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Abstract: In recent decades, the Rocky Mountains (RM) have undergone significant changes
associated with anthropogenic activities and natural disturbances. These changes have the potential to
alter primary productivity and biomass carbon storage. In particular, dissolved organic carbon (DOC)
in RM streams can affect heterotrophic processes, act as a source for the nutrient cycle, absorb sunlight
radiation, alter metal transport, and can promote the production of carcinogenic byproducts during
water treatment. Recent studies have focused on the relationship between bark beetle infestations
and stream organic matter but have reached conflicting conclusions. Consequently, here we compile
and process multiple datasets representing features of the RM for the period 1983–2012 with the
purpose of assessing their relative influence on stream DOC concentrations using spatial statistical
modeling. Features representing climate, land cover, forest disturbances, topography, soil types,
and anthropogenic activities are included. We focus on DOC during base-flow conditions in RM
streams because base-flow concentrations are more representative of the longer-term (annual to
decadal) impacts and are less dependent on episodic, short-term storm and runoff/erosion events.
To predict DOC throughout the network, we use a stream network model in a 56,550 km2 area to
address the intrinsic connectivity and hydrologic directionality of the stream network. Natural forest
disturbances are positively correlated with increased DOC concentrations; however, the effect of
urbanization is far greater. Similarly, higher maximum temperatures, which can be exacerbated by
climate change, are also associated with elevated DOC concentrations. Overall, DOC concentrations
present an increasing trend over time in the RM region.

Keywords: water quality; stream networks; forest disturbances; climate change; urbanization;
large-scale analysis; mountain pine beetle; wildfires

1. Introduction

Anthropogenic activities have highly influenced ecosystems in the RM. Urbanization and forest
logging are clear examples of direct impact (e.g., [1–5]). Furthermore, climate change has provided
optimal conditions for fires and mountain pine beetle (MPB) outbreaks, which can lead to hydrologic
disturbances. The MPB is an autochthonous bark beetle species from the RM, and it has shifted its
impacts from periodic and localized outbreaks to widespread infestations (e.g., [6–9]). Additionally,
fire management policies have resulted in an overall increase in and homogenization of the forest
age, making pine forests more vulnerable to bark beetles [10,11]. During the last two decades,
bark beetle infestations have affected more than 5 million ha of forest in the western U.S. and British
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Columbia [6,12]. Potential impacts associated with MPB disturbances include modifications of the
hydrologic processes and alterations of the biogeochemical cycle [13–15]. For example, water storage
and supply can be affected by changes in snow accumulation and melt derived from variations in the
surface energy fluxes [16], and carbon and nitrogen soil concentrations can increase in areas impacted
by the MPB [17–19].

Although evidence exists that surface water contributes as a regulator of the carbon cycle and
that the temporal change of these contributions is associated with a changing environment [20,21],
little research has been published regarding the effects of MPB infestations on the carbon concentrations
of RM streams. Understanding how MPB infestations affect carbon concentrations in streams is
relevant because in addition to being a source for the nutrient cycle, dissolved organic matter
(DOM) plays a central role in other surface water quality processes [22]. First, it absorbs sunlight
radiation, influencing biochemical processes that depend on ultraviolet radiation and temperature [23].
Second, it can increase the solubility of metals by acting as a ligand, which has implications for the
restoration of polluted ecosystems and the mitigation of the impact of metal pollutants [24]. Third,
high concentrations of DOM during water treatment represent a risk because DOM can react during
disinfection processes to form carcinogenic byproducts [25].

DOM in soils and water originates from the degradation of organic matter from plants and
microorganisms, and therefore, processes altering forest and vegetation life cycles may have an indirect
effect on surface water quality [26]. At the hillslope scale, increases in DOM and nitrogen have been
observed in MPB-impacted areas [17,19]. Mikkelson et al. observed increased concentrations of water
disinfection by-products associated with DOM in water treatment facilities where the contributing
watershed had suffered MPB disturbances [27]. Increased particulate and metal transport have also
been observed in impacted watersheds [13]. However, the biogeochemical dynamics of the soil and
the streams of the RM cannot be directly attributed to MPB disturbances without also accounting for
other factors that contribute to a dynamic environment, such as climate change (e.g., temporal trends
in precipitation and temperature) and anthropogenic disturbances (e.g., land cover changes associated
with urbanization). Examples include MPB disturbances and forest fires: As MPB outbreaks have
increased, fire activity has also increased in the western U.S., suggesting a possible link. Nonetheless,
recent research suggests that increased fire activity does not depend on MPB infestations; instead,
both are consequences of climate change and other factors [28–30]. Consequently, although a
relationship has been observed between MPB infestations and DOM alterations at the hillslope and
watershed scales, very little is understood about the causal relationship between MPB infestations
and these environmental alterations because they are both highly influenced by multiple factors,
including climate change and anthropogenic disturbances.

Further evidence of the difference in impact between climate change and local factors on DOM
is revealed by conflicting reports at different locations and scales. Trahan et al. reported reduced
DOM and nutrients in soils with high tree mortality during the first 4 years after MPB disturbance [19].
Contrasting results were obtained by Norton et al. in an analog study, where nutrient concentration
increases were observed [15]. Furthermore, Beudert et al. reported no long-term effects in a 28-year
period study on water quality associated with bark beetle infestations in forests of southeastern
Germany [31]. Anthropogenic disturbances and other processes associated with climate change
were not accounted for in these three studies. Furthermore, the spatial domains in these studies
corresponded to one or two small watersheds with areas of less than 40 km2.

DOM change in streams is potentially one of the most practically relevant impacts of bark beetle
and forest disturbances. Thus, we present an unprecedented large-scale analysis in space and time of
the effects of beetle infestations, along with relevant climatological, forest disturbance, anthropogenic,
and morphological processes on DOM in the RM streams. Our 56,550 km2 study area includes
highly heterogeneous watersheds with respect to scale, attributes, and hydrological processes during
a 30-year period. We account for these heterogeneous features and other potentially contributing
factors associated with other forest disturbances, anthropogenic activities, and the morphology of the
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region by selecting and processing extensive spatial–temporal datasets and products with appropriate
attributes for the scale and resolution of the analysis. In short, we employ a statistical approach to
model the relationship between DOM and many features, and this model incorporates the physical
connectivity of the stream network in the region of interest for analysis and prediction. We then
interpret the statistical significance and relative importance of each anthropogenic, climatological,
and morphological feature for predicting DOM in the RM streams and investigate the possible existence
of a temporal trend in DOM concentrations.

The remainder of this article is organized as follows: We describe the region of interest,
the compilation and preparation of DOM stream data, and the selection and processing of the datasets
and products representing the predictive features in Section 2. Section 3 presents the necessary
considerations for a proper analysis of the data’s correlated features and spatial dependence in the
network and introduces the associated statistical models appropriate for these considerations. Finally,
the results and analysis regarding importance of the different features for DOM in the RM streams and
the prediction of DOM in space and time are presented in Section 4. We conclude in Section 5.

2. Materials and Methods

In this section, we describe the region of interest and the compilation of the observed DOM dataset
and the different potential predictors representing anthropogenic, climatological, and morphological
features and processes in the RM.

2.1. Region of Interest

The region of interest consists of the section of the Rocky Mountains in the U.S. that has been most
impacted by forest disturbances and anthropogenic development, as shown in Figure 1. More than
6500 km2 in the region have been affected by bark beetle outbreaks (~12% of the region of interest),
wildfires have affected more than 1750 km2 in the last decades (~3% of the region of interest),
and approximately 1500 km2 have been urbanized in the 1983–2012 period (~2.7% of the region
of interest) [1,32–34]. Figure 1 also presents the stream network, consisting of sixteen separate basins
and covering an area of 56,550 km2. The network was developed by the National Stream Internet
Project by reconditioning the NHD-Plus Version 2 (Rocky Mountain Research Station, Fort Collins,
CO, USA) hydrography, and it has a scale of 1:100,000 [35]. We corrected some topology issues in
the network such as isolated watersheds. The stream network consists of 17,166 stream segments
with a total stream length of 3,598,413 km. Specific features of the region are described in detail in
Sections 2.2 and 2.3.

2.2. Dissolved Organic Matter Data

A statistical analysis on the strength of the dependence of DOM on anthropogenic, climatological,
and morphological features of the RM involves accounting for possible correlation among the
predictors, expected temporal changes, and potential spatial dependence in the response associated
with a stream network setting. Therefore, a comprehensive database representing the response and
potential predictors in space and time is needed. Experimentally, DOM is measured as dissolved
organic carbon (DOC) [36]. Therefore, we first compile DOC data for the study area from the USGS
Water-Quality Data for the Nation because it provides a considerable spatial and temporal coverage and
uses certified sampling and processing standards [37]. The data complied corresponds to 12,407 DOC
samples in streams for the study area during the period 1983–2012.
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Figure 1. Study area located in the section of the Rocky Mountains that has been affected by
anthropogenic and natural disturbances in the 1983–2012 period (a), and number of observations
available per year once the dissolved organic matter (DOM) data have been transformed to yearly
averages for the corresponding base-flow periods as described in Section 2.2 (b). In (a), the stream
network is represented by the gray line segments, and the 371 points in the stream network represent
the locations with DOM measurements. The color scale represents the number of observations as in
(b) but at each location. Basins located near the northeast corner of the study area are not included due
to a lack of observations.

For this analysis, base-flow conditions are preferred because they are more representative of the
longer-term (annual to decadal) impacts from forest disturbances and climate change, rather than
short-term impacts of precipitation, runoff events, and snowmelt, which can occur at an hourly
to monthly temporal scale. The base-flow months used here are August, September, October,
and November. Carbon concentrations from late base-flow months (December to March) are not
included because more significant fluctuations in the concentrations have been observed during these
late months, possibly because of larger snow-melt contributions [38]. Although an analysis of DOC
loads during runoff events would be of interest, the instances when stream-flow and DOC are sampled
rarely match in the historical records. As shown in Figure 2, the selected months have considerably
lower peak flow and fewer runoff events than summer months. Once the DOC data are filtered based
on the selected base-flow months, 3680 samples remain.

We construct a representative DOC value of each base-flow period for each sampling location
and year. Because this value is constructed based on observations that are unequally spaced in time
during the base-flow period, a simple average of these observations may be suboptimal because it
can be biased due to redundant observations that are close in time. We tested three approaches for
producing a single yearly value, but they result in negligible differences in constructed base-flow
values, and the statistical analysis presented below (Sections 3 and 4) produces practically the same
results regardless of the averaging approach. Thus, we compute a monthly weighted average where
the weight corresponds to the number of samples in each day; then the overall average is the weighted
average of the monthly averages where the weight is the number of days with samples within each
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month. We then have 1174 observations representing base-flow DOC concentrations in 371 locations of
the stream network. Figure 1a presents the spatial distribution of the 371 locations, and the color scale
shows the number of observations at each location. The majority of locations have observations for 5
or fewer different years, while locations near urban areas (such as the front-range on the eastern limit
of the stream network) tend to have more observations. Figure 1b displays the number of observations
for each year during the 1983–2012 study period. Recent years tend to have more observations, and the
period between 2000 and 2004 has the most observations.

Figure 2. Yearly stream-flow data for 64 randomly selected locations in the study area. The locations
were selected from a set in which flow gaging occurred consistently during the year with gaps
between measurements of less than 4 months. The year corresponding to each location varies in
the period 1983–2012 because gaging campaigns were not consistent. For this same reason, flow gaging
observations are not equally spaced in time. The abscissa represents the sampling date, and the
ordinate represents a scaled flow, which corresponds to the ratio of streamflow to maximum streamflow
recorded at the location. The scaling is performed to improve visualization. Continuous lines connect
the streamflow values at a given location and year (a), and the box plots represent the distribution
of flows in each month (b), where the thick horizontal line is the median, the box limits are the first
and third quartiles, the whiskers are 1.5 times the interquartile range beyond the quartiles, and the
open circles are potential outliers. The data were compiled from the USGS Water-Quality Data for the
Nation [37].

