
water

Article

Fast Simulation of Large-Scale Floods Based on GPU
Parallel Computing

Qiang Liu, Yi Qin * and Guodong Li

Key Laboratory of the North-West Water Resources and Ecology Environment, Ministry of Education,
Xi’an University of Technology, Xi’an 710048, China; dr.liu2003@hotmail.com (Q.L.); gdli2008@xaut.edu.cn (G.L.)
* Correspondence: 13571991500@126.com; Tel.: +86-135-7199-1500

Received: 17 March 2018; Accepted: 27 April 2018; Published: 2 May 2018
����������
�������

Abstract: Computing speed is a significant issue of large-scale flood simulations for real-time response
to disaster prevention and mitigation. Even today, most of the large-scale flood simulations are
generally run on supercomputers due to the massive amounts of data and computations necessary.
In this work, a two-dimensional shallow water model based on an unstructured Godunov-type finite
volume scheme was proposed for flood simulation. To realize a fast simulation of large-scale floods on
a personal computer, a Graphics Processing Unit (GPU)-based, high-performance computing method
using the OpenACC application was adopted to parallelize the shallow water model. An unstructured
data management method was presented to control the data transportation between the GPU and
CPU (Central Processing Unit) with minimum overhead, and then both computation and data were
offloaded from the CPU to the GPU, which exploited the computational capability of the GPU as
much as possible. The parallel model was validated using various benchmarks and real-world case
studies. The results demonstrate that speed-ups of up to one order of magnitude can be achieved in
comparison with the serial model. The proposed parallel model provides a fast and reliable tool with
which to quickly assess flood hazards in large-scale areas and, thus, has a bright application prospect
for dynamic inundation risk identification and disaster assessment.

Keywords: flood modeling; shallow water equations; finite volume scheme; GPU parallel computing;
numerical simulation

1. Introduction

Flooding due to dam-break, excessive rainfall, and storm surge is a serious threatening hazard
that can cause significant casualties and economic losses. In recent years, the shallow water model has
been widely researched and used for flood simulations [1–6]. Song et al. [1] proposed a robust and
well-balanced finite volume model by using a new formulation of shallow water equations. Bi et al. [2]
adopted adaptive Cartesian grids for the trade-off between model accuracy and efficiency. Wu et al. [3]
presented a two-dimensional, well-balanced shallow water model for simulating flows over arbitrary
topography with wetting and drying. Liu et al. [4] proposed a coupled 1D–2D hydrodynamic model
for flood risk mapping. Rehman and Cho [5] proposed a robust method of slope source term treatment
for modeling shallow-water flows and near-shore tsunami propagation. Kvocka et al. [6] determined
a threshold value of the bottom slope for using the flood inundation model with shock-capturing
algorithms. Those works have attracted much attention to the model accuracy and computational
stability for wet/dry treatments over irregular topography.

Real-time flood control operations can reduce the social and economic loss caused by natural
disasters [7]. To provide timely warning, which is very important for a real-time response to disaster
prevention and mitigation, the large-scale floods should be simulated with a fast computing speed.
Even today, most of the large-scale flood simulations are generally run on supercomputers due to

Water 2018, 10, 589; doi:10.3390/w10050589 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
http://www.mdpi.com/2073-4441/10/5/589?type=check_update&version=1
http://www.mdpi.com/journal/water
http://dx.doi.org/10.3390/w10050589


Water 2018, 10, 589 2 of 16

the massive amounts of data and computations necessary. Sanders et al. [8] proposed a parallel
shallow-water code, named ParBreZo, for high-resolution flood inundation modeling at the regional
scale. Lai and Khan [9] adopted the message-passing interface (MPI) method to develop a parallel
two-dimensional discontinuous Galerkin method for shallow-water flows. Since the multi-CPUs
provided by supercomputers are relatively expensive, the more cost-effective computation platform
based on a personal computer with a graphics processing unit (GPU) card could be used for fast
simulation of large-scale floods, regarding the development that now one GPU card integrating
thousands of computing cores can provide a powerful computational capability [10]. For example,
Wang and Yang [11] adopted the GPU-based, high-performance-integrated hydrodynamic modelling
system to simulate flood processes at the basin scale.

