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Abstract: The transmission of water waves under vertical thin plates, e.g., offshore floating
breakwaters, oscillating water column wave energy converters, and so on, is a crucial feature that
dominates the hydrodynamic performance of marine devices. In this paper, the analytical solution to
the transmission of water waves under multiple 2D vertical thin plates is firstly derived based on the
linear potential theory. The influences of relevant parameters on the wave transmission are discussed,
which include the number of plates, the draft of plates, the distance between plates and the water
depth. The analytical results suggest that the transmission of progressive waves gradually weakens
with the growth of the number and draft of plates, and under the conditions of given number and
draft of plates, the distribution of plates has significant influence on the transmission of progressive
waves. The results of this paper contribute to the understanding of the transmission of water waves
under multiple vertical thin plates, as well as the suggestion on optimal design of complex marine
devices, such as a floating breakwater with multiple plates.
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1. Introduction

There are numerous marine devices that contain vertical thin plates, such as offshore floating
breakwaters (OFBs) and oscillating water column wave energy converters (OWC-WECs). It is of
great significance to evaluate the transmission of water waves under these vertical thin plates, which
dominate the hydrodynamic performance of marine devices.

For a long time the research mainly focused on the transmission problem of water waves under
one and two vertical plates. As for the wave passing through one thin plate, it is relatively simple and
the transmission features are almost clear. As the wavelength increases, more wave energy passes
through the plate, while less wave energy is reflected. Assuming the flow to be inviscid and irrotational,
Wiegel [1] calculated the transmission coefficient by ignoring the influence of the reflected wave on the
flow field, which resulted in a significant error as compared with the experimental results. In order
to correct Wiegel’s method, Kriebel and Bollmann [2], based on similar assumptions, employed the
analytical method to obtain corrected results with the consideration of the effects of reflected waves.
However, their method neglects the disturbance of the wave near the thin plate and, thus, there still
exists a deviation in the results. In contrast, Losada et al. [3] proposed a more rigorous mathematical
model, in which the control equation is the Laplace equation and all boundary conditions on board and
under board are satisfied. Porter and Evans [4] used Galerkin’s method to obtain the same solution as
Losada et al. [3].
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In the case of two vertical plates, the conditions for the resonance of the transmission wave and the
reflection wave are found using both analytical and experimental methods. An approximate analytical
solution was proposed by Srokosz and Evans [5]. They assumed that the two plates were sufficiently
far apart, and there was no interaction between them, i.e., the length of the wave is much less than
the distance between the plates. For the more general situation, Wu and Liu [6] have obtained very
desirable results, and the solutions to the Laplace equation, as well as all the boundary conditions
related to the two plates are given. Moreover, there are some studies based on the modified boundary
conditions on the two plates. Liu and Li [7] solved the wave transmission problem under two vertical
plates, one of which was penetrable and the other was impenetrable. More recently, Shin and Cho [8]
experimentally studied the transmission of water waves under two vertical thin plates, and found that
the analytical results from the method proposed by Wu and Liu [6] agree well with the experimental
ones. In Shin and Cho [8] the relationship between wave reflectivity, transmission, and wavelength
was also studied.

However, as far as we know, no attention has been paid to the transmission problems related
to more than two vertical thin plates, which are common in ocean engineering, e.g., a column of
OWC-WECs or OFBs. Due to the hydrodynamic interaction, the performance of multiple vertical thin
plates should be significantly different from that of one or two plates.

In this paper, the general analytic solution to the transmission problem of multiple 2D
(two-dimensional) vertical thin plates is derived based on the linear potential flow theory. The impacts
of key parameters on the wave transmission of different frequencies are investigated, including the
number of plates, the distance between plates and the draft of plates. The analytical results are expected
to contribute to the understanding of the hydrodynamic performance of complex marine structures,
such as OFBs.

2. Mathematical Model for Potentials of Water Waves under Multiple Vertical Plates

As shown in Figure 1, a coordinate system o–xz is set on the water surface, with the x-axis pointing
right and the z-axis pointing upward. The origin of the coordinates falls at the intersection of the first
plate and the undisturbed free surface. There are N vertical thin plates numbered from left to right.
The draft of the ith plate is di. The depth of water is h. The distance between ith plate and the first plate
is bi. The progressive waves advance along the negative x-axis direction. The flow field is divided into
N + 1 regions for the convenience of analysis. The velocity potential of the flow field in each region is
denoted as φi, i = 1, 2, 3 . . . . . . N + 1. Assuming that the propagation time of progressive waves is
long enough and the flow field is already stable, the velocity potential can be written as:

φ1 = φ0 + φR1 = φ0 + φRF1 + φRN1, (a)
φi = φTi−1 + φRi = φTFi−1 + φTNi−1 + φRFi + φRNi, i = 2, 3, . . . . . . N (b)
φN+1 = φTN = φTFN + φTNN , (c)

(1)

In Equation (1), φ0 is the potential of progressive waves, φRi is the potential of reflection wave
from ith plate. φRFi and φRNi are the far-field and near-field components of φRi, respectively. φTi
is the potential of transmitted wave from ith plate. φTFi and φTNi are the far-field and near-field
components of φTi, respectively. Here the far-field waves refer to the wave whose amplitude (energy)
remains unchanged during obstacle-free propagation, while the near-field waves refer to the one
whose amplitude (energy) exponentially decays during obstacle-free propagation.

In the steady state, the above velocity potential φi is:

φi = Re
{

ϕie−iωt
}

(2)

In Equation (2), ϕi is the spatial component of φi, ω is the natural frequency of progressive waves.



Water 2018, 10, 517 3 of 16
Water 2018, 10, x FOR PEER REVIEW  3 of 15 

 

 

Figure 1. The sketch of water waves under 𝑁 vertical thin plates. ℎ is the water depth, 𝑑௜ is the 
draft of 𝑖th plate, 𝑏௜ is the distance from the 𝑖th plate to the first plate, 𝜙଴ is the potential of 
progressive waves, 𝜙ୖ௜  is the potential of reflection wave, and 𝜙୘௜  is the potential of the 
transmission wave. 

2.1. Definite Problem for the Transmission and Reflection of Water Waves 

The velocity potential 𝜑௜ , 𝑖 = 1, 2, 3 … … 𝑁 + 1 satisfies the following definite conditions: 
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The separation variable method is adopted to solve the definite problem shown by Equation (3), 
and the detail is given in Appendix A. The general solution for the velocity potential in each flow 
field region has the expression: 
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where 𝐴௜ଵ, 𝐴௜ଶ, 𝐵௜௡ , 𝐶௜௡ are unknowns that should be solved using the rest boundary conditions. 
In Equation (4), the first and second terms on the right hand side represent the potential of 

far-field waves spreading along the negative and positive 𝑥-axis direction, respectively. The third 
and fourth terms represent the potential of near-field waves spreading along the positive and 
negative 𝑥-axis direction, respectively. 

The velocity potentials in different regions are discussed as follows. 

2.1.1. Region 1 

In region 1 there only exist the first three terms on the right hand side of Equation (4), i.e.: 
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Figure 1. The sketch of water waves under N vertical thin plates. h is the water depth, di is the draft of
ith plate, bi is the distance from the ith plate to the first plate, φ0 is the potential of progressive waves,
φRi is the potential of reflection wave, and φTi is the potential of the transmission wave.

2.1. Definite Problem for the Transmission and Reflection of Water Waves

The velocity potential ϕi, i = 1, 2, 3 . . . . . . N + 1 satisfies the following definite conditions:
∂2 ϕi
∂x2 + ∂2 ϕi

∂z2 = 0, z < 0 (a)
∂ϕi
∂z = 0, z = −h (b)
−ω2 ϕi + g ∂ϕi

∂z = 0, z = 0 (c)

(3)

The separation variable method is adopted to solve the definite problem shown by Equation (3),
and the detail is given in Appendix A. The general solution for the velocity potential in each flow field
region has the expression:

ϕi(x, z) = Ai1ek0hcosh k0(z + h)e−ik0x + Ai2ek0h cosh k0(z + h)eik0x

+
∞

∑
n=1

Bin
cos kn(z + h)

cos knh
e−knx +

∞

∑
n=1

Cin
cos kn(z + h)

cos knh
eknx (4)

where Ai1, Ai2, Bin, Cin are unknowns that should be solved using the rest boundary conditions.
In Equation (4), the first and second terms on the right hand side represent the potential of far-field

waves spreading along the negative and positive x-axis direction, respectively. The third and fourth
terms represent the potential of near-field waves spreading along the positive and negative x-axis
direction, respectively.

The velocity potentials in different regions are discussed as follows.