2.3. Potential Predictors from Datasets and Products

As described in Section 1, climate change can influence stream water quality through multiple
processes, and other factors such as the morphology and natural processes of a region are also strong
determinants of surface water quality. This section summarizes the different features that represent
stream-water quality determinants in the region of interest and that are used as potential predictors.
Appendix A provides a detailed description of the compilation and processing of each of the features.
Table 1 summarizes and groups the predictors into four main categories: Forest Disturbance, Climate,
Anthropogenic, and Morphological.
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Table 1. Features potentially influencing carbon concentrations in the region of interest. Although Land
Cover appears in the Anthropogenic category, it can also represent Forest Disturbance, as described
in Appendix A. The potential predictors are used to represent the features in the model described in
Section 3, in which each coefficient represents the strength of the relationship between the response
variable (dissolved organic carbon (DOC)) and the predictor.

1 
 

Table 1. Features potentially influencing carbon concentrations in the region of interest. Although 
Land Cover appears in the Anthropogenic category, it can also represent Forest Disturbance, as 
described in Appendix A. The potential predictors are used to represent the features in the model 
described in Section 3, in which each coefficient represents the strength of the relationship between 
the response variable (DOC) and the predictor. 

Category Feature 
Number of 

Coefficients Potential Predictors 

Forest Disturbance 
Fires 1 Accumulated Relative differenced Normalized Burn Ratio (RdNBR) 

Mountain pine beetle (MPB) 
Infestations 

3 Fraction of affected area for the green, red, and gray phases 

Morphological 
Topography 9 Mean elevation and predominant aspect among 9 classes a 

Hydrologic Soil Types 3 Fraction covered by soil types A, B, and C b 

Climate 

Precipitation 3 
Mean monthly minimum and maximum temperatures for the base-

flow period, non-base-flow period, and the entire year 

Temperature 6 
Mean monthly minimum and maximum temperatures for the base-

flow period, non-base-flow period, and the entire year 

Snow Cover 3 
Mean monthly snow water equivalent (SWE) for the base-flow 

period, non-base-flow period, and the entire year 

Anthropogenic 
Land Cover 3 

Fraction of area covered by developed, agricultural, and forest land 
cover types, individually 

Wastewater Point Sources 1 Number of wastewater point sources 
 

 

 

a The predominant aspect is a categorical value with nine different classes: North, Northeast, East, Southeast, 
South, Southwest, West, Northwest, and Flat, and thus it is included in the model using 8 dummy variables, 
leaving one of the classes out to avoid collinearity (see Section Appendix A for details). 

b There are four types of soil representing the similarity of physical and runoff soil characteristics, but type D is 
left out since the sum of the area fraction covered by all classes is always 1, and therefore including type D would 
produce collinearity (see Section Appendix A for details). 

a The predominant aspect is a categorical value with nine different classes: North, Northeast, East, Southeast,
South, Southwest, West, Northwest, and Flat, and thus it is included in the model using eight dummy variables,
leaving one of the classes out to avoid collinearity (see Section Appendix A for details). b There are four types of soil
representing the similarity of physical and runoff soil characteristics, but type D is left out since the sum of the area
fraction covered by all classes is always 1, and therefore including type D would produce collinearity (see Section
Appendix A for details).

For the case of fires, we use data from the Monitoring Trends in Burn Severity project for extent
and severity [33,39]. Because water quality responses last longer than the duration of a fire, we include
the severity of each fire in all years posterior to its ignition with a decay over time as vegetation and
water quality recover. See Appendix A for details. The fire severity metric that we choose to use is
the Relative differenced Normalized Burn Ratio (RdNBR) because it can characterize fire severity
on low biomass sites and enhances inter-fire comparability at larger ecological scales [40]. We use
and process MPB infestation data from the United States Forest Service, which provides a yearly
geospatial inventory of tree mortality and the associated cause, i.e., type of insect or disease [41].
For topography, elevation and aspect data are included as potential predictors due to their influence
on watershed size, biogeochemical reactions, and solar exposure [42–47] using information from
the National Elevation Dataset [48,49]. Hydrologic soil types are included as possible predictors
from the U.S. Department of Agriculture because this categorization is based on the similarity of
physical and runoff soil characteristics [50]. For the representation of climatological features, we use
the hydrometeorological dataset developed by Livneh et al. [51] because it is the only product that
covers the entire spatial–temporal domain and includes temperature, precipitation, and snow water
equivalent (SWE) variables. This approach minimizes transboundary discontinuities while maintaining
a consistent gridding methodology in space and time, which are important for analyzing large-scale
hydrometeorological phenomena [52]. Land cover features are included as predictors by using the
SCaMF-RM product, because it provides high resolution maps for the region of interest with a
yearly frequency during the entire period 1983–2012 [53]. Finally, the locations of wastewater point
sources in the region of interest are collected from the environmental authorities in Colorado and
Wyoming [54,55].

3. Water Quality Model

Here, we model the effects of climate change, anthropogenic processes, and the morphology of
the RM on water quality with a linear model. Linear models can be represented by Equation (1),

y = Xβ + ε, (1)
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where y is a vector that represents the response variable of the model (DOC in this case), X is a matrix
that represents the predictors (Table 1), β is a vector of parameters that represents the strength and
direction of the linear relationship between y and X, and ε represents the error.

The DOC value at each observation location corresponds to a concentration that has been
influenced by water flowing and mixing from different sections of the watershed for which the
observation location is the collection point. These different portions of water have been affected
by biogeophysical processes influenced by many different potential predictors (e.g., see Table 1).
Additionally, the most important value of each predictor at each location is not the value of the
predictor at that specific location, but instead, the average value of the predictor across its associated
watershed [56]. Hence, the accumulated or average value of each predictor in the watershed associated
with each observation location is used in X (see Appendix A for details about using an accumulated or
averaged value, depending on the predictor). Obtaining these values requires (a) the delineation of
the watersheds in thousands of locations for both the locations with observations and the locations in
which the model is used to predict the response variable; and (b) the accumulation or averaging of each
potential predictor in thousands of watersheds. Consequently, we use the Cheyenne supercomputer
for such processing-intensive computations by parallelizing each independent task [57].

There are 26 primary predictors in the model; however, for the case of soil types, only three
types are included as predictors because the sum of the area fraction covered by all four soil types
in a given watershed is always 1. Therefore, including all four types would produce collinearity.
Similarly, the predominant aspect in the watershed associated with a location is a categorical value
with nine different possible classes. Consequently, eight different dummy binary variables are created
to represent each of these possible categories, receiving a value of 1 if they represent the predominant
aspect for the watershed associated with a specific location, and 0 otherwise. The dummy variable
associated with a Flat predominant aspect is not included as a potential predictor and represents a
base scenario in the regression. Although several of the predictors are temporally dynamic, they may
not explain all of the temporal variability in the base-flow DOC data, and thus the year associated with
each observation is also included as a potential predictor to represent time. Consequently, the X matrix
has 1174 rows, corresponding to the observations (see Section 2.2), and 34 columns, corresponding to
33 potential predictors and a column of ones for the intercept coefficient. Similarly, β is a vector with
34 entries corresponding to the coefficients for the 33 potential predictors and the intercept (see Table 1).

In a simple linear model, the values of β can be estimated by minimizing the sum of the squared
errors, i.e., ∑ ε2. This approach produces the best linear unbiased estimators, which means that the
estimator for β has the smallest variance among unbiased estimators and an expected value equal
to the real value of β. Nevertheless, when this approach is used with highly correlated predictors,
the resulting variance of β̂ can be large, meaning that the estimated coefficient values from different
samples of the same population may differ substantially. As shown in Figure 3, this is the case
here, where several predictors are strongly correlated. For example, it is expected that greater yearly
precipitation will translate to greater snow depth. Similarly, the areal fraction of watersheds affected
by MPB infestations is limited by the forest coverage and host tree species.
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Figure 3. Pairwise comparison of potential predictor values for the 1174 DOC data points and their
associated Pearson correlation: (a) yearly mean monthly precipitation and yearly mean monthly SWE;
(b) forest fraction and MPB-Red phase fraction; and (c) mean elevation and yearly mean monthly
maximum temperature.

We use the Least Absolute Shrinkage and Selection Operator (LASSO) regression method to
reduce the variance of the estimated coefficients, which can be enlarged by the correlation in the
predictors, and to filter and select a subset of potential predictors that are most important for
explaining the response variable [58,59]. With LASSO, the estimated coefficients, β̂, are not unbiased,
but the resulting variance is considerably smaller when the predictors are correlated, meaning that
the estimated coefficient values from different samples of the same population tend to be similar.
LASSO achieves this by solving min

β
{‖y−Xβ‖2

2} subject to ‖β‖1 ≤ c, which can be re-written

as min
β
{‖y−Xβ‖2

2 + λ‖β‖1} in order to use the method of Lagrange multipliers to restrict the

domain in which the coefficients are estimated. In LASSO, the λ parameter controls the space of
the coefficient domain. Larger values of λ produce small estimates in the β̂ coefficients by creating a
more restrictive constraint for the coefficient domain, forcing some of the regression coefficients to zero
and automatically making the associated predictors insignificant. Therefore, LASSO helps to identify
the predictors that have a significant impact on the response while dealing with their correlation,
achieving both variable selection and coefficient estimation simultaneously. The LASSO model is fit
using penalized maximum likelihood via coordinate descent [60,61].

Although we standardize all predictors within the LASSO model to ensure that the penalization
scheme, i.e., the ‖β‖1 ≤ c constraint, is fair to all regressors [62], the reported coefficients are based
on the following centering and scaling changes in the predictors. These operations are performed to
facilitate the interpretation of the coefficient magnitudes.

Predictors centered to their mean: The year of observation, predictors related to climate
(i.e., maximum and minimum temperatures, precipitation, and SWE), the fraction of area covered by
soil types (A, B, and C), the mean elevation, and the number of wastewater points sources are the
18 potential predictors that are centered to their mean. That is, the mean value of a feature across
all 1174 data points is subtracted from each of the respective 1174 values. After transformation,
the intercept coefficient from the regression represents the expected DOC base-flow concentration
when all these 18 predictors have a value equal to their mean. All other predictors are not centered
because they have an upper and/or lower limit with a physically interpretable meaning. For example,
a value of zero in the fraction of area affected by MPB infestations in the different phases can be
understood as a reference value. In other words, the intercept coefficient represents the expected DOC
base-flow concentration for undisturbed watersheds.

Predictors scaled by their standard deviation: The accumulated RdNBR, representing fire
severity, is the only predictor scaled by its standard deviation. This predictor is scaled because
an accumulated value of RdNBR over a watershed is not easy to interpret intuitively. On the other
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hand, when scaled, the associated regression coefficient can be interpreted as the average increase or
decrease in the DOC base-flow concentration when the accumulated RdNBR changes by one standard
deviation for a given watershed. All other predictors are not scaled because a one unit difference
in their magnitudes is intuitive, and therefore, it would facilitate the interpretation of its associated
coefficient. For example, the coefficient associated with a temperature predictor would represent the
average increase or decrease in the DOC base-flow concentration when temperature changes one
Celsius degree.

In summary, the intercept coefficient in the regression represents the DOC base-flow concentration
when a watershed has not been disturbed by fires or MPB infestations; does not contain urbanized,
agricultural, or forested areas; has a Flat predominant slope; and all other predictors have their
mean value.