There are two main approaches for GPU parallelization, i.e., the CUDA (Compute Unified Device
Architecture) programming language and the OpenACC application programming interface. The
CUDA programming language, including CUDA C, CUDA Fortran, and OpenCL (Open Computing
Language), favors low-level development, but has great flexibility in the parallel execution model,
whereas the OpenACC application programming interface is a collection of runtime routines and
compiler directives that use the FORTRAN or C/C++ languages to compile the specified code blocks
of computational loops [12]. The OpenACC provided by the PGI compiler enables automatic code
transplantation and the offloading of both massive amounts of data and computation from the CPU
to the GPU. However, when using the CUDA programming language, both the parallel codes and
execution parameters should be specified by the developer. Thus, it can be concluded that the
OpenACC application programming interface is easier to use and has the advantage of better portability.
Zhang et al. [13] evaluated three parallel methods, including OpenMP (Open MultiProcessing), MPI,
and OpenACC, for the computation of a two-dimensional dam-break model using the explicit finite
volume method. The Tesla K20c (Nvidia, CA, USA) with 2496 Nvidia CUDA cores was used for
GPU computing. The computational area is 1997 km2, and 337,084 quadrilateral unstructured meshes
were used. The average grid length is 80 m. The results showed that the OpenACC parallel method
using a Tesla K20c GPU card achieved a higher speedup ratio than that of the OpenMP and MPI
parallel methods on a 32-core computer. Liang et al. [14] used the OpenCL language and then
developed a GPU-accelerated hydrodynamic model for a rainfall-runoff process simulation. The
Tesla K80 with 4992 Nvidia CUDA cores was used for GPU computing. The time consumption of the
simulation for a 12-h flood event on 5 million computational cells at 5 m resolution was 2.5 h when
using a single Tesla K80 GPU card (Nvidia, CA, USA). Thus, it can be concluded that a GPU-based
personal computer can enable catchment-scale simulations at a very high spatial grid resolution and
substantially improve the computational efficiency. GPU-accelerated models have also been used
for the simulation of coastal ocean tides [15], waves [16], and dam-break floods [17], showing a
noticeable speedup. Néelz and Pender [18] presented various benchmarks for the latest generation of
2D hydraulic modelling packages, including the MIKE21 FM model, TUFLOW, and so on. The results
show that the MIKE21 FM model can be used for flood simulation.

In this work, a two-dimensional shallow water model based on an unstructured Godunov-type
explicit finite volume scheme is proposed for flood simulation. The HLLC (Harten, Lax, vanLeer,
Contact) solver is adopted for flux computation, and the flow states are updated by Hancock’s
prediction-correction scheme. The main computational subroutines are presented as loops with data
independence and natural parallelism. To realize fast simulation of large-scale floods on a personal
computer, a graphics processing unit (GPU)-based high-performance computing method using the
OpenACC application programming interface was adopted to parallelize the shallow water model
in an incremental developing way with minimal recoding work. An unstructured data management
method is presented to control the data transportation between the GPU and the CPU with minimal
overhead, and then both computation and data are offloaded from the CPU to the GPU, which can
exploit the computational capability of the GPU as much as possible. The parallel model is validated
using various benchmarks and real-world case studies.



Water 2018, 10, 589 3 of 16

2. Methodologies

2.1. Hydrodynamic Model

2.1.1. Governing Equations

The 2D shallow water equations are used as the governing equations for the flood simulation,
which are given in the following conservation form:

∂U
∂t

+
∂E
∂x

+
∂G
∂y

= S (1)

in which

U =

 h
hu
hv

, E =

 hu
hu2 + g(h2 − b2)/2

huv

, G =

 hv
huv

hv2 + g(h2 − b2)/2

,

S = S0 + S f =

 0
g(h + b)S0x
g(h + b)S0y

+

 0
−ghS f x
−ghS f y


in which h is the depth; u and v are the velocity in the x- and y-directions, b is the bed elevation, S0x
and S0y are the bed slopes in the x- and y-directions, S0x = −∂b/∂x and S0y = −∂b/∂y, g is the gravity
acceleration, and S f x and S f y are the friction terms. The friction