

ρDCDu|u|+ π

4
D2ρCMHaH (9)

where CD represents the drag coefficient and CMH is the horizontal inertia coefficient. The values
of u and aH are the ambient horizontal velocity and acceleration at the transversal axis of the
cylinder, respectively.

The total vertical load, FV , is given as the superimposition of a lift component, FL, generated by
the increased flow velocity across the cylinder induced by the blocking of the flow, and an inertia
component, FVI , depending on the vertical acceleration of the external flow at the transversal axis of
the body. The transverse force is then written as [13]:

FV = FL + FVI =
1
2

ρDCLu2 +
π

4
D2ρCMV aV (10)

where CL is the lift coefficient and CMV is the vertical inertia coefficient. The value of aV is the free
stream vertical acceleration. It can be observed that, for e/D = 0, the contribution of FVI is usually
considered negligible (e.g., [14,20]) even if this force contribution affects the magnitude and the shape
of the total vertical force and it is here considered as in the case with e/D = 1 [22]. Indeed, for e/D > 0,
the value of FVI becomes relevant in modelling FV , as highlighted by Aristodemo et al. [22].

The undisturbed kinematic field, i.e., u, aH , and aV , in the Morison and transverse schemes was
determined by Equation (3) from the experimental values of the surface elevation, η, deduced from the
wave gauge placed at the vertical section of the cylinder.

5. Results

5.1. Surface Elevation and Kinematic Field

The evaluation of the solitary wave loads at the horizontal cylinder placed on the bottom channel
depends on the suitable values of surface elevation at the cylinder section and the related free stream
kinematic field at the cylinder, in addition to the correct generation of the solitary wave by the
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experimental piston paddle. Figure 3 highlights the comparison between the analytical solution given
by Equation (1) and the experimental values of the surface elevation at the vertical axis of the cylinder
for test number 5 (A = 0.037 m and T = 3.91 s, i.e., solitary wave with low amplitude and broad shape)
and test number 30 (A = 0.071 m and T = 2.86 s, i.e., solitary wave with high amplitude and narrow
shape), respectively. For both cases, a general good agreement on the incident solitary waves can be
noticed, particularly for the higher values of η. The reference time instant t = 0 refers to the passage of
the solitary wave crest at the vertical section of the cylinder.

Figure 3. Time variation of surface elevation, η, in correspondence to the vertical axis of the cylinder:
comparison between analytical solution and experiments. (a) Test number 5; (b) Test number 30.

With reference to test number 30, Figure 4 shows the comparison between analytical solutions
and laboratory tests for the time variation of the ambient kinematic field in correspondence with the
transversal axis of the cylinder, namely z = D/2, where the semi-empirical schemes will be applied.
Starting from the surface elevations (see Figure 3b), u was directly determined by applying Equation (3),
while aH and aV were respectively derived from u and v (see Equation (5)). Specifically, Figure 4a
describes the time history of the horizontal velocity u where it is possible to notice the same shape of η

(see Figure 3b). The theoretical horizontal acceleration, aH , shows equal positive and negative peaks
(Figure 4b), while the analytical vertical acceleration, aV , presents a double positive peak and a greater
negative one (Figure 4c). Small experimental deviations from the reference analytical solutions occur in
the final part of the passage of the solitary wave across the cylinder, leading to slight non-symmetrical
features of the values of u, aH , and aV . However, these discrepancies are essentially not relevant
for stability purposes of the cylinder in which the force peaks play a fundamental role. As later
highlighted, the relevance of the ambient kinematic field at the cylinder arises from the influence on the
shape of the horizontal and vertical hydrodynamic loads as well as in the application of Morison and
transverse semi-empirical schemes in which the various force components are directly proportional to
u, aH , and aV .

Figure 4. Time variation of undisturbed kinematic field at the transversal axis of the cylinder:
comparison between analytical solution and experiments (test number 30). (a) Horizontal velocity, u;
(b) Horizontal acceleration, aH ; (c) Vertical acceleration, aV .
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5.2. Hydrodynamic Forces

In this section, the time history of the solitary wave loads acting on the bottom-mounted
cylinder deduced from the experimental tests are analyzed. As previously shown in Figure 3 for
the surface elevation, two reference test cases characterized by a different wave amplitude and period
are considered.