Although general linear models usually assume the residual, ε, to be random and independent
(i.e., var(ε) = σ2I with I being the identity matrix), in this case it may be necessary to account for
the spatial correlation in the residuals by using a covariance matrix, i.e., var(ε) = Σ, because of the
inherent connectivity of a stream network where upstream processes tend to highly affect downstream
states [63]. Consequently, in case of observed spatial dependence, we model the residuals from the
LASSO model as ε = z + η, where z is a random effect with a covariance matrix, Σ, that accounts for
spatial dependence, and η is the residual from the spatial model with mean zero and σ2I variance.
With this, the linear model from Equation (1) becomes

y = Xβ + z + η. (2)

It is not feasible to estimate all entries in Σ because the matrix usually has more entries than the
number of data points. Consequently, models with a small number of parameters are usually fit to the
observed covariance. Commonly, these models are a function of the Euclidean distance between points,
h, where closer locations tend to be more correlated than locations farther apart (see Appendix B
for an example). When the covariance is estimated using this approach, the statistical method of
Kriging is usually implemented to optimally predict (i.e., make inference on a random quantity of
interest) at unobserved locations and/or times [63]. However, our covariance model should also be a
function of stream distance because the spatial dependence between locations can be highly affected
by their connectedness in the network and by the direction of the stream flow [64]. Stream distance,
hsn, is defined as the shortest distance between two locations, where distance is calculated along the
stream network [65].

Standard spatial covariance models developed for Euclidean distances may not be valid when
using stream distance (i.e., the covariance matrix may not be positive definite) [56,63,65]. Consequently,
Ver Hoef et al. and Cressie et al. proposed moving average constructions (also called kernel
convolutions) to develop valid models for stream networks [63,65]. The moving average is a standard
construction for a single line segment that is continuous from −∞ to ∞ on the real line. However,
for stream networks, the line segments split into two at confluence points. Therefore, the moving
average is also split into two parts. Each part is weighted to incorporate the flow rate of each segment
at the confluence. In the absence of flow data for all confluences, because it is often difficult to measure
flow for each stream segment, a proxy variable such as the area of each watershed is used [65].
This approach produces a valid covariance model for a stream network where the dependence
of two flow-connected locations is non-zero while the covariance is zero for all pairs that are not
flow-connected [56]. Here, we test for spatial dependence in ε, and if present, we use the stream
network covariance models proposed by Ver Hoef et al. to model the residuals spatially [65].

Additionally, it is likely that the set of potential predictors included in the LASSO model is not
comprehensive of all possible covariates that might influence DOC concentrations. These omitted
covariates are likely to present spatial dependence due to their geospatial character [64]. Therefore,
including a component of traditional covariance models for Euclidean distances may be appropriate if
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ε exhibits spatial dependence between locations that are not flow-connected. In such a case, we would
model the covariance of the random effects with Equation (3),

Σ = Csn(hsn|θsn) + Ceuc(h|θ), (3)

where Csn(hsn|θsn) is a spatial stream network covariance model, Ceuc(h|θ) is a traditional covariance
model based on Euclidean distance, and θsn and θ are vectors of parameters associated with each model.
Common implementations of models based on Euclidean distance are linear, spherical, and exponential
structures. We base the selection of the structure on the features of spatial dependence observed in
the data and on the optimal structure associated with the root-mean-square error (RMSE) from
leave-one-out cross-validation and the Akaike information criterion (AIC) [65]. See Appendix B for the
mathematical construction of these covariance models.

4. Results and Discussion

The first step in the implementation of a LASSO regression is the selection of λ, which is
the parameter that determines how strong the penalty is for the model coefficients. We compared
three different approaches for the selection of λ: (a) leave-one-out cross-validation; (b) 10-fold
cross-validation; and (c) generalized cross-validation. We repeated approach (b) for three different
partitions of the data into ten random sub-groups. Multiple approaches are compared because each
has its limitations. Leave-one-out cross-validation tends to overfit the data for big sample sizes, as is
the case here; 10-fold cross-validation produces results that may vary depending on the partitioning
of the sample; and generalized cross-validation does not withhold any of the data while fitting but
instead includes a penalty to compensate for the fact that the same observations are used in fitting
and predicting [66–68]. For approaches (a) and (b), we use the mean squared error (MSE) as the
objective function, while for approach (c) we use a penalized version of the MSE (PMSE) given by
Equation (4) [69]:

PMSE = MSE
(

n
n− d f

)2
=

n ∑n
i=1 (yi − ŷi)

2

(n− d f )2 , (4)

where n is the sample size (1174 DOC base-flow concentrations); d f is the number of degrees of
freedom in the model, corresponding to the sample size minus the number of non-zero regression
coefficients; yi is the ith entry of y in Equation (2); and ŷi is the predicted value of yi from the LASSO
regression model.

Figure 4 presents the value of the different objective functions for different values of λ,
ranging from a non-restrictive value where all regression coefficients have non-zero values to a
restrictive value where there is only one non-zero regression coefficient. The values of λ at which
each approach reaches an optimum are variable; nevertheless, all approaches seem to produce stable
values near their optimum for log(λ) ≤ −3. Consequently, we select the λ that produces the minimum
number of predictors with non-zero regression coefficients while the change in the objective function
is negligible with respect to its optimal value. Therefore, log(λ) = −3 or λ = 0.0498 is selected.
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Figure 4. Cross-validation approaches for the selection of λ in the Least Absolute Shrinkage and
Selection Operator (LASSO) regression. The horizontal axis represents different values of λ. The left
vertical axis represents the mean squared error (MSE) objective function for the leave-one-out and
10-fold cross-validation (CV) approaches, where a constant c is added to avoid overlapping and
to facilitate visualization. The right vertical axis represents the penalized MSE for the generalized
cross-validation (GCV). The vertical dotted lines with colors corresponding to the curves represent
the values of λ at which the corresponding objective functions reach their minimum value for each
approach. The green dotted line represents the value of λ of maximum regularization (least number of
potential predictors with non-zero regression coefficients) for which changes in the objective functions
are negligible with respect to the optimal values.

Table 2 summarizes basic statistics, the transformations, and the estimated LASSO regression
coefficients for all potential predictors. From the 33 potential predictors, only 17 have non-zero
coefficients and are therefore significant. Only one of the three soil type coefficients is different from
zero, and this implies that soil type as a predictor is significant. Similarly, six of the eight predominant
aspect coefficients are different from zero, and this implies that aspect as a predictor is significant.
The intercept coefficient has a value of 2.52 mg/L, which can be interpreted as the average DOC
concentration during the months between August and November for a watershed during the end of
the 1980s that has not been disturbed by fires, urbanization, or agriculture; may have been affected by
MPB outbreaks but the trees have not transitioned to the gray phase yet; has an average maximum
monthly temperature of 12 ◦C and an average monthly precipitation of 1.9 mm from August to
November; has an average monthly precipitation of 2.3 mm for the rest of the months; has a 37%
coverage of moderately permeable and transmissible soil (type B); has a mean elevation of 3000 m;
has four or five wastewater point sources; and has an aspect that is predominantly flat or faces in the
south or southeast directions. The average DOC concentration of 2.52 mg/L at control conditions
is within the range of 1 to 3 mg/L, representative of an oligotrophic water body in which the low
availability of nutrients limits primary productivity, leading to growth of algae. The low availability of
organic matter reduces oxygen consumption, thereby increasing dissolved oxygen concentrations and
supporting the growth of different fish species [70].
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Table 2. Basic statistics, transformations, and LASSO coefficients when log(λ) = −3 for all potential predictors. Basic statistics are reported for the untransformed
features because the mean for the centered features would be zero, and the standard deviation for the scaled features would be one otherwise. The predictors with a
coefficient significantly different from zero are highlighted. The accumulated RdNBR used corresponds to a decay of 90% in 5 years.

Covariate Mean Standard Deviation Minimum Maximum Transformation Coefficient Value
Intercept (mg/L) None 2.5194

Time (year) 2000.32 6.47 1984 2012 Center to mean 0.0004
Accumulated RdNBR 3676.94 29,963.35 0 714,890.71 Scale by st. dev. 0.1257

MPB: Green phase fraction 0.00 0.02 0 0.30 None 0
MPB: Red phase fraction 0.01 0.04 0 0.40 None 0
MPB: Gray phase fraction 0.01 0.04 0 0.49 None 0.0218

Developed fraction 0.06 0.16 0 0.99 None 2.9290
Agricultural fraction 0.01 0.06 0 0.65 None −0.1682

Forest fraction 0.40 0.30 0 1 None 0
Base-flow mean minimum monthly temperature (◦C) −4.45 3.16 −8.78 5.97 Center to mean 0

Non-base-flow mean minimum monthly temperature (◦C) −8.94 3.41 −14.15 2.18 Center to mean 0
Yearly mean minimum monthly temperature (◦C) −7.44 3.30 −12.15 3.33 Center to mean 0

Base-flow mean maximum monthly temperature (◦C) 12.64 3.27 7.63 24.00 Center to mean 0.0999
Non-base-flow mean maximum monthly temperature (◦C) 7.43 3.51 2.69 19.29 Center to mean 0

Yearly mean maximum monthly temperature (◦C) 9.17 3.38 4.90 20.50 Center to mean 0
Base-flow mean monthly precipitation (mm) 1.89 0.65 0.54 4.63 Center to mean 0.1238

Non-base-flow mean monthly precipitation (mm) 2.26 0.94 0.19 5.35 Center to mean −0.1299
Yearly mean monthly precipitation (mm) 2.14 0.77 0.45 4.86 Center to mean 0

Base-flow mean monthly SWE (mm) 11.91 12.33 0 74.05 Center to mean 0
Non-base-flow mean monthly SWE (mm) 161.37 134.08 0.05 1111.40 Center to mean 0

Yearly mean monthly SWE (mm) 111.55 91.99 0.07 757.00 Center to mean 0
Type A soil fraction 0.46 0.41 0 1 Center to mean 0
Type B soil fraction 0.37 0.31 0 1 Center to mean 0.6371
Type C soil fraction 0.09 0.20 0 1 Center to mean 0
Mean elevation (m) 3071.74 530.74 1517.78 3680.83 Center to mean −0.0014

Number of wastewater point sources 4.42 11.99 0 55 Center to mean 0.0630
North predominant aspect 0.09 0.28 0 1 None 0.1195

Northeast predominant aspect 0.05 0.21 0 1 None −0.1727
East predominant aspect 0.25 0.43 0 1 None 0.9548

Southeast predominant aspect 0.05 0.23 0 1 None 0
South predominant aspect 0.08 0.26 0 1 None 0

Southwest predominant aspect 0.14 0.34 0 1 None 0.0775
West predominant aspect 0.07 0.26 0 1 None −0.4632

Northwest predominant aspect 0.27 0.45 0 1 None −0.1511
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The accumulated RdNBR values used in Table 2 correspond to a severity decay of 90% in 5 years.
We repeated the LASSO regression using 10 and 15 years for the 90% severity decay (see Appendix A)
and obtained the exact same significant predictors and negligible differences in the goodness of fit.
Nevertheless, the coefficient corresponding to the accumulated RdNBR is reduced by 21% for a 10-year
decay and 30% for a 15-year decay. The rest of the coefficients remain approximately the same except
for the ones associated with the base-flow mean maximum monthly temperature, which increased by
a factor of 2.3 for 10-year and 15-year decays; the mean elevation, which increased by a factor of 5.3
for 10-year and 15-year decays; and time, which increased by 26% for a 10-year decay and 41% for a
15-year decay.

No temporal trend is evident in the residuals from the LASSO regression; however, Figure 5
shows there is spatial dependence between pairs of nearest neighbors connected through water flow
in the network. Figure 5a compares all network-connected nearest neighbors regardless of the year,
and Figure 5b only compares network-connected nearest neighbors with observations in the same
year. The correlation between nearest neighbors indicates that the value of the residual at a given
location in the network tends to be similar to the value of its nearest upstream neighbor. Consequently,
we use the moving average constructions proposed by Ver Hoef et al. [65] to model the covariance
in the LASSO residuals. To do so, we use empirical semivariograms to determine the form of the
covariance model [71]. In this case, the distance between locations used to estimate the semivariograms
corresponds to the stream-distance, and the empirical semivariogram is called a torgegram [72].