2.1.1. Region 1

In region 1 there only exist the first three terms on the right hand side of Equation (4), i.e.:

ϕ1 = ϕ0 + ϕRF1 + ϕRN1

= A11ek0h cosh k0(z + h)e−ik0x + A12ek0h cosh k0(z + h)eik0x

+
∞
∑

n=1
B1n

cos kn(z+h)
cos knh e−knx

(5)

The first term is the potential of progressive waves, and the second and third ones are the potential
of the far-field and near-field reflection waves, respectively.
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The progressive waves corresponding to the incident potential ϕ0 can be written as:

ζI = Re
{

ζ0e−i(ωt+k0x)
}

(6)

In Equation (6), ζ0 is the amplitude of progressive waves. There exists relation between the
incident potential and the elevation of the free surface:

.
ζI =

∂
(

ϕ0e−iωt)
∂z

, z = 0 (7)

i.e.:
A11ek0hk0sinhk0he−ik0x = −iωζ0e−ik0x (8)

Combining Equations (5) and (8), the incident potential can be obtained:

ϕ0 = − igζ0

ω

cosh k0(z + h)
cosh k0h

e−ik0x (9)

The far-field reflection wave has the expression:

ζRF1 = Re
{

R0ζ0e−i(ωt−k0x)
}

(10)

where R0 is the far-field reflection coefficient, which should be between 0 and 1. Thereby, the velocity
potential of the far-field reflection wave can be written as:

ϕRF1 = −R0
igζ0

ω

cosh k0(z + h)
cosh k0h

eik0x (11)

Analogously, one can obtain the near-field reflection wave:

ϕRN1 = −
∞

∑
n=1

Rn
igζ0

ω

cos kn(z + h)
cos knh

e−knx (12)

where Rn is the near-field reflection coefficient.
For the convenience of writing, the following substitutions are made:

I0(z) = −
igζ0

ω

cosh k0(z + h)
cosh k0h

(13)

In(z) = −
igζ0

ω

cos kn(z + h)
cos knh

(14)

Substituting Equations (13) and (14) into Equations (9), (11), and (12), and then substituting the
resulting equations into Equation (5), one obtains:

ϕ1 = I0(z)e−ik0x + R0 I0(z)eik0x +
∞

∑
n=1

Rn In(z)e−knx (15)

2.1.2. Region i (i = 2, 3, . . . , N)

In region i (i = 2, 3, . . . , N), there exist far-field and near-field transmitted waves originating
from the right plate ((i− 1)th plate) and spreading toward the negative x-axis direction, as well as
far-field and near-field reflection waves originating from the left plate (ith plate) and spreading toward
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the positive x-axis direction. Therefore, there should exist four terms in the expression of the velocity
potential, which can be written as:

ϕi = I0(z)
(

A(i,0) e−ik0(x+bi−1) + B(i,0)e
ik0(x+bi)

)
+∑∞

n=1 In(z)
(

A(i,n)e
kn(x+bi−1) + B(i,n)e

−kn(x+bi)
) (16)

where A(i,0), A(i,n) are the far-field and near-field transmission coefficients, respectively; B(i,0), B(i,n)
are the far-field and near-field reflection coefficients, respectively.

2.1.3. Region N + 1

In region N + 1, there only exist far-field and near-field transmitted waves originating from the
right plate (Nth plate) and spreading toward the negative x-axis direction. Thus the velocity potential
in region N + 1 should have the following expression:

ϕN+1 = T0 I0(z)e−ik0(x+bN) +
∞

∑
n=1

Tn In(z)ekn(x+bN) (17)

where T0, Tn are the far-field and near-field transmission coefficients, respectively.

2.2. Velocity Potential in Flow Fields

The coefficients in Equations (15)–(17) are unknown, and they need to be solved according to the
remaining boundary conditions. The first boundary condition is:

∂ϕi
∂x

=
∂ϕi+1

∂x
, x = −bi, z < 0 (18)

which means that the flow velocities from the two neighbouring domains are the same on their
adjacent boundary.

Taking the derivative of Equations (15)–(17) with respect to x, and then taking Equation (18) into
account, one obtains: 

R0 = 1− A(2, 0) + B(2, 0)eik0b2 (a)
Rn = −A(2, n) + B(2, n)e−knb2 (b)
T0 = A(N, 0)e−ik0(bN−1−bN) − B(N, 0) (c)
Tn = A(N, n)ekn(bN−1−bN) − B(N, n) (d)

(19)

Substituting Equation (19) into Equations (15)–(17) yields:

ϕ1 = I0(z)e−ik0x +
(

1− A(2, 0) + B(2, 0)eik0b2
)