Figure 5a,b highlight the experimental values of the horizontal (FH) and vertical (FV)
hydrodynamic forces induced by solitary waves for test numbers 5 and 30, respectively. The black
dashed vertical line refers to the occurrence of the wave crest at the vertical section of the cylinder, i.e.,
the time instant t = 0 in which the maximum surface elevation and horizontal velocity appear. It is
interesting to observe that, in terms of maximum peaks, FH is greater than FV for test number 5 (lower
solitary wave), while FV > FH for test number 30 (higher solitary wave). Moreover, a prevalence of
positive values of the forces can be noticed, revealing that the cylinder is substantially subjected to
the coupled action of a forward motion in the direction of solitary wave propagation and a lifting one
towards the free surface. For test number 5, the maximum peak of FH is more back-shifted than the
other case if compared to the passage of the solitary wave crest. In both cases, there is a prevalence
of the inertia component with respect to the contribution of the resistance offered by the presence
of the cylindrical structure. The above findings are substantially in agreement with experimental
observations related to the interaction between regular or random waves and cylinders placed on
the bed when the parameter KC is considered (e.g., [15,36]). It can be observed that the shapes of
FH generally follow those related to aH , with a less relevant contribution of the drag force related to
the decreasing of the negative peak of FH and the forward shift of the positive peak of FH . Apart
from a small contribution of the vertical inertia component for low values of FV , the shape of the
vertical load, for reference test numbers 5 and 30, follows that related to the horizontal velocity where
the peak appears very close to the solitary wave crest. This situation arises when an external flow
interacts with a bottom-mounted cylinder in which the lift component dominates the features of
FV (e.g., [14,19]). The occurrence of drag and lift forces will be better highlighted when Morison
and transverse semi-empirical schemes are applied. However, it is important to notice that these
contribution are linked to the formation of vortex patterns around the cylinder and the consequent
deviation from a pure inertial field instead characterized by a potential flow (e.g., [37,38]).

Figure 5. Time variation of experimental horizontal (FH) and vertical (FV ) hydrodynamic forces. (a) Test
number 5; (b) Test number 30.

Taking into account all experimental tests, the positive and negative maximum horizontal forces
(FHmax,p and FHmax,n) and the positive maximum vertical forces (FVmax) as a function of A/d are
respectively shown in Figure 6. Note that these peaks are respectively normalized with respect
to the positive maximum peak of the vertical force, FVmax*. As commonly carried out in the field
of solitary waves interacting with offshore and coastal structures (e.g., [39]), the non-dimensional
wave amplitude, A/d, will be considered as simple representative parameter to evaluate the features
of the hydrodynamic forces and coefficients compared to Re and KC since these parameters are



Water 2018, 10, 487 10 of 18

dependent on the indirect knowledge of the undisturbed horizontal velocity at the transversal axis
of the cylinder. Moreover, a more stable trend of the involved quantities when A/d is adopted was
observed. In general, the positive peaks increase almost linearly with A/d, while the negative ones
highlight a higher variation for A/d > 0.15. The values of FHmax,n are lower than the positive ones
and those referring to FVmax. It is interesting to note that, for A/d < 0.105, FHmax,p values are slightly
greater than FVmax, while FVmax values are greater than FHmax,p values for A/d > 0.105 and, particularly,
for high A/d. The threshold corresponding to A/d = 0.105 is highlighted in Figure 6 with a grey
dashed vertical line. Considering the whole experimental range of A/d, the values of FHmax,p and
FHmax,n respectively exhibit an increase of 57% and 56%, with FVmax growth of about 69%.

Figure 6. Maximum positive and negative peaks of experimental horizontal forces (FHmax,p and FHmax,n,
respectively), and maximum positive peaks of experimental vertical forces ( FVmax), vs. A/d.