Figure 5. Comparison of the LASSO residuals with respect to the residual of the corresponding nearest
downstream neighbors. The units of the residuals are mg/L. Panel (a) includes all neighboring pairs
regardless of the year while panel (b) only includes neighboring pairs from the same year, and the
color bar represents the corresponding year.

Figure 6 presents the empirical torgegram computed from all 1174 LASSO residuals. A low value
plotted here indicates a high value of covariance and vice versa. Additionally, the distance at which
the points level off represents the distance at which spatial dependence ceases, and it is called the
range [71]. As depicted in Figure 6, flow-connected locations are more similar when they are close to
each other, and this dependence decreases as distance increases with a range of approximately 50 km
(measured as a stream-distance). Additionally, Figure 6 also presents the empirical semivariance for
flow-unconnected locations, and it is clear that this spatial dependence is also present with a similar
range as the one for flow-connected locations, indicating that the set of potential predictors included in
the LASSO model is not comprehensive of all possible covariates with an effect on DOC concentrations
and a geospatial trend. Consequently, we model the spatial dependence of the LASSO residuals using
the covariance model from Equation (3). We used a single spatial model across time for all residuals
because (1) they did not present a temporal trend; (2) the relationship observed in Figure 5a has a
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similar pattern to the one in Figure 5b; and (3) the covariance model cannot be fit separately for each
year because the number of observations in some years is very limited.

Figure 6. Empirical torgegram for flow-connected pairs (blue) and semivariogram for
flow-unconnected pairs (red) in the network. The size of each point represents the number of
pairs used to estimate the semivariance at each distance lag. The distance between flow-connected
pairs corresponds to the stream distance, which is the shortest path between them following the
network segments.

We compared different model types to represent the spatial dependence in Equation (3). For the
stream network covariance, we fit linear, Mariah, spherical, and exponential models; while for the
Euclidean covariance, we fit Gaussian, Cauchy, spherical, and exponential models (16 different
combinations). The AIC value only varied by 0.14% across all model type combinations while the
RMSE varied 0.77% with respect to their corresponding optimal values. The optimal combination
varied depending on the criterion (AIC or RMSE). We select the exponential type of model for both the
flow-connected spatial dependence and the Euclidean spatial dependence models because (1) it had
the best AIC and the third best RMSE, showing consistency across both criteria, and (2) the torgegram
shown in Figure 6 presents an exponential-like behavior in the decay of the covariance as distance
increases for flow-connected and flow-unconnected locations. The RMSE of the LASSO regression is
1.141 mg/L, and it is reduced to zero when the spatial model is included because ordinary kriging is an
exact interpolator that honors the data. However, if we perform a leave-one-out cross-validation with
the spatial model, we obtain an improvement over the LASSO regression RMSE of 24.8%. This fitted
model then allows us to make predictions of DOC at all other locations within the stream network.

4.1. Discussion of Static Significant Predictors

There are four significant predictors from the LASSO regression that do not change over time:
number of wastewater point sources, soil type, elevation, and predominant aspect. Note that seven
significant predictors from the LASSO regression do change over time (accumulated RdNBR, MPB-gray
phase fraction, developed and agricultural land cover fractions, base-flow mean maximum monthly
temperature, and base-flow and non-base-flow mean monthly precipitation) and will be discussed
in Section 4.2. Figure 7 presents a qualitative comparison of the four static predictors with the
predicted base-flow DOC concentrations for four years distributed across the 30-year period of interest.
Inspection of Figure 7 indicates a strong positive correlation between the number of wastewater
point sources and base-flow DOC concentrations. This is expected because the increased disposal of
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organic waste into wastewater is associated with increased population densities in urbanized areas [73].
Nevertheless, the LASSO regression coefficient associated with wastewater point sources evidences a
weaker correlation wherein the appearance of a new wastewater point source in a watershed would
produce an average increase in the base-flow DOC concentrations of 0.063 mg/L. This is of course
conditional on all other predictors remaining unchanged, which is unlikely in reality, but it is a
convenient way to understand and measure the importance of a feature. For example, the appearance
of a wastewater point source is usually accompanied with increased urbanization, which produces
additional changes in DOC concentrations. This weak coefficient can be attributed to (1) the fact
that the location of wastewater point sources does not account for the flow rate and associated
pollution load present at each location; (2) there are non-point pollution sources associated with
urbanization and industrialization that may be more significant contributors to DOC concentrations in
surface water streams; and (3) although the location of a pollution source may not change over time,
its pollution loads can be dynamic and highly affected by the urban changes over time associated with
the discharge. Consequently, a predictor that accounts for the dynamics of urban development can be
a more important predictor, as is the case with the land cover feature.

Figure 7. Comparison of the four time invariant significant predictors from the LASSO regression
(top row) and predicted base-flow DOC concentrations in the region of interest for the years 1987, 1994,
2002, and 2009 (bottom row). For categorical predictors, only the significant classes are depicted.

Although Figure 7 does not depict a clear qualitative relationship between soil type B and
base-flow DOC concentrations, the LASSO regression reveals a positive correlation between the two.
A watershed fully covered by soil type B can be expected to have a 0.43 mg/L increase in average
base-flow DOC concentrations with respect to a watershed with a typical distribution of soil types,
which would have only 37% coverage of type B soil. This positive correlation is expected because type
B soils present a moderate to high transmissivity, allowing a reasonable exchange between streams and
groundwater during base-flow, while providing longer residence times than type A soils, and therefore
enabling more dissolution of organic matter from the soil. Additionally, soils with an intermediate
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transmissivity and a high water capacity, such as type B soils, tend to have greater concentrations of
organic matter [74,75].

Elevation shows a very strong qualitative negative relationship with base-flow DOC
concentrations in Figure 7. In general, low elevations tend to have higher DOC concentrations.
The associated LASSO regression coefficient also reveals a negative correlation; however, its magnitude
reveals a weaker dependence. A reduction of 500 m in the mean elevation of a watershed would
represent a 0.71 mg/L increase in its average base-flow DOC concentration. The smaller LASSO
coefficient is likely due to the fact that elevation is also correlated to other predictors that may have
a more direct causal effect on DOC concentrations. For example, the majority of the urbanized
and agricultural areas tend to occur below 2000 m in elevation (see Appendix A). Similarly,
temperature has an almost linear inverse proportionality with elevation, and it has a substantial effect
on the rate at which microorganisms hydrolyze and decompose organic matter [76]. Nevertheless,
despite its correlation with other features, elevation is still a significant predictor. This is possibly
accounted for by the relationship between watershed size and elevation. Watersheds with elevated
pour/outlet/collection points tend to be smaller, and therefore, have shorter travel times for the
water particles in the soil and the surface, where the organic matter is usually assimilated. Likewise,
elevated watersheds tend to have less vegetation and thus fewer sources of organic matter. The opposite
holds for watersheds with collection points at lower elevations.

Unlike for elevation, there is no clear qualitative relationship between aspect and base-flow DOC
concentrations in Figure 7. Except for the Southeast and South predominant aspects, all other aspect
orientations produce significant differences in the DOC concentrations of a watershed with respect to
the Flat control aspect class (see Table 2). Although the aspects oriented to the Southwest are expected
to have different DOC concentrations because they receive more solar radiation and thus have higher
temperature and more MPB outbreaks, this effect is expected to be explained by the temperature
and MPB predictors [77]. Of all of the significant aspect orientations, only two, the East and West
predominant aspects, produce a change of more than 10% in the control base-flow DOC concentration
(intercept value in Table 2). While a watershed facing in the East direction is expected to have an
average increase of 0.955 mg/L in base-flow DOC concentrations with respect to a predominantly
Flat watershed, a watershed facing in the west direction is expected to have an average decrease
of 0.463 mg/L. East oriented watersheds tend to occur on the east side of the continental divide,
where there is also more urbanization and industrial activities, causing increased organic matter
contributions to surface water. Nevertheless, we expect this to be explained by the land cover features
of the region of interest. Another likely reason for the significance of the aspect as a predictor despite
its relationship with other features is that it is the main determinant on the exposure of a stream to
solar radiation. Solar radiation can produce photochemical oxidation of DOM to inorganic compounds
and alter the microbial metabolism associated with organic matter [78].

4.2. Discussion of Dynamic Significant Predictors

As mentioned earlier, time is included as a potential predictor because although the set of all other
potential predictors incorporate several dynamic features, it may not be comprehensive of all possible
covariates that represent biogeochemical processes over time in the study area with an effect on DOC
concentrations. Consequently, time being a significant predictor in the LASSO regression indicates
that there is a process affecting DOC concentrations beyond the included predictors. When the period
of decay in fire severity is increased, the significance of time increases while the significance of fire
severity decreases. This indicates that short-term effects of fire severity in DOC concentrations are
more relevant, and therefore shorter decay periods produce better predictors. This confirms that
the recovery of a watershed from a water quality standpoint tends to be much shorter than from
a forestry/biomass standpoint, and it is approximately 5 years [79–86]. All subsequent results are
therefore presented for a 5-year 90% decay of fire severity.
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Although there are positive linear correlations between accumulated RdNBR and mean elevation
and maximum monthly temperature, they are not strong correlations in the analyzed dataset. However,
from a physical perspective, there is a logical reason why these two predictors become more significant
as the fire severity predictor starts to give more importance to previous wildfires. The ignition of
a wildfire is highly affected by the presence of combustible materials and an ignition source [87].
Elevation is an important determinant of the abundance of fuel because forested areas in the region of
interest tend to occur above front-range elevations and below the tree-line (see Appendix A). Similarly,
maximum temperatures are strongly associated with ignition, because as they increase, the magnitude
needed for an external source of ignition, such as a flame or a spark, decreases [88]. Although their
relationship may not be linear, elevation and maximum temperatures are thus expected to be linked to
new wildfires. As accumulated wildfires become less significant predictors when past fires receive
more importance, elevation and maximum temperature become more important as well.

As shown in Table 2, the LASSO regression coefficient corresponding to fire severity has a
positive value indicating that base-flow DOC concentrations tend to increase with wildfire occurrences.
This is expected because most overstorey and understorey surface organic matter (i.e., plants and
roots) is burned [85], and wildfires tend to reduce the particle and aggregate sizes for organic matter,
facilitating its dissolution while the transport of particulate and coarse organic matter as suspended
material is reduced [80]. Consequently, higher concentrations of burned organic matter have been
observed during low-flow periods [84]. However, it is important to note that the amount of fine
and dissolvable organic matter that reaches stream base-flow can also be highly influenced by the
effects of the fire on soil permeability and pore-sizes [83]. Similarly, fire reduces evapotranspiration,
and thus may increase flow during dry periods, which may dilute dissolved compounds. The trade-off
of this effect with increased fine organic matter will determine the response of each watershed
individually [89].