I0(z)eik0x+

∑∞
n=1

(
−A(2, n) + B(2, n)e−knb2

)
In(z)e−knx,

(a)

ϕi = I0(z)
(

A(i, 0)e−ik0(x+bi−1) + B(i, 0)eik0(x+bi)
)
+

∑∞
n=1

(
A(i, n)ekn(x+bi−1) + B(i, n)e−kn(x+bi)

)
In(z),

i = 2, 3 . . . N (b)

ϕN+1 = I0(z)e−ik0(x+bN)
(

A(N, 0)e−ik0(bN−1−bN) − B(N, 0)
)
+

∑∞
n=1

(
A(N, n)ekn(bN−1−bN) − B(N, n)

)
In(z)ekn(x+bN),

(c)

(20)
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In addition, there still exist two sets of boundary conditions. One of them is that the thin plates are
impenetrable, so the fluid velocity on the surface of plates is 0. The other is that the velocity potential
is the same on the adjacent boundaries of each pair of the neighbouring regions. These boundary
conditions can be written as (i = 1, 2, . . . , N):{

∂ϕi
∂x =

∂ϕi+1
∂x = 0, x = −bi, −di < z < 0 (a)

ϕi = ϕi+1, x = −bi, −h < z < −di (b)
(21)

Substituting Equation (20) into Equation (21) leads to (i = 2, 3, . . . , N − 1):

ik0 I0(z)
(
−A(2, 0) + B(2, 0)eik0b2

)
+

∑∞
n=1 In(z)kn

(
A(2, n)− B(2, n)e−knb2

)
= 0,

−d1 < z < 0 (a)

∑∞
n=0 In(z)A(2, n) = I0(z), −h < z < d1 (b)

ik0 I0(z)
(
−A(i, 0)e−ik0(bi−1−bi) + B(i, 0)

)
+

∑∞
n=1 In(z)Kn

(
A(i, n)ekn(bi−1−bi) − B(i, n)

)
= 0

−d1 < z < 0 (c)

I0(z)
(

A(i, 0)e−ik0(bi−1−bi) + B(i, 0)
)
+

∑∞
n=1 In(z)

(
A(i, n)ekn(bi−1−bi) + B(i, n)

)
−

I0(z)
(

A(i + 1, 0) + B(i + 1, 0)eik0(bi+1−bi)
)
−

∑∞
n=1 In(z)

(
A(i + 1, n) + B(i + 1, n)e−kn(bi+1−bi)

)
= 0,

−h < z < di (d)

ik0 I0(z)
(
−A(N, 0)e−ik0(bN−1−bN) + B(N, 0)

)
+

∑∞
n=1 In(z)kn

(
A(N, n)ekn(bN−1−bN) − B(N, n)

)
= 0

−dN < z < 0 (e)

∑∞
n=0 In(z)B(N, n) = 0 −h < z < dN ( f )

(22)

To obtain the coefficients A(i, n) and B(i, n) (i = 2, 3, . . . , N), one should eliminate variables
In(z), n = 0, 1, 2, . . . , ∞ from Equation (22). To this end, the following steps are carried out.
Multiplying Equation (22) by Im(z) (m = 0, 1, 2, . . .), then multiplying Equation (22b), (22d), and
(22f) by k0, then integrating the resulting equations over the domain of definition, finally adding
the resulting Equation (22a) to (22b), (22c) to (22d), and (22e) to (22f), respectively, one obtains
(i = 1, 2, 3, . . . , N; m = 0, 1, 2, . . .):

∞

∑
n=0

Cm
in A(i, n) +

∞

∑
n=0

Dm
inB(i, n) +

∞

∑
n=0

Em
in A(i + 1, n) +

∞

∑
n=0

Fm
in B(i + 1, n) = Gm

i (23)

with:

Cm
in =



0, i = 1
(−ik0 fm0(−di, 0) + k0 fm0(−h,−di))e−ik0(bi−1−bi), 2 ≤ i ≤ N − 1, n = 0
(kn fmn(−di, 0) + k0 fmn(−h,−di))ekn(bi−1−bi), 2 ≤ i ≤ N − 1, n ≥ 1
−ik0 fm0(−dN , 0)e−ik0(bN−1−bN), i = N, n = 0
kn fmn(−dN , 0)ekn(bN−1−bN), i = N, n ≥ 0

(24)