5.3. Calibration of Semi-Empirical Formulas

The calibration of Morison and transverse semi-empirical formulas to evaluate the solitary
wave forces at bottom-mounted cylinders in an easy way is linked to the correct evaluation of the
hydrodynamic coefficients. The above time-constant coefficients can be viewed as representative
parameters of the complex flow field around the cylinder. In order to minimize the differences between
experimental forces and those calculated by Morison and transverse schemes within the adopted
apparent wave period, time-domain methods for evaluating the hydrodynamic coefficients were
considered. The knowledge of the ambient kinematics field (i.e., horizontal velocity and horizontal
and vertical acceleration) at the transversal axis of the cylinder and the hydrodynamic loads acting
on it deduced through the experimental tests allowed for the calculation of in-line (CD and CMH) and
transverse (CL and CMV) hydrodynamic coefficients. In this context, the ordinary and weighted least
square methods were used (e.g., [40]). In the weighted least square method, the difference between
the measured and the semi-empirical force is multiplied by Fk

H , with k a positive index. Within the
adopted apparent wave period of the solitary wave at the cylinder, the hydrodynamic coefficients CD
and CMH related to the Morison scheme are calculated as:

CD =
∑M

i=1 F2k+1
H u|u|∑M

i=1 F2k
H a2

H−∑M
i=1 F2k+1

H aH ∑M
i=1 F2k

H u|u|aH

KD

[
∑M

i=1 F2k
H u4 ∑M

i=1 F2k
H aH−(∑M

i=1 F2k
H u|u|aH)

2]

CMH =
∑M

i=1 F2k+1
H aH ∑M

i=1 F2k
H u4−∑M

i=1 F2k+1
H u|u|∑M

i=1 F2k
H u|u|aH

KMH

[
∑M

i=1 F2k
H a2

H ∑M
i=1 F2k

H u4−(∑M
i=1 F2k

H u|u|aH)
2]

(11)

where KD = 1
2 ρD and KMH = 1

4 πD2ρ. The value of M represents the number of force and kinematic
values within the adopted wave period.

Similarly, the expressions to determine the hydrodynamic coefficients CL and CMV for the
transverse formula read as:
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CL =

∑M
i=1 F2k+1

V u2 ∑M
i=1 F2k

V a2
V−∑M

i=1 F2k+1
V aV ∑M

i=1 F2k
V u2aV

KL

[
∑M

i=1 F2k
V u4 ∑M

i=1 F2k
V aV−(∑M

i=1 F2k
V u2aV)

2]

CMV =
∑M

i=1 F2k+1
V aV ∑M

i=1 F2k
V u4−∑M

i=1 F2k+1
V u2 ∑M

i=1 F2k
V u2aV

KMV

[
∑M

i=1 F2k
V a2

V ∑M
i=1 F2k

V u4−(∑M
i=1 F2k

V u2aV)
2]

(12)

where KL = KD and KMV = KMH . Equations (11) and 12 recover the ordinary least square approach by
setting k = 0.

The performances of the ordinary and weighted least square approaches for calculating CD, CMH ,
CL, and CMV are analysed on the basis of the mean square error percent (MSEP). The MSEP was
obtained by comparing Morison and transverse forces and those calculated experimentally in the
following way:

MSEP =
1
M

M

∑
i=1

(
Fe

i − Fs
i

Fe
i

)2

(13)

where Fs represents the generic semi-empirical force and Fe is the generic experimental one.
For practical aims, attention was paid to the maximum peaks of the wave forces, i.e., positive and