Based on the LASSO regression results, an increase in one standard deviation of accumulated
RdNBR in a watershed, which would mean a watershed with an area of 0.054 km2 (5.4 ha) burned to a
fire severity of 500 (a value commonly exceeded in wildfire affected areas) would produce an increase
of 0.126 mg/L in average base-flow DOC concentrations. Although this seems to be a small effect,
it is more substantial when we consider that the area of interest had more than 800 km2 affected by
wildfires during 2002 (see Appendix A). Specifically, Figure 8 compares the predicted base-flow DOC
concentrations with the accumulated fire severity for four years distributed across the 30-year period
of interest. Although small DOC changes are not easily identifiable due to the magnitude of differences
between the fire-affected areas and the domain area, the year with largest fires in the period of interest
is 2002, affecting 0.00015% of the domain area, and noticeable changes in DOC concentrations are
produced. For instance, the largest fire in the 30-year period also ignited in 2002 (see Appendix A),
affecting an area of 524 km2 and increasing base-flow DOC concentrations by approximately 5 mg/L.
The year 2012 represents the second year with the largest wildfire impacted areas in the study region
and the period of interest (see Appendix A), affecting 0.00009% of the domain area. Although the
fractional area affected by wildfires in the years 2002 and 2012 is small, they both produced an estimated
increase of 0.01% in the average base-flow DOC concentrations across the entire domain area in each
specific year with respect to the average base-flow DOC concentration across the entire domain area
and the entire period of interest. The average base-flow DOC concentration corresponds to 3.4 mg/L,
which is obtained from averaging the predicted values over the 17,091 prediction locations and all
years in the 1983–2012 period.
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Figure 8. Comparison of fire severity and predicted base-flow DOC concentrations in the region of
interest for the years 1987, 1994, 2002, and 2009. Instead of presenting the DOC concentrations for 1994,
2002, and 2009, the difference between their concentrations and the concentrations in 1987 are displayed
to facilitate visualization. Although localized points reach RdNBR values of up to 13,000, these are not
common, so the color scale used for RdNBR has an upper bound of 1,000 to facilitate visualization.

From the three different stages followed by a forest after an MPB outbreak, only the gray phase
is a significant predictor in the LASSO regression. When beetle-killed trees transition to the gray
phase, they lose their needles, increasing the input of degradable organic matter to the soil surface [38].
Consequently, the observed positive relationship is expected, but it is quite weak. A watershed fully
covered by a gray-phase forest is expected to have an increase in average base-flow DOC concentrations
of 0.022 mg/L with respect to an undisturbed watershed, which is less than 1% of the control base-flow
DOC concentration (intercept value in Table 2). Similarly, a qualitative comparison of the gray-phase
areas affected by the MPB with predicted DOC concentrations in the region of interest does not
reveal any strong pattern (see Appendix C–Figures A10 and A11). A stronger correlation between
MPB-infested areas and DOM has been observed during months with significant precipitation and
individual runoff events [25,27,38,90], but we note that these studies did not control for the additional
potential predictors considered in our study. Moreover, there may exist an important lag between the
time at which the needles fall and the time by which their decomposition alters DOC concentrations,
largely due to their recalcitrant chemical composition, especially in high-altitude and low-temperature
climates [91,92].

The strong relationship between the land cover anthropogenic classes (developed and agricultural)
and base-flow DOC concentrations is evidenced in Figure 9 and in their significance as predictors in
the LASSO regression. The developed land cover class is the most significant predictor of base-flow
DOC concentrations, producing an average increase of 2.93 mg/L when a watershed transitions from
completely rural to fully developed. This is more than a 100% increase in the control base-flow DOC
concentration (intercept value in Table 2). As mentioned earlier, this correlation is expected because
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developed areas involve higher population densities and more concentrated pollutant and chemical
loads, including DOC, to the receiving water bodies [42].

Figure 9. Comparison of developed and agricultural land cover with predicted base-flow DOC
concentrations in the region of interest for the years 1987, 1994, 2002, and 2009.

As the developed land cover increases from 3 to 6% in the study area during 1983–2012
(see Appendix A), the maximum predicted DOC concentrations also increase from 11.5 to 12.3 mg/L.
The front-range (east side of the study area) presents the largest developed zones including the
Denver Metropolitan area, and the highest predicted DOC concentrations also occur in this region,
exceeding 7 mg/L. Nevertheless, although a positive correlation between the agricultural land cover
class and DOC concentrations is also expected from qualitative inspection of Figure 9, the LASSO
regression coefficient reveals a negative correlation. Various studies have suggested that DOC in
streams tends to increase with agricultural activities [93,94]. However, this increase has always been
associated with higher concentrations of microbial-processed DOC and with lower concentrations of
plant-derived DOC [95,96]. Consequently, the negative correlation observed here could be associated
with a more significant reduction in plant-derived DOC than the increase in microbial-processed
DOC. The reduction in plant-derived DOC is associated with the removal of native vegetation and
harvesting, which in turn can have a negative effect on instream heterotrophic processes due to the
reduced availability of organic matter [93,95]. On the other hand, our hypothesized less significant
increase in microbial processed DOC could enhance the reactivity of catchment DOC emissions
associated with higher carbon dioxide outgassing [93–95].

The three climatic features that are significant predictors in the LASSO regression are mean
base-flow monthly precipitation, mean non-base-flow monthly precipitation, and mean base-flow
monthly maximum temperature. Based on the regression results, an increase of 1 ◦C in the mean
base-flow monthly maximum temperature of a watershed would represent a 0.099 mg/L increase
in its average base-flow DOC concentration. Previous studies have found that DOC concentrations
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increase with higher temperatures due to an elevated production and release of microbial-processed
DOC [96]. This can also explain why minimum temperatures are not significant while maximum
temperatures are as follows: the microbial maximum rate of metabolism occurs during the warmest
periods of the day, which typically correspond to maximum temperatures [97,98]. Additionally,
elevated maximum temperatures can increase evapotranspiration rates, reducing the base-flow rates,
and therefore concentrating DOC for a fixed carbon input [99].

Precipitation is more important than maximum temperature as a DOC predictor. An increase
of only 1 mm in the mean base-flow monthly precipitation of a watershed represents a 0.124 mg/L
increase in its average base-flow DOC concentration. On the other hand, the same increase in the mean
non-base-flow monthly precipitation of a watershed would have a negative effect of approximately the
same magnitude, reducing the average base-flow DOC concentration by 0.130 mg/L. The base-flow
period used here presents low precipitation with rare substantial runoff events. However, when such
a runoff event occurs during the base-flow period, it has the potential of producing a storm flow
flushing of DOC, explaining the observed positive correlation [100]. Similarly, small precipitation
events during base-flow can enhance infiltration and thus the transport of subsurface DOC to streams.
In other words, years with above average precipitation during base-flow months also tend to have
higher DOC concentrations due to the flushing produced by the associated runoff events. On the
other hand, although flushing can also occur during the non-base-flow period, it is not detected
in base-flow DOC concentrations. Additionally, increased precipitation during the non-base-flow
period can increase groundwater levels and thus produce higher base-flow rates, which would dilute
the same contributions of organic matter and reduce DOC concentrations [101,102]. For example,
the year 2002 had high base-flow precipitation and low non-base-flow precipitation. As seen in
Figure 8, the year 2002 presents increased base-flow DOC concentrations that go beyond the acute
effects of localized wildfires. Conversely, the year 2009 had low base-flow precipitation and high
non-base-flow. As seen in Figure 8, the year 2009 presents decreased base-flow DOC concentrations
over most of the study area. A qualitative comparison of these three significant climatological features
with predicted DOC concentrations does not evidence a connection for the precipitation due to its
spatial heterogeneity (see Appendix C), and the qualitative relationship between temperatures and
predicted DOC concentrations is analogous to the one between elevation and DOC concentrations
(see Figure 7) due to the strong link between temperature and elevation.

As mentioned earlier, time is a significant predictor in the LASSO regression, suggesting that
the set of potential predictors used here is not comprehensive of all possible covariates that represent
temporally dynamic geophysical processes with an effect on DOC concentrations. Although the
coefficient for time is positive in Table 2, this does not indicate that base-flow DOC concentrations have
been increasing over time in the region of interest for the period 1983–2012 because other dynamic
predictors may be causing a decrease in base-flow DOC concentrations over time. However, if we
re-fit the regression using ordinary least squares with time as the only predictor, then we obtain a
model with an intercept of 2.87 mg/L and a coefficient associated with time that indicates an increase
of 0.057 mg/L in base-flow DOC concentrations per year. Time is a significant predictor in this linear
model with a p-value of 6.1 × 10−6. Consequently, ignoring all other predictors, base-flow DOC
concentrations present a temporal trend in the region of interest with an average increase of 1.7 mg/L
from the beginning to the end of the 1983–2012 period.

When analyzing the significant predictors, the microbiology of the soils, a factor that could not
be included in the LASSO regression, frequently appeared to be a possible link between some of the
predictors and the response of the stream DOC concentrations. For example, microbial metabolism is
highly affected by temperature, and microbial communities tend to vary across soil types. Additionally,
because the set of potential predictors used here may not be comprehensive, as evidenced by time
being a significant predictor, we hypothesize that important predictors not included in the LASSO
regression are mainly associated with the abundance, diversity, spatial distribution, and dynamics of
the microbiology in the soils of the Rocky Mountains. For example, soil microbiology has been found



Water 2018, 10, 534 21 of 46

to respond to forest disturbances, and, especially for gradual forest changes, this response can act
as a buffer for water quality changes, possibly explaining why the MPB infestations, which develop
over multiple years, are some of the weakest significant predictors for DOC in the streams of the
Rocky Mountains [38,103,104] (contrasted to fires, which occur over weeks). Additionally, the spatial
heterogeneity of microbial community composition in the Rocky Mountains is highly complex [105]
and has been shown to change over time [106]. Finally, microbial communities may not only be a
significant predictor of DOC concentrations, but also of the character of DOC, which highly determines
its water quality relevance, such as the potential to enhance metal transport [13,107].

The relevance of microbiology goes beyond the abundance of DOM in the streams of the
Rocky Mountains because the source of DOM in soils and water is the degradation of organic
matter from plants and microbes, and its character is also determined by these sources. Typically,
the main components of DOM in land ecosystems are humic substances, which are derived from
the decomposition of plants, and is called allochthonous. Conversely, DOM sources resulting
from the metabolism and degradation products of microbes are referred to as autochthonous.
Disturbances such as fires, bark beetle outbreaks, and agriculture have shifted DOM abundances
by increasing autochthonous organic matter in soils. Allochthonous DOM has a high concentration of
aromatic species, which are correlated with metal–ligand exchange and the absorbance of ultra-violet
radiation. Consequently, the character of the DOM is relevant for its effects on water quality, and future
work includes analyzing how the abundance and diversity of microbial communities in the Rocky
Mountains are linked to the concentration and character of DOM in its streams.

5. Conclusions

DOC is a relevant water quality constituent of lotic water bodies because it affects heterotrophic
processes, acts as a source for the nutrient cycle, absorbs sunlight radiation, alters the transport of
metals, and can promote the appearance of carcinogenic byproducts during water treatment. The Rocky
Mountain region has suffered significant changes over recent decades, including anthropogenic
development and natural disturbances such as wildfires and bark beetle infestations. These changes
can modify the carbon cycle by altering primary productivity and carbon storage, and thus, it is
insightful to determine if DOC concentrations have shifted in the region and to identify factors that
contribute to these changes.

Some recent research has analyzed the effects of MPB infestations on carbon concentrations in the
soils and streams of affected watersheds, but while some studies have identified a relationship between
the two, others have not found evidence of a relationship [15,19,31]. These analyses typically involved
single watersheds with small contributing areas and omitted other features that can also affect carbon
concentrations, which may explain the conflicting results. Consequently, we have performed this
large-scale analysis to account for numerous features that can affect DOC concentrations in streams,
such as urbanization, wildfires, MPB infestations, and precipitation, among others.

We use a statistical model to assess the effect of climatological, morphological, anthropogenic,
and forest disturbance features on base-flow DOC concentrations in the streams of a section of the
Rocky Mountains with an area of 56,550 km2 for the period 1983–2012. LASSO regression is used to
account for the possible correlation among the predictors and to select predictors at the same time
that the regression coefficients are estimated. Then, a spatial stream network model is fit to account
for the spatial dependence in the residuals from the LASSO model, taking into account how the
dependences are affected by the directionality of the water flow and the connectivity of the network.
Taken together, the fitted LASSO and spatial dependence models are used to predict DOC throughout
the RM stream network.