Dm
in =



0, i = 1
ik0 fm0(−di, 0) + k0 fm0(−h,−di), 2 ≤ i ≤ N − 1, n = 0
−kn fmn(−di, 0) + k0 fmn(−h,−di), 2 ≤ i ≤ N − 1, n ≥ 1
ik0 fm0(−dN , 0) + k0 fm0(−h,−dN), i = N, n = 0
−k0 fmn(−dN , 0 + k0 fmn(−h,−dN), i = N, n ≥ 0

(25)
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Em
in =


−ik0 fm0(−d1, 0) + k0 fm0(−h,−d1), i = 1, n = 0
kn fmn(−d1, 0) + k0 fmn(−h,−d1) , i = 1, n ≥ 1
−k0 fmn(−h,−di), 2 ≤ i ≤ N − 1
0, i = N

(26)

Fm
in =



ik0 fm0(−d1, 0)eik0b2 , i = 1, n = 0
−kn fmn(−d1, 0)e−knb2 i = 1, n ≥ 0
−k0 fm0(−h,−di)eik0(bi+1−bi), 2 ≤ i ≤ N − 1, n = 0
−k0 fmn(−h,−di)e−k0(bi+1−bi) 2 ≤ i ≤ N − 1, n ≥ 1
0, i = N

(27)

Gm
i =

{
k0 fm0(−h,−d1), i = 1
0, i ≥ 2

(28)

fmn(z1, z2) =

z2∫
z1

Im(z)In(z)dz (29)

From Equations (23)–(29) one can obtain coefficients A(i, n) and B(i, n) (i = 2, 3, . . . , N). In the
calculation, the value of m and n could be truncated to limited numbers. Once all coefficients are
solved, the velocity potentials in any region can be obtained using Equation (20).

Within the framework of potential flows, the wave energy should be conserved [8], i.e., the
following condition should be satisfied:

|T0|2 = |A(i, 0)|2 − |B(i, 0)|2 = 1− |R0|2 ≥ 0, i = 2, 3, . . . , N (30)

In Equation (30), the coefficients Tn, A(i, n), B(i, n) and Rn (n ≥ 1) related to near-field waves
are not included due to the fact that they do not contribute to the wave energy propagation [8].
Therefore, the transmission coefficient T0 at the last plate (see Equation (19c)) is sufficient to reveal the
characteristics of progressive waves under multiple vertical thin plates.

3. Numerical Results and Discussion

In this section, the transmission of water waves under multiple 2D vertical thin plates are
evaluated and discussed. The self-developed MATLAB codes for calculating the transmission of water
waves can be found on GitHub (https://github.com/guozhiqun/Waves-under-Multiple-Vertical-
Thin-Plates). In the numerical calculation, the maximum of m and n in Equations (23)–(29) are truncated
to 100, which proved to be sufficient for obtaining convergent results.

3.1. The Transmission of Progressive Waves Due to Two Plates

To validate the numerical model for transmission waves under multiple vertical thin plates
developed in this paper, the case of two vertical thin plates is investigated, and the numerical results
are compared with those from Shin and Cho [8]. In the numerical setup, the water depth is h = 0.321 m.
The distance between two plates is b = b2 = 0.585 m.

3.1.1. Verification of the Numerical Model

The draft of both plates is d1 = d2 = 0.06 m. The wavelength λ ranges from 0.27 m to 6.85 m,
and the plate distance to wavelength ratio b/λ ranges from 0.085 to 2.14. As shown in Figure 2, the
amplitude and phase of the transmission coefficient with respect to b/λ obtained from the current
model agrees well with those from Shin and Cho [8].

https://github.com/guozhiqun/Waves-under-Multiple-Vertical-Thin-Plates
https://github.com/guozhiqun/Waves-under-Multiple-Vertical-Thin-Plates
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From Figure 2a one can observe that with the growth of b/λ, in general the transmission
coefficient (amplitude) |T0| gradually decreases, though it surges in some exceptional wavelengths
(b/λ = 0.695, 1.11, 1.55, . . .). In other words, the longer the incident wavelength, the more wave
energy passes through the two plates, while some exceptional waves can penetrate two plates and
propagate ahead unhindered.Water 2018, 10, x FOR PEER REVIEW  8 of 15 
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Figure 2. Comparison of the transmission coefficient of progressive waves obtained using the present
numerical model with the numerical results from Shin and Cho [8]. (a) The amplitude of the coefficient
|T0|; and (b) the phase of the coefficient ∠T0.