negative for the horizontal force and only positive for the vertical one, and the related phase shifts,
φ = 2πtm/T, where tm is the occurrence time of the maximum positive or negative peak within the
wave period. Figure 7 describes the mean values of MSEP for all 30 laboratory tests calculated by the
ordinary least square (OLS), the weighted least square using k = 1 (WLS1), k = 2 (WLS2), k = 3 (WLS3),
k = 4 (WLS4), k = 5 (WLS5), and k = 6 (WLS6). The choice to test the weighted least square method up
to k = 6 is to capture the maximum positive peaks of the horizontal and vertical hydrodynamic loads
without any overestimation of the above quantities. The values of MSEP linked to the positive peaks
of both forces are lower than those related to the negative horizontal forces. When k increases, MSEP
for FHmax,p tends to decrease, ranging from about 4.5% for k = 0 to 0.7% for k = 6. The same feature
refers to FVmax for which the MSEP ranges from about 3.6% for k = 0 to 0.2% for k = 6. Conversely,
MSEP strongly increases proportionally to FHmax,p, moving from 24% for k = 0 up to 54% for k = 6.
With regard to the phase shift associated with the force peaks, the resulting values of MSEP prove
to be generally low and oscillate between 0.9% and 4.9%, with lowest values for FHmax,p associated
with k = 6 and lowest values for FHmax,n using k = 0. Taking into account the mean values of MSEP
related to all force peaks and associated phase shifts, it is possible to observe that the OLS method
(k = 0) gives the lowest MSEP, equal to 6.7%. Although the use of k > 1 leads to good values of the
maximum peaks of both forces, a relevant overestimation of the negative peak of FH is noted. Then,
the ordinary least square method was considered to determine the hydrodynamic coefficients in the
Morison and transverse equations.

Figure 8 highlights the experimental values of CD, CMH , CL, and CMV in the Morison and
transverse semi-empirical equations as a function of A/d ranging from 0.08 to 0.18. The 95% prediction
intervals are also plotted in Figure 8 and based on second-order polynomial fitting curves for CD,
CMH , and CMV and on an exponential fitting equation for CL. Similar to the case with e/D = 1 [22],
the hydrodynamic coefficients CMH , CL and CMV show a general decreasing trend when A/d increases.
This feature is particularly evident for the stable trend of horizontal inertia coefficient, while for the
corresponding vertical one the trend is quite scattered, i.e., with the highest uncertainty, even if this
kind of force component has a small weight in calculating the vertical load as compared to the lifting
load, as successively highlighted in the application of semi-empirical force models. The values of CD
generally tend to increase up to approximately A/d = 0.15 with a corresponding CD = 1.4, followed by
a tendential reduction. This particular feature can be heuristically explained through the formation
of vortex patterns around the cylinder that allows the occurrence of drag and lift force components
at the cylinder. Indeed, for low A/d and KC, the increasing trend of CD is linked to a predominant
transverse direction of the vortices compared to the incoming flow direction, while the decreasing
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trend of CD is related to a resulting movement of the vortices in the direction of the incident flow,
as observed experimentally for regular waves by Sumer et al. [41] and numerically for solitary waves
by Aristodemo et al. [22]. Regarding the magnitude of the hydrodynamic coefficients, CD values range
from 0.7 to 1.4, CMH from 2.4 to 3, CL from 3.9 to 4.7, and CMV from 3.7 to 6.9.

Figure 7. Experimental mean square error percent (MSEP) through OLS, WLS1, WLS2, WLS3, WLS4,
WLS5, and WLS6 methods. (a) Maximum positive horizontal force, FHmax,p; (b) Maximum negative
horizontal force, FHmax,n; (c) Maximum vertical force, FVmax; (d) Phase shift, φ, associated with FHmax,p;
(e) Phase shift, φ, associated with FHmax,n; (f) Phase shift, φ, associated with FVmax. OLS: ordinary least
square; WLS: weighted least square.

Figure 8. Experimental hydrodynamic coefficients vs. A/d. (a) CD; (b) CMH ; (c) CL; (d) CMV .