Wildfires, MPB infestations, urban development, agricultural development, monthly precipitation,
maximum monthly temperature, hydrologic soil type, wastewater point sources, elevation, and aspect
were found to be significant predictors of DOC. As expected, beetle-induced forest disturbances and
wildfires appear to be related to increases in stream DOC because they release the carbon stored in
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the biomass of the forest. Similarly, urbanization is also linked to increased DOC concentrations,
likely due to higher population densities, and therefore, more organic pollutants in stormwater runoff
and domestic/industrial wastewater. Surprisingly, the spread of agricultural activities seemed to
produce a slight decline in DOC concentrations. Based on previous work, this effect may be associated
with a strong decrease in plant-derived organic matter (because vegetation is harvested from crops)
that is not offset by an increase in microbial-processed organic matter. Maximum temperatures are
associated with higher DOC concentrations, most likely because higher temperatures are associated
with increased microbial metabolism, and possibly because they produce lower base-flow rates,
therefore concentrating the DOC. While increased precipitation during the base-flow periods seems to
increase DOC concentrations, possibly because of increased infiltration and associated soil flushing,
precipitation during the wet season seems to have the opposite effect by increasing base-flow rates and
diluting organic matter. The reason is that base-flow rates depend on groundwater levels, which in
turn are dictated by the depth of precipitation during the non-base-flow period. Watersheds with
moderately permeable and transmissible soil types also appear to have higher DOC concentrations,
likely because of higher organic matter content of the soils, and relatively higher infiltration rates
that enable infiltration to efficiently flush DOC to groundwater, a primary contributor to base-flow.
The composition of these moderately permeable and transmissible soil types is highly variable, and thus
further analyses should utilize a more detailed soil classification such as the USDA textural soil
classification that may better distinguish types of soil with abundant and soluble organic matter.
The topography of the Rocky Mountains also influences DOC concentrations, perhaps due to its
relationship to watershed size and solar radiation exposure.

Overall, DOC concentrations present an increasing trend over time for the region of interest, owing
largely to the rapid anthropogenic development of the region. Urban development doubled during
the analyzed 30-year period and was the most significant predictor of DOC in the statistical model.
Additionally, wildfires can also be a significant contributor to DOC changes over time because recent
decades have had more severe and extensive fires. Wildfires reduce the particle and aggregate sizes for
organic matter by burning overstorey and understorey vegetation, facilitating the dissolution of organic
matter. Finally, the microbiology of the soils provides a clear theoretical linkage between the processes
that connect the causality of the important predictors with DOC in the streams. The significant
predictors accounted for 62% of the variability of DOC concentrations. Therefore, microbial dynamics
represent a feature of the region of interest that can potentially explain more of the temporal changes in
DOC concentrations. Although related products, such as more detailed soil classifications, could have
been included as a proxy for the microbiology and the biogeochemistry of the region, the temporal
dynamics of these two features are not present in the data. Unfortunately, data quantifying the spatial
or temporal abundance and diversity of microbial communities in the study area over the analyzed time
period are unavailable and thus could not be included as a potential predictor. Microbial community
data could be used at a smaller spatial–temporal scale to test this hypothesis in future work. Similarly,
groundwater levels could be included since higher levels are usually associated with higher flow
rates during the base-flow period, potentially diluting DOC concentrations. The opposite holds for
low groundwater levels. However, data quantifying groundwater levels in the study area over the
analyzed time period are unavailable.

The datasets and products associated with the predictors of DOC used in this study involved
considerable work to select, compile, and process. These datasets represent a valuable input for other
studies in the region associated with other water quality determinants in streams, the hydrologic
behavior of the network, and the ecological composition and dynamics of communities, among others.
Because the development of these datasets involved other organizations and scientists, the processed
data is not publicly available, but interested parties can contact the authors of this work to receive
authorized access. Because of the complex relationships among the predictors and DOC and the
heterogeneous spatial domain, future work could also include the implementation of a mixture of
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regression models to partition the observations into spatial subsets with similar relationships among
explanatory variables and DOC concentration [108].

Even though our results indicate that MPB infestations are not as crucial to predicting DOC
in RM streams compared to other relevant features, acute and localized effects and correlations
with other water quality constituents have been reported previously. Moreover, the effects of the
MPB infestations reach beyond water quality. For example, the timber and real-estate industries,
tourism and recreation, and biodiversity support can also be positively and/or negatively impacted
by MPB infestations [109,110]. Consequently, efficient forest management should integrate and
account for all of these environmental and societal impacts when planning in the short and long
term [111]; otherwise, unexpected side effects may arise. The MPB infestations are an example
themselves of an unexpected consequence since previous management approaches, focused on
short-term maximization of timber production, provided a connected and homogenous ecosystem
that fostered the spread and expansion of MPB outbreaks [109]. Integrative management frameworks
should be informed by combining the best available science and data [110], including results of studies
such as this one. Human perceptions can vary and may be inaccurate, particularly with respect to
the effects of MPB infestations [112]. For instance, social factors, such as value orientation, culture,
and visual perception, have highly influenced public opinion and management practices regarding
MPB infestations [111–113]. To conclude, we recommend that efforts in objectively informed and
integrative management frameworks for understanding the tradeoffs among ecosystem services
and appropriate scientific formulations, such as the ones proposed by Maguire et al. and Morris et
al. [109,110], respectively, continue to be developed.
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Appendix A

As described in Section 1, climate change can influence stream water quality through multiple
processes, and other factors such as the morphology and natural processes of a region are also
strong determinants of surface water quality. This section describes in detail the different features
that represent stream-water quality determinants in the region of interest and that are used as
potential predictors.

Appendix A.1 Fires

The forested regions of the Rocky Mountains are one of the most susceptible ecosystems to
wildfires, and this is especially relevant from a hydrological standpoint because the impact of fires on a
forest can potentially produce drastic alterations on water quality and quantity processes. The reason
is that the loss of vegetation and the soil transformations can change the geochemical cycle [81] and
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the flow pattern [89]. Analyzing the temporal sequence of recovery in a given forest affected by a
fire, termed forest succession, is challenging because it would be necessary to fund and implement
a project with a time span on the order of a century. Hence, most succession studies are based on
chrono-sequencing, an approach in which the regrowth is followed in multiple plots where original
forests have been disturbed at different times [114]. Fires play a central role in the ecological cycling
of a forest because, for example, they can release cone seeds that have been in the soil for several
years [115].

Although the majority of the vegetation recovers within the first five to ten years following a
wildfire, the time taken by climax species (mainly pine trees in the Rocky Mountains) to return to full
height can range from forty years to a century [115–117]. Specifically, studies on local regions have
reported that the biotic cover takes at least four years to recover to pre-fire levels [118]. For example,
Turner et al. and Kinoshita and Hogue analyzed hundreds of areas affected by fires, finding that
biomass reached a stable state after approximately five years and that it equaled pre-fire biomass by
the end of the seventh post-fire year [89,119]. Similarly, Savage and Mast reported that the increase in
abundance of trees in pine forests stabilizes between three and twenty years after a fire [120].

Nevertheless, it is important to recognize that although a fire-recovered forest may have
approximately the same biomass and tree abundance as the pre-fire forest, the recovered forest would
not be geochemically and hydrologically identical to the pre-fire forest. This is due to the influence of
random effects in its development, such as weather patterns, and in some cases, grazing [114,115].

Although the complete recovery of a watershed from a forestry standpoint may span multiple
decades, the recovery associated with water quality seems to be shorter. Statistically significant
differences in post-fire water quality have a duration that ranges from 2 months to 10 years, and in the
Rocky Mountains, most studies have found that water quality is fully recovered after approximately
the fifth post-fire year at which time it is not statistically different from the pre-fire state [79–86].

Finally, it is important to recognize that the severity of a wildfire is spatially variable, and
the severity of a fire is highly correlated to the succession pattern followed by the forest [79,117].
For example, Baker et al. remark that low-severity fires in the Rocky Mountain National Park and
south-western Colorado may only take 10–20 years to regenerate [121]. However, few studies have
quantified wildfire severity and extent effects on watershed responses in the Rocky Mountains [79].

Consequently, here we use the data from the Monitoring Trends in Burn Severity (MTBS) project,
which maps the extent, size, and severity of all fires that occurred in our region of interest between 1984
and 2012 [33,39]. The fire severity metric from MTBS that we choose to use is the Relative differenced
Normalized Burn Ratio (RdNBR) because it can characterize fire severity on low biomass sites and
enhances inter-fire comparability at larger ecological scales [40]. RdNBR is based on a normalization
of the Differenced Normalized Burn Ratio (dNBR), which is the difference between the post-fire
Normalized Burn Ratio (NBR) and the pre-fire NBR. NBR is computed with Landsat TM/ETM bands
4 (near-infrared—NIR) and 7 (shortwave-infrared—SWIR), as shown in Equation (A1).

NBR =
NIR− SWIR
NIR + SWIR

. (A1)

This normalized index emphasizes the spectral response of fire-affected vegetation by contrasting
photosynthetically healthy and burned vegetation. Because it is a normalized ratio, NBR ranges
between −1 and 1. However, to simplify its manipulation, MTBS truncates NBR to three decimal
places and multiplies it by 1000. Thus, NBR ranges between −1000 and 1000, and it only takes integer
values. Hence, dNBR, calculated as NBRpost− f ire − NBRpre− f ire, ranges between −2000 and 2000.
Finally, RdNBR is calculated using Equation (A2):

RdNBR =
dNBR√

|NBRpre− f ire/1000|
, (A2)
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where NBRpre− f ire represents the pre-fire value of NBR. This normalization removes the biasing effect
of pre-fire conditions.

Before the computation of NBR, MTBS pre-processes the pre-fire and post-fire Landsat imagery
to generate top-of-atmosphere reflectance images that include geometric (including terrain correction)
and radiometric correction. Pre-fire and post-fire images are also inspected for co-registration accuracy
and are corrected if spatial differences are present [39]. Ideally, fires that occurred before 1983 should
also be included in this analysis since, as described previously, their effects may extend for years.
However, MTBS represents the most comprehensive and detailed dataset currently available that not
only delineates the fire-affected area, but also estimates a spatially variable fire severity in a region
that encompasses our entire study area during several years. Unfortunately, it only includes fires that
ignited after 1983. Figure A1 presents the number of fires and the total affected area for the region of
interest. The years in which the majority of fires occur are 1988, 1989, 2000, 2002, 2003, 2011, and 2012,
each with at least three fires; however, years 2002 and 2012 have the greatest burned areas. Here,
we integrate all RdNBR fire images in a given year into a single raster map. Each fire is not only
included as a potential predictor in the raster map corresponding to its year of occurrence, but also in
subsequent yearly maps, since, as described earlier, a fire can affect water quality for a decade and also
forestry for multiple decades.

Figure A1. Number of fires in red and burned area per year in blue for the region of interest in the
period 1983–2012. The dotted lines represent the accumulated number of fires and burned area scaled
by a factor of 0.5 to facilitate visualization [33,39].

To confirm the post-fire recovery time-window, we select five fires in the region of interest that
ignited during the time period 1983–2012 and had different sizes, severities, and locations. Figure A2
presents yearly NBRs and Normalized Difference Vegetation Indices (NDVIs) averaged spatially for
the area of each of these five fires (Figure A2) and for a control scenario corresponding to a region
with no fires prior to 2012 (Figure A2). The NBR and NDVI metrics are based on composites created
from Landsat 5 TM orthorectified raw scenes [122,123]. These composites are created with images
from the months of June, July, and August for each year to avoid seasonal effects and to focus on the
most vegetated time of the year. Within each year, images with a cloud score index exceeding 10 are
discarded, and each pixel in the composite is assigned with the median value from the remaining
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images. NDVI quantifies the live green vegetation and is also a normalized ratio computed from
bands 4 (near-infrared—NIR) and 3 (RED) [124], as shown in Equation (A3).