The transmission coefficient surge phenomenon can be explicated by the phase difference
∠A(2, 0)−∠B(2, 0) between the transmission coefficient on the first plate A(2, 0) and the reflection
coefficient on the second plate B(2, 0), as shown in Figure 3. One can find that, in the exceptional
waves (b/λ = 0.695, 1.11, 1.55, . . .), the phase difference approximately satisfies the condition
∠A(2, 0) − ∠B(2, 0) ∼= 0◦ or 180◦, which represents the standing waves between the two plates.
The conclusion was evidenced in the experiments [8] in which the standing waves with 1, 2, 3, . . .
nodes occur in the waves with b/λ = 0.695, 1.11, 1.55, . . ., respectively. That is to say, when there
exist standing waves between the two plates, the wave energy almost completely passes through two
plates without reflection (|R0| = 0).
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Figure 3. The phase difference ∠A(2, 0)−∠B(2, 0) between the transmission coefficient on the first
plate A(2, 0) and the reflection coefficient on the second plate B(2, 0).



Water 2018, 10, 517 9 of 16

3.1.2. Effect of Near-Field Transmission Coefficients

In this case, the far-field transmission coefficient |T0| and near-field transmission coefficients
|Tn| (n ≥ 1) are compared with respect to b/λ. The draft of both plates is d1 = d2 = 0.06 m. As depicted
in Figure 4, the far-field coefficient |T0| is much greater than the near-field ones, especially in the
medium to long waves (b/λ < 1.5). With the increase of index n, the near-field coefficient term
|Tn| (n ≥ 1) gradually decreases to zero. From this sense, in the numerical calculation, it is acceptable
to truncate the near-field terms to a limited number.Water 2018, 10, x FOR PEER REVIEW  9 of 15 
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In addition, according to Equation (17), the near-field velocity potentials of the transmission
waves exponentially approach to zero at far-field, i.e.:

lim
x→−∞

∞

∑
n=1

Tn In(z)ekn(x+bN) = 0 (31)

Therefore, the near-field waves do not make a contribution to wave energy transmission, and the
near-field transmission coefficients Tn(n ≥ 1) can be omitted in the study.

3.1.3. Effect of the Plate Draft

The results from Shin and Cho [8] suggest that the transmission coefficient |T0| of the two plates
monotonically decreases with the plate draft (the draft of the two plates is kept same). However, one
might be interested in how the transmission of progressive waves changes when only one plate draft
varies. Actually, in most OWC-WEC, the two plates are in different drafts, i.e., the front baffle has a
shallower draft than the back baffle, which can reduce the reflectivity of progressive waves at the front
baffle and the transmission at the back baffle, and capture more wave energy.

In this case, the draft of the first plate is fixed at d1 = 0.06 m, while the draft of the second one d2

varies from 0.03 m to 0.15 m. Several groups of representative results with respect to different d2 are
shown in Figure 5.
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Figure 5 clearly depicts the change of |T0| with respect to d2 in different wavelengths. If the
wavelength λ is much longer than the plate distance b, e.g., b/λ = 0.24, the increase of draft d2

has little influence on the transmission coefficient. When the wavelength λ is comparable to the
plate distance b, e.g., b/λ = 0.77, 1.15, the increase of draft d2 significantly reduces the transmission
coefficient |T0|. In particular, in the vicinity of d2/d1 = 0.8, the transmission coefficient |T0| firstly
increases and then decreases with the growth of d2/d1. On the other hand, when the wavelength λ is
much smaller than the plate distance b, e.g., b/λ = 1.37, the transmission coefficient |T0| is dominant
by the draft d1, which makes |T0| to be small even at d2/d1 = 0.5, and with the growth of d2, the
transmission coefficient |T0| gradually decreases to zero.
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3.2. The Transmission of Progressive Waves Due to Multiple Plates

3.2.1. Effect of the Plate Number

The water depth is set as h = 0.321 m, and the distance between every two neighbouring plates
is b = 0.585 m. The draft of all plates is set as di = 0.06 m (i = 1, 2, . . . , N). The number of plates N
is taken from 3 to 10. The transmission coefficients of progressive waves due to different number of
plates are shown in Figure 6.