In a slightly wider experimental range (4 < KC < 8), the hydrodynamic force coefficients CD,
CMH, and CL are also plotted vs. KC in Figure 9 and compared with literature experimental
results referring to regular waves interacting with a bottom-mounted cylinder. Only the vertical
inertia coefficients were not reported since no experiments were conducted in the present KC
range. To the author’s knowledge, the unique experiments by Cheong et al. [13] to determine
CMV were performed out of the investigated range, i.e., 0.05 < KC < 1.25, even if a decreasing
trend when KC increases was noted as in the present dataset. A more scattered range for KC
compared to A/d can be observed since the Keulegan–Carpenter number depends on the apparent
wave period which suffers from small oscillations near the free surface due to the appearance of
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spurious trailing waves. Figure 9a shows the present values of CD as a function of KC plotted
against the experiments conducted by Sarpkaya and Rajabi [12], and Bryndum et al. [14] through
a non-linear fit of the laboratory data (Neill and Hinwood [15] and Chevalier et al. [16]). Comparing
the values of CD, the authors observed an overall good agreement with the non-linear fit carried out
by Bryndum et al. [14] and a slight underestimation of the present experiments as compared to those
performed by Sarpkaya and Rajabi [12], Neill and Hinwood [15], and Chevalier et al. [16], even if few
values of CD are present in the above works. With regard to CMH, Figure 9b shows the comparison
between the current dataset and the values obtained by Sarpkaya and Rajabi [12], Bryndum et al. [14],
Neill and Hinwood [15], Chevalier et al. [16], and Aristodemo et al. [19]. The present values of CMH
are lower than those calculated by Sarpkaya and Rajabi [12], Bryndum et al. [14] and, in particular, by
Aristodemo et al. [19], while they are slightly higher than those obtained by Neill and Hinwood [15]
and Chevalier et al. [16]. However, the current values of CMH tend to an asymptotic value equal
to 3.29 occurring for the potential flow characterized by only inertia forces (very low KC numbers)
deduced from the studies of Bryndum et al. [14] and Sumer and Fredsoe [9]. Paying attention to
CL (see Figure 9c), the present data are compared with those obtained by Sarpkaya and Rajabi [12],
Bryndum et al. [14], Neill and Hinwood [15], and Aristodemo et al. [19]. The agreement with the fitting
curve proposed by Bryndum et al. [14] is very good, while the current values of CL underestimate
those proposed by Sarpkaya and Rajabi [12] and strongly overestimate those obtained by Neill and
Hinwood [15] and Aristodemo et al. [19]. As for CMH, it can be noted that CL tends to an asymptotic
value equal to 4.49 for the fully inertial regime, i.e., when KC→0.

(a)

(b)

(c)

Figure 9. Experimental hydrodynamic coefficients vs. KC and comparison with literature coefficients
for regular waves. (a) CD; (b) CMH ; (c) CL.
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5.4. Use of Semi-Empirical Formulas

The Morison and transverse equations calibrated by experimental values of CD, CMH , CL, and
CMV and deduced from OLS approach are here illustrated in the time domain to highlight the features
of the different force components in horizontal (drag and inertia) and vertical (lift and inertia) directions.
For the considered test (case numbers 5 and 30 shown in Figure 5), Figure 10a,b respectively describe
the comparisons between the time variation of the drag (FD M) and inertia (FHI M) as force components,
and the total force (FH M) determined by the calibrated Morison equation (see Equation (9)) and the
horizontal one (FH) deduced through the laboratory experiments. For the same tests, Figure 10c,d
respectively show the comparisons between the time history of the lift (FLT) and inertia (FVI T) force
components, and the total (FV T) determined by the calibrated transverse equation (see Equation (10))
and the vertical one (FV) calculated by the laboratory experiments. It is worth noting that Morison
and transverse component and total forces are respectively specified through the symbols M and T
in Figure 10. An overall good agreement between semi-empirical methods and experiments is noted.
This is evident particularly for the maximum positive peak of the horizontal and vertical force modelled
by the Morison and transverse scheme for test number 5, respectively. A less accurate reproduction of
the time variation of the experimental loads can be observed for the negative peak of the horizontal
force, particularly for test number 30, related to the higher solitary wave. With regard to the phase
shifts linked to the force peaks, the Morison and transverse forces are lower and forward-shifted as
compared to the experimental ones, particularly for test number 30. This is linked to the complex
patterns of vortical structures around the cylinder that are not included in the simple expressions of
the adopted semi-empirical schemes. It can be noted that the horizontal force is dominated by the
inertia contribution depending on the undisturbed horizontal acceleration if compared to the drag,
which is related to the free stream horizontal velocity. The vertical force field is conversely dominated
by the lift force and the effect of the vertical inertia is linked to a lowering of the former contribution to
give the modelling of the vertical load. In general, the shape of the vertical force follows that related to
the ambient horizontal velocity in which the peak is substantially in phase with the surface elevation.
Owing to the presence of spurious trailing waves, it is also possible to observe a low contribution of
a positive vertical load in its final part that is not modelled by the transverse scheme.