NDVI =
NIR− RED
NIR + RED

. (A3)

Regions with scarce vegetation, such as barren rock, sand, or snow usually show low NDVI values.
As vegetation becomes denser, NDVI values increase, and in densely vegetated areas, such as a tropical
forest, or crops, it reaches values near 1. On the other hand, NBR does not have a direct conceptual
interpretation, but dNBR does, with values of approximately 0 for unburned areas, slightly negative
values for areas where there is strong post-fire vegetation re-growth, and positive values for burned
vegetation, usually exceeding 0.6 with high burn severity.

Figure A2 shows how NBR and NDVI values reach an approximately stable state in all cases in 5
to 15 years (with values that are between 50% and 90% of the pre-fire value). The recovery follows an
approximately exponential behavior (rapid initial recovery with an asymptotic stabilization), and NBR
(Normalized Burn Ratio) and NDVI do not recover to the pre-fire values because, as mentioned above,
the recovered forest is never exactly the same as the original due to random effects.

Figure A2. Normalized Burn Ratio (NBR) on left axis in red and Normalized Difference Vegetation
Index (NDVI ) on right axis in blue for five fires (a–e) that occurred at different locations in the region
of interest between the period 1984–2011, with different severities and sizes ranging from mostly low to
mostly high burn severity and from 5.9 to 523.7 km2. The vertical dotted line represents the occurrence
date of each fire. A control area is also included (f) corresponding to an area with no fires during the
period depicted in the abscissa. See Figure A3 for fire locations.

Consequently, the RdNBR values associated with a fire from the MTBS project are included
in the raster maps corresponding to subsequent years and are dampened using Equation (A4),
where RdNBRsi ,y0 is the severity of the fire at location si in the year of its occurrence, y0; RdNBRsi ,yj is
the dampened severity in a subsequent year, yj (i.e., yj > y0); and θ is a parameter that represents the
strength of the exponential decay.

RdNBRsi ,yj = RdNBRsi ,y0 · exp
(
−

yj − y0

θ

)
. (A4)
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We choose an exponential decay model so that fire severity has a greater relevance in earlier
post-fire years and asymptotically approaches a severity of zero. The RdNBR never reaches zero
since, as described above, the nature of the recovered forest is never identical to the pre-fire forest due
to random effects [114,115]. We test three different values for θ (2.17, 4.34, and 5.51) because these
values produce a reduction of approximately 90% in the severity after 5, 10, and 15 years after the
fire occurrence, respectively. These values are chosen because water quality tends to be completely
recovered, and the majority of the biomass is also recovered within a period of 5–15 years [79–86,89,119].
Additionally, yearly NBR and NDVI values for fires in the region of interest in Figure A2 show
recovery and stabilization within this period of time. Each of these cases is tested separately as a
possible predictor for water quality.

Figure A3 presents an example of maps accumulating RdNBR values from previous years for 2002,
2006, and 2012 for the fire in Figure A2 and contrasts the exponential decay to 90% in 5 and 15 years.
When θ = 5.51 years, wildfire severity is reduced by approximately one order of magnitude after ten
years. On the other hand, θ = 2.17 years produces a reduction in the RdNBR values of approximately
two orders of magnitude in ten years. It is also worth noting that although the maximum RdNBR
in the region of interest for these three years exceeds 10,000, this is a localized and rare case, and the
majority of fire affected areas have RdNBR values less than 4000.

Figure A3. Fire affected areas in the region of interest with color indicating the year of ignition
(left panel). The fire areas surrounded by rectangles in the left panel correspond to the fires in Figure A2,
and the naming convention (a–e) matches the one used in Figure A2. RdNBR values for fire (c) for the
years 2002, 2006, and 2012 are shown in the six panels on the right. The top row represents the case
when the RdNBR values are accumulated over time with θ = 2.17, and the bottom row represents the
case when θ = 5.51.

Appendix A.2 Mountain Pine Beetle

The region of interest has experienced significant tree mortality induced by MPB infestations
possibly caused by warmer temperatures, more persistent droughts, and fire suppression [125,126].
Altered hydrology and biochemistry in the streams are potential consequences of these infestations.
Although little research has been published regarding the effects of MPB infestations on water quality,
increases in carbon and nitrogen concentrations have been observed in MPB-impacted areas at the
hillslope scale [17,19]. Mikkelson et al. observed increased concentrations of water disinfection
by-products associated with carbon compounds in water treatment facilities where the contributing
watershed had suffered MPB disturbances [27]. Increased particulate and metal transport have also
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been observed in impacted watersheds [13]. Consequently, we include MPB infestations as a potential
predictor of water quality. MPB-affected forests usually follow three mortality phases. Initially, the trees
remain green for approximately one year, and their metabolism slows down during this period. Next,
the needles turn red, and the metabolic processes cease completely. Finally, the needles and twigs drop
to the forest floor after approximately three years of being red, and the trees turn gray. These phases
are usually referred to as the green, red, and gray phases due to the forest appearance.

We use the MPB infestation data previously processed by Brouillard et al. for the western United
States [127]. These data are based on aerial surveys for forest insect and disease conditions from the
United States Forest Service, which provides a yearly geospatial inventory of tree mortality and the
associated cause, i.e., type of insect or disease [41]. Brouillard et al. filtered these data to only identify
MPB as the damage causal agent, which is the greatest source of disease in trees in the region of
interest by multiple orders of magnitude [127–130]. The aerial surveys are based on optical detection,
and therefore, the first detection of an infestation is usually associated with the phase transition from
green to red [28]. Consequently, Brouillard et al. considered this first detection to be the beginning of
the red phase and accumulated the infested areas over time, transitioning them to gray phase after
three years [127]. The aerial survey data has an accuracy of approximately 70% when assessed with
respect to control ground references [128]. This accuracy increases to 80% when a 50-m tolerance is
allowed [128], which is approximately the resolution at which the data is analyzed here. To further
minimize errors, Brouillard et al. only included infestation data in regions where host tree species were
present [127]. Although this dataset is not completely accurate, it represents the most spatially and
temporally complete and precise product regarding MPB infestations in the region of interest, and it has
been utilized in several studies that analyzed the consequences of the MPB infestations [6,126,130–132].
Finally, we add the green phase infestation period by including the locations with a first detection
(transition from green to red phase) in the previous year map.

Figure A4 presents the temporal evolution of the fraction of the stream network area that has been
affected by MPB infestations and shows three examples of the temporal distribution of the infestations
in the region of interest for the years 2001, 2006, and 2011 that approximately correspond to the
beginning, middle, and peak of the infestations. The area affected by MPB outbreaks is negligible
before the year 1999. During the years 2011 and 2012, the green phase is also negligible, and therefore
the total affected area stabilizes, reaching a maximum of 13% of the stream network. Approximately 2%
of the area remains red and does not transition to gray by 2012. The fraction of each watershed affected
by each of the three infestation phases in each year is included as a potential predictor of water quality.

Appendix A.3 Topography

Topography controls several drivers of water quality processes [46,47]. For example,
higher elevations are associated with lower temperatures, which determine the speed of some
biogeochemical reactions in the streams [45]. Similarly, the aspect and altitude of the terrain determine
its exposure to ultraviolet light and solar radiation, which are also important determinants for
biogeochemical reactions in streams [42–44]. Consequently, we include the average elevation of a
watershed and its predominant aspect as possible predictors. These topographic features are calculated
from the National Elevation Dataset [48,49]. Here, the aspect corresponds to a categorical variable with
nine different classes: North, Northeast, East, Southeast, South, Southwest, West, Northwest, and Flat.
Figure A5 depicts elevation and aspect and their corresponding frequencies for the stream network
region of interest. The most predominant altitudes are between 2400 and 2900 meters, and although
the East aspects are most prevalent, all eight directions have similar abundances. Only 0.4% of the
region has Flat aspects, corresponding mainly to lentic water bodies.
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Figure A4. MPB infestation maps in the region of interest for the years 2001, 2006, and 2011 (top).
This 10-year period depicts the beginning, middle, and peak of the infestations in the study area
differentiating the different infestation phases. Temporal evolution of the fraction of the stream network
of interest affected by the infestations is shown during the period 1983–2012 (bottom). The years
between 1984 and 1998 are not depicted since the fraction of area affected is negligible.

Appendix A.4 Soil Types

Because soil types not only determine runoff patterns, but also affect biogeochemical processes
that control water quality, we include soil type as a possible predictor [133–137]. The soil classification
used here corresponds to the hydrologic soil groups defined by the Natural Resources Conservation
Service division of the U.S. Department of Agriculture because this categorization is based on the
similarity of physical and runoff soil characteristics [50]. These characteristics include depth to a
restrictive layer or to the water table, water transmissivity, texture, structure, and degree of swelling
when saturated, among others. There are four hydrologic groups:

• Group A includes pervious soils, with high infiltration rates and low runoff potential,
and therefore a high transmissivity. These soils include drained sands, drained gravels,
loamy sands, and sandy loams.

• Group B includes soils with moderate infiltration rates. These soils include moderately drained
materials with textures that are not extremely fine or coarse.

• Group C includes soils with low infiltration rates with a moderately fine texture. These soils are
mainly sandy clay loams.

• Group D includes highly impervious soils with high runoff potential, and therefore a low
transmissivity. These soils are typically located in regions with high water tables or shallow
impervious materials and include clay loams, silty clay loams, sandy clays, silty clays, and clays.
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Figure A5. Digital elevation model for the region of interest (a), and the corresponding aspect
categorized as North, Northeast, East, Southeast, South, Southwest, West, Northwest, and Flat (b).
Frequency of elevations (c) and relative frequency of aspects (d) for the stream network of interest.
The frequency of the flat aspect is not depicted, and it corresponds to only 0.4% of the region.

Figure A6 presents the compiled hydrologic soil group data for the region of interest from the
U.S. General Soil Map, provided by the U.S. Department of Agriculture and manipulated with the Soil
Data Viewer tool [138,139]. We use this product to compute four potential predictors: percentage of a
watershed covered with soils in groups A, B, C, and D.
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Figure A6. Hydrologic soil groups for the region of interest where A represents the highest
transmissivities and infiltration rates, and these decrease in groups B and C, reaching highly impervious
soils in group D.

Appendix A.5 Precipitation, Temperature, and Snow Cover

Meteorological factors such as temperature and precipitation can be two of the most relevant
factors affecting stream hydrology [46,47]. Temperature controls water quality in the streams by altering
biogeochemical cycles and reactions; for instance, the maximum dissolved oxygen concentration in a
stream is highly and inversely correlated to temperature [140–142]. Flow rates and patterns in a stream
are determined by the amount of precipitation that occurs and how much of this precipitation becomes
runoff. Infiltration, evapotranspiration, and storage are the main processes determining the conversion
of precipitation into runoff [143]. The hydrologic soil types described earlier serve as a proxy for
the potential of precipitation to infiltrate depending on the soil features [50]. Similarly, temperature,
elevation, aspect, and land cover are highly correlated to evapotranspiration [129,144–148]. Finally,
the amount of water accumulated in the snow cover is the main determinant of water storage in the
Rocky Mountains [149]. Consequently, we use temperature, precipitation, and snow water equivalent
(SWE) as the potential predictors associated with hydrometeorology.