From Figure 6 one can find that, with the growth of the plate number, the progressive waves
of long wavelength (b/λ < 0.25) almost propagate intact through the plates, i.e., in long waves the
transmission coefficient is |T0| ∼= 1 for an arbitrary plate number. On the other hand, in short to
medium waves (b/λ > 0.25), the transmission coefficient descends to zero with the growth of b/λ.
However, in the vicinity of certain wavelengths (b/λ ∼= 1.11, 1.55, . . .) independent to the plate
number, the transmission coefficient surges to a certain height and then follows back. Moreover,
with the growth of the plate number, the surge tends to be multi-peak. These phenomena should
associate with the standing waves between plates, which occur in certain b/λ conditions, and make the
progressive waves pass through multiple plates with little reflection. Certainly, with the growth of the
plate number, some wave energy is inevitably reflected and the surge amplitude of the transmission
coefficient would decrease as compared to the two plate case.
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3.2.2. Effect of the Plate Draft to Water Depth Ratio

In this case, the effect of plate draft to water depth ratio d/h on the transmission coefficient
is investigated. The draft of the plates is set as di = d = 0.09 m (i = 1, 2, . . . , N) and the distance
between neighbouring plates is set as b = 0.3 m, which could make the transmission coefficient
more sensitive to the wavelength, according to the study in Section 3.1. Three water depths
h = 0.121 m, 0.221 m, 0.321 m, are employed for the study. The corresponding plate draft to water
depth ratios are d/h = 0.74, 0.41, 0.28. Note that in shallow water or larger plate draft to water depth
ratio (d/h = 0.74), along the water depth direction most water is shielded by plates.

Figure 7 compares the transmission coefficient in different water depth. One can observe that in
shallower water or larger plate draft to the water depth ratio (h = 0.121 m or d/h = 0.74), the entire
transmission coefficient curves move toward the left direction of b/λ, i.e., the transmission coefficient
starts to decrease in longer waves, while with the growth of the water depth or the reduction of the
plate draft to water depth ratio (h = 0.221 m, 0.321 m or d/h = 0.41, 0.25), the transmission coefficient
does not make significant changes.

It can be concluded that the larger plate draft to the water depth ratio (i.e., the greater portion of
water shielded by plates), the smaller the transmission coefficient one obtains, and in the longer waves
the transmission coefficient surges, i.e., standing waves between plates occur in the longer waves.
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3.2.3. Effect of the Plate Arrangement

In this case, the influence of plate arrangement on the transmission coefficient is investigated.
The draft of the plates is set as di = d = 0.09 m (i = 1, 2, . . . , N), and the depth of water is set as
h = 0.321 m. For comparison purposes, two plate arrangements, even and uneven, are employed for
the study. The distance between the first and ith plate for these two arrangements can be written as:

bi =

{
0.3(i− 1) m, even arrangement(

0.3(i− 1) + 0.1 (i−1)(i−2)
2

)
m, uneven arrangement

, i = 2, 3, . . . , N (32)

Figure 8 portrays the transmission coefficient in the different plate arrangements. One can find
that, in long waves (b/λ < 0.3), the plate arrangement has little effect on the transmission coefficient,
while, in medium waves (0.3 < b/λ < 1), the transmission coefficient due to uneven plate arrangement
decreases more quickly with the increase of b/λ than the even case. Moreover, in short waves (b/λ > 1),
there are almost no significant transmission coefficient surges in the uneven plate arrangement case, as
compared to the even plate arrangement case.

It is not surprising that the uneven plate arrangement can have such effects. As demonstrated in
the Section 3.1.1, the occurrence of standing waves mainly relates to the plate distance to wavelength
ratio b/λ. For the even arrangement plates with certain b/λ, the standing waves might appear between
every pair of neighbouring plates and the progressive wave can pass through multiple plates and,
finally, the transmission coefficient surges happen. For the uneven arrangement plates, however, the
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b/λ varies and it is difficult to produce standing waves between every pair of neighbouring plates,
which results in the reflection of progressive wave, as well as the decrease of the transmission coefficient.
The characteristic of an uneven arrangement of plates will benefit the design of floating breakwaters,
which can more completely intercept the short waves than the conventional even plate arrangement.
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4. Conclusions

In this paper, the analytical solution to the transmission of progressive water waves under multiple
2D vertical thin fixed plates is presented based on the linear potential theory, in which the number of
plates can be arbitrary. The numerical model is validated through the case of two vertical thin plates,
where the numerical results agree well with those from Shin and Cho [8].