The four force components, i.e., FD, FHI , FL, and FVI used to calculate the total horizontal and
vertical loads using the calibrated Morison and transverse formulas through the present laboratory
experiments are also analysed in terms of positive and negative peaks. As highlighted in Figure 11 as
a function of A/d, the force components are weighted with respect to the corresponding maximum
peak of the semi-empirical horizontal and vertical force in order to show their contribution to model
the total loads. For the peaks of horizontal forces (see Figure 11a), the inertia component ranges about
from 90% for low A/d to 80% for high A/d, leading to a progressive reduction of an inertia-dominated
regime and a growth of the weight of the drag up to 45%. Paying attention to the peaks of vertical
loads (see Figure 11b), a major role is linked to the maximum lift force, FLmax, which shows a slight
decrease when A/d increases. It can be observed that the ratio between the peaks of the lift component
and the total vertical one is generally greater than 1. The weight of the positive (FVImax,p) and negative
(FVImax,n) peaks compared to the maximum vertical force is quite low. Both contributions exhibit a very
small increase when A/d increases. Specifically, the values of FVImax,p range about from 5 to 9%, while
the values of FVImax,n range about from 10 to 20%. It is worth noting that the tendencies of the force
peaks generally reflect the features of the hydrodynamic coefficients, as illustrated in Figure 8.
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Figure 10. Time history of hydrodynamic loads determined by semi-empirical formulas and experiments.
(a) Comparison between Morison FD M, FHI M, and FH M calibrated by experiments and experimental
FH (test number 5); (b) Comparison between Morison FD M, FHI M, and FH M calibrated by experiments
and experimental FH (test number 30); (c) Comparison between transverse FLT, FVI T, and FV T
calibrated by experiments and experimental FV (test number 5); (d) Comparison between transverse
FLT, FVI T, and FV T calibrated by experiments and experimental FV (test number 30).

Figure 11. (a) Peaks of experimental Morison force components vs. A/d: positive drag FDmax and
positive inertia FHImax,p; (b) Peaks of experimental transverse force components vs. A/d: positive lift
FLmax, positive inertia FVImax,p, and negative inertia FVImax,n.

6. Conclusions

The horizontal and vertical hydrodynamic forces induced by solitary waves on a horizontal
cylinder placed on a horizontal sea bed have been investigated by means of 2D laboratory experiments.
For this purpose, 30 laboratory tests were performed in a wave flume in which a battery of 12 pressure
sensors allowed the hydrodynamic loads to be deduced.

In the present experimental flow regime (A/d ranging from about 0.08 to 0.18, 4 < KC < 7 and
Re of order of 104), both the peaks and the shapes of the total wave forces are strongly influenced by
the inertia component in the horizontal direction and by the lift component in the vertical direction.
Concerning the force peaks, it has been observed that, for A/d < 0.105, the positive horizontal peaks
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are higher than the positive vertical ones. For A/d > 0.105, the physical process is inverted and the
positive vertical peaks are greater than the positive horizontal ones. The above feature is evident for
high A/d.

To provide engineering indications, the overall good agreement between analytical solutions
and laboratory tests in terms of surface elevation at the vertical section of the cylinder and free
stream kinematic at the transversal axis of the considered structure has led, in conjunction with the
experimental forces, to the calibration of the hydrodynamic coefficients in the Morison and transverse
equations. The analysis of the hydrodynamic coefficients given by the experimental forces and the
ambient kinematic field has highlighted that CD initially increases and then slightly decreases when
A/d increases, while CMH , CL, and CMH show an overall decreasing trend. The application of Morison
and transverse schemes has led to a satisfactory evaluation of the maximum peaks and the associated
phase shifts of the hydrodynamic forces, particularly for the positive peaks.
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