Minimizing transboundary discontinuities while maintaining a consistent gridding methodology
in space and time are important features in a product for it to be suitable for analyzing large-scale
hydrometeorological phenomena, as is the case here [52]. Therefore, the use of a single product for
the entire space-time region of interest that includes temperature, precipitation, and SWE is ideal.
However, most products do not include all three of these meteorological factors and/or do not cover
the period 1983–2012. Accordingly, we use the hydrometeorological dataset developed by Livneh
et al., referred to as Livneh-Climate hereafter [51,150,151]. Monthly means for the period 1983–2012
are obtained from this product for precipitation, maximum and minimum temperature, and SWE.
The data are gridded to a 1/16◦ (~6 km) resolution. It is possible to find other data products with
a finer resolution (~1 km) for hydrometeorological data; however, the Livneh-Climate product is
chosen here because the products with a higher spatial resolution do not cover the period of interest,
the study area, and/or do not have all three hydrometeorological factors of interest (temperature,
precipitation, and SWE). If a product that meets our requirements were not available, it would be
necessary to use multiple products and to predict their values at times and in locations with no data,
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which would decrease the consistency across hydrometeorological factors and increase transboundary
discontinuities and uncertainty [51,52].

The Livneh-Climate product is an observation-based meteorological dataset that offers insights
into changes to hydro-climatic systems based on the detection of spatial–temporal characteristics.
It is derived from daily temperature, precipitation, and wind observations from approximately
20,000 NOAA Cooperative Observer stations. These data were used to derive humidity and
down-welling solar and infrared radiation by using algorithms that index these quantities to the
daily mean temperature, temperature range, and precipitation. The precipitation data also followed an
orographic adjustment. Livneh et al. used the Variable Infiltration Capacity model to produce estimates
of soil moisture, SWE, discharge, and surface heat fluxes [51]. Finally, the data were aggregated into
daily and monthly averages for the period 1950–2013 in the conterminous United States. The final
product reduces transboundary discontinuities when compared to other commonly used reanalysis
products because of its consistent gridding methodology [51,52,150,151].

We aggregate the monthly averages for the period 1983–2012 in the stream network of interest into
three yearly averages: (i) a yearly average that only includes base-flow months, i.e., August–November
(BF); (ii) a yearly average that only includes all the months that are not included in the base-flow
case (nBF); and (iii) a yearly average that includes all months of the year (YR). Figure A7 presents an
example of the yearly averaged hydrometeorological factors of interest in the study area for the year
2001, and it also displays the temporal evolution of these factors in the stream network of interest.

As seen in the top panels from Figure A7, higher elevations receive the majority of the precipitation,
have lower temperatures, and accumulate most of the snow. Although the water quality data analyzed
here only includes measurements during the base-flow period, we included the three different cases for
the hydrometeorological yearly averages (base-flow months, non-base-flow months, and all months)
as possible predictors because there can be a lag time between hydrometeorological changes and
responses in the water quality. For example, the snow-melt can percolate to the groundwater table,
and later on, during the base-flow period, groundwater is the main source of stream-flow during
the months between late August and November. It is likely that the yearly averages in these three
periods are redundant predictors in some cases, since, for example, temperature is highly correlated
across these three times periods. However, temporal temperature fluctuations are stronger during the
base-flow period, while the snow cover depth is negligible when compared to months outside of the
base-flow period. In these cases, one of the three yearly average cases may be a better predictor of
water quality. High precipitation during the end of the 1990s is associated with the El Niño Southern
Oscillation event [152–155].

Appendix A.6 Land Cover

The water cycle, biogeochemical cycling, hydrologic processes, soil erosion, ecological community
composition, ecosystem productivity, and other natural environmentally relevant processes are highly
affected by land cover [129,144–148]. In some cases, the impact on the environment produced
by land cover changes is equal to or greater than that produced by climate change [146,156,157].
Consequently, we use the SCaMF-RM land cover product to construct three predictors associated
with land cover: percentage of a watershed covered with Developed, Forest, and Agricultural land
cover classes [53]. One of the main advantages of SCaMF-RM is that it provides high resolution
maps for the region of interest with a yearly frequency during the entire period 1983–2012. Figure A8
presents an example of the land cover coverage from these three classes during three years in the
period of interest. Additionally, Figure A8 presents the temporal evolution of the fraction of the stream
network covered by these three classes, where we observe that the majority of the region is covered by
Forest, with an abundance that oscillates around 52% and is highly influenced by climatological events.
For example, the Forest coverage increased substantially during 1997 and 1998, and these two years
also presented above average precipitation due to a strong El Niño Southern Oscillation [152–155].
The Agricultural coverage is about 7% and is relatively stable during the period of interest. Finally,
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urbanization is widespread in the stream network region, with the Developed class coverage changing
from approximately 3 to 6% in 30 years [1–5].

Figure A7. Minimum temperature (minT), maximum temperature (maxT), precipitation (PR), and SWE
yearly averages for the cases including only base-flow months (BF), all other months (nBF), and all
months of the year (YR). The top 12 panels present these averages for the year 2001 in the region of
interest, while the bottom panel presents the evolution of the mean of these yearly averages in the
stream network of interest for the period 1983–2012. SWE is scaled by two orders of magnitude in the
bottom panel for visualization purposes.
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Figure A8. Land cover maps in the region of interest for the classes Developed, Forest, and Agricultural
and the years 1987, 1997, and 2007 (top), and temporal evolution of the fraction of the stream network
of interest covered by these three classes during the period 1983–2012 (bottom).

Appendix A.7 Wastewater Point Sources

The Rocky Mountains have been affected, as mentioned earlier, by anthropogenic activities such
as urbanization and logging [1–5]. Urbanization not only alters the physical and chemical patterns of
runoff, but it also produces wastewater sources of organic matter that can alter carbon concentrations
and chemistry in surface waters [73,158–160]. The urbanization process in the region of interest is
already represented by the Developed land cover class from the SCaMF-RM product, as described in
detail in Section Appendix A.6. However, this representation does not capture the specific locations of
point sources for untreated or treated wastewater.

We compile information regarding the location of wastewater treatment plants in the states of
Colorado and Wyoming (the two states that intersect the region of interest) from their corresponding
environmental authorities, i.e., the Department of Public Health and Environment-Water Quality
Control Commission and the Department of Environmental Quality-Water Quality Division,
respectively [54,55]. Ideally, this information would include a temporal component that differentiates
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the wastewater sources between treated and untreated. Nevertheless, it is not required by any State
Agency to keep track of this date by regulation [54], and therefore, these meta-data are not available.
Thus, only the number of point sources of wastewater in each watershed are included as possible
predictors. Figure A9 plots the 174 wastewater point sources compiled for the stream network
of interest.

Figure A9. Wastewater point source locations (blue dots) for the stream network of interest (gray segments).

Appendix B

In a stream network, there are locations at stream junctions that are very close spatially, but their
values for the variable of interest may be quite different because they are on two stream segments that
do not share flow. In comparison, values in flow-connected locations tend to be more similar, as are
values within a stream segment [65].

As an example, Equation (A5) presents a traditional linear bounded covariance model used for
spatial prediction when distances are Euclidean.

C(h|θ) =


θn + θs i f h = 0

θs

(
1− h

θr

)
i f 0 < h < θr

0 i f θr ≤ h

, (A5)

where C(h|θ) is the covariance between two locations separated by Euclidean distance h, and the
model parameters θ = (θn, θs, θr) represent the nugget, the sill, and the range of dependence of the
model. However, this model does not produce a positive-definite matrix for covariance if h is a stream
network distance. Ver Hoef et al. proposed the model in Equation (A6) to obtain a positive definite
covariance matrix when stream distance, hsn, is used and when downstream locations depend spatially
on upstream locations, but not the opposite [65]. Because of the asymmetric spatial dependence,
these models are called tail-up covariance models.

C1(hsn|θ) =
∞∫

hsn

g(x|θ)g(x− hsn|θ)dx, (A6)
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where hsn is the stream distance between two locations, and g(x|θ) is a moving-average function.
As an example, this function takes the form given by Equation (A7) for a linear model with range
parameter θr:

g(x|θ) = ϑ · I
(

0 ≤ x
θr
≤ 1

)
, (A7)

where ϑ is a parameter related to the sill, θs, as demonstrated later on; I is an indicator function that
returns a value of 1 if the clause it evaluates is true and 0 otherwise; and the nugget effect is introduced
in Equation (A9).

Because the range, θr, is a positive number, which can be practically understood as the distance
when spatial dependence ceases between two locations, Equation (A7) can be re-written as:

g(x|θ) = θs · I(0 ≤ x ≤ θr), (A8)

where θs = ϑ · θr.
Inserting Equation (A8) into Equation (A6) simplifies the covariance structure as follows:
If hsn = 0:

C1(0|θ) =
θr∫

0

(g(x|θ))2dx +

∞∫
θr

0dx = ϑ2

(
0 + x

∣∣∣∣∣ θr

0

)
+ 0 = ϑ2θr.

If hsn > θr, we have that x− hsn < 0 ∀ x : 0 ≤ x ≤ θr, and therefore g(x− hsn|θ) = 0. Similarly,
g(x|θ) = 0 for all other values of x. Therefore, C(hsn|θ) = 0.

If 0 < hsn ≤ θr, the covariance is given by:

C1(hsn|θ) =
θr∫

hsn

ϑg(x− hsn|θ)dx +

∞∫
θr

0g( x− hsn|θ)dx = ϑ

θr∫
0

g(x− hsn|θ)dx.

To evaluate the integral, we can do a simple substitution with u = x− hsn ⇒ du = dx :

C1(hsn|θ) = ϑ

u=θr−hsn∫
u=hsn−hsn

g(u|θ)du = ϑ

u=θr−hsn∫
u=0

ϑdu = ϑ2

(
0 + u

∣∣∣∣∣ θr − hsn

0

)
= ϑ2(θr − hsn).

Thus, the covariance model is simplified to:

C1(hsn|θ) =
{

ϑ2(θr − hsn) i f 0 ≤ hsn ≤ θr

0 i f hsn > θr
, (A9)

Equation (A9) can be reorganized to a more standard form, setting θs = ϑ2θr:

C1(hsn|θ) = θs

(
1− hsn

θr

)
I
(

0 ≤ hsn

θr
≤ 1

)
. (A10)

Ver Hoef and Peterson remark that any moving average function can be chosen for g(x|θ) as long
as it has finite volume in order to create a stationary process, and preferably, it should be centered at
0 where most of its mass occurs [64].

The covariance construction in Equation (A6) is defined for a single line segment that is continuous
from −∞ to ∞ on the real line. However, for stream networks, the line segments split into two.
Therefore, the moving average is split into two parts as well, and each part is weighted using a scheme
that maintains stationarity. The proportion of the area for each sub-watershed in the confluence can
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be used as a weight. This allows the construction of a valid covariance model for the entire stream
network, given in Equation (A11).

C(si, tj|θ) =


0 i f si and tj are not f low− connected
C1(0|θ) + θn i f si = tj

∏
k∈Bsi ,tj

√
wkC1(hsn|θ) otherwise

, (A11)

where si represents a location that belongs to the stream segment i; tj represents a location that belongs
to the stream segment j; hsn is the stream distance between si and tj; θn is the nugget of the model;
Bsi ,tj is the set of stream segments between the locations si and tj excluding the lowermost location;
and wk is the weight of stream segment k.

Assuming θn = 0 and using the linear model for C1(hsn) developed earlier with unitary sill and
range parameters, i.e., θ = (0, 1, 1), the covariance model is reduced to Equation (A12) [56]:

C(si, tj|θ) =


0 i f si and tj are not f low− connected

∏
k∈Bsi ,tj

√
wk(1− hsn) otherwise . (A12)

Appendix C

Figure A10. Comparison of gray-phase areas affected by the MPB and predicted base-flow DOC
concentrations in the region of interest for the years 2003, 2006, 2009, and 2012.
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Figure A11. Comparison of significant climatological predictors (mean base-flow monthly precipitation,
mean non-base-flow monthly precipitation, and mean base-flow monthly maximum temperature)
and predicted base-flow DOC concentrations in the region of interest for the years 1987, 1994, 2002,
and 2009.
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