The influences of relevant parameters, including the number of plates, the draft of plates, the
distance between the plates, and the water depth on the transmission coefficient are investigated,
which reflects the proportion of transmitted wave energy through the plates. The numerical results
suggest that, with the growth of the plate draft or plate draft to water depth ratio, the transmission
coefficient generally gradually decreases to zero, though some transmission coefficient surges that
are associated with the standing waves between neighbouring plates appear in the certain waves;
with the growth of plate number, the transmission coefficient surge tends to be multi-peak and the
surge amplitude significantly decreases. Moreover, the plate arrangement has significant influence on
the transmission coefficient. The uneven plate arrangement can suppress the production of standing
waves between neighbouring plates and, thus, reduce the transmission coefficient.
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It is worth noting that the analytical model and the numerical results proposed in this paper
are within the linear and inviscid framework. The nonlinear and viscous effects of water waves are
not taken into account. Nevertheless, the results of this paper contribute to the knowledge of the
transmission of progressive water waves under multiple vertical thin plates, which can be employed
for the optimal design of a floating breakwater with multiple plates.

Acknowledgments: This project is supported by the National Natural Science Foundation of China (grant no.
51579056, no. 51509053, and no. 51579051). The third author wishes to thank the Chang Jiang Visiting Chair
professorship of Chinese Ministry of Education, supported and hosted by the Harbin Engineering University.

Author Contributions: Yifei Yu developed the mathematical model; Zhiqun Guo performed the numerical
calculations; Qingwei Ma performed the analysis of the results; and Yifei Yu wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the
decision to publish the results.

Appendix A

Using the separation variable method to solve the definite problem given in Equation (3). It is
assumed that:

ϕi(x, z) = X(x)Z(z) (A1)

Substituting (A1) into Equation (3a), one obtains:

..
X(x)Z(z) + X(x)

..
Z(z) = 0 (A2)

or:

−
..
X(x)
X(x)

=

..
Z(z)
Z(z)

= µ (A3)

where µ is independent of x and z. Thereby Equation (A3) can be transformed to:{ ..
Z(z)− µZ(z) = 0, (a)
..
X(z) + µX(z) = 0, (b)

(A4)

In the following, three cases for solving the Equation (A4) are respectively discussed according to
the value of µ:

(1) µ > 0

Denoting µ = k2, then from Equation (A4a) one can obtain:

Z(z) = Ae−kz + Bekz (A5)

Substituting Equation (A5) into (A1), and then into Equation (3b) and (3c) leads to:{
−Akekh + Bke−kh = 0, (a)
A(−k− ν) + B(k− ν) = 0, (b)

(A6)

where ν = ω2/g. The condition for the nonzero solution to Equation (A6) is:∣∣∣∣∣ −kekh ke−kh

−k− ν k− ν

∣∣∣∣∣ = 0 (A7)

The solution to Equation (A7) is k = k0, where:

k0tanhk0h = ν (A8)
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Combining Equations (A5)–(A8), one obtains:

Z(z) = Aek0h cosh k0(z + h) (A9)

On the other hand, from Equation (A4b) one obtains:

X(x) = Be−ik0x + Ceik0x (A10)

Combining Equations (A9) and (A10), the velocity potential can be written as:

ϕi(x, z) = Ai1ek0h cosh k0(z + h)e−ik0x + Ai2ek0h cosh k0(z + h)eik0x (A11)

(2) µ = 0

From Equation (A4a), it can be obtained that:

Z(z) = Az + B (A12)

Substituting Equation (A12) into (A1), and then into Equation (3b) and (3c) yields:{
A = 0, (a)
−νB + A = 0, (b)

(A13)

Obviously, there only exist zero solutions to A and B, as well as to X(x), Z(z) and ϕi(x, z).

(3) µ < 0

Denoting µ = −k2, then from Equation (A4a) one can obtain:

Z(z) = A cos kz + B sin kz (A14)

Substituting Equation (A12) into (A1), and then into Equation (3b) and (3c) comes to:{
Ak sin kh + Bk cos kh = 0, (a)
−νA + kB = 0, (b)

(A15)

The condition for the nonzero solution to Equation (A15) is:∣∣∣∣∣ k sin kh k cos kh
−ν k

∣∣∣∣∣ = 0 (A16)

The solution to Equation (A16) is k = kn, where:

− kn tan knh = ν, n = 1, 2, . . . (A17)

Combining Equations (A14)–(A17), one obtains:

Z(z) =
∞

∑
n=1

An
cos kn(z + h)

cos knh
(A18)

On the other hand, from (A4b) one obtains:

X(x) =
∞

∑
n=1

Bne−knx +
∞

∑
n=1

Cneknx (A19)
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Combining Equations (A18) and (A19) leads to the velocity potential:

ϕi(x, z) =
∞

∑
n=1

Bin
cos kn(z + h)

cos knh
e−knx +

∞

∑
n=1

Cin
cos kn(z + h)

cos knh
eknx (A20)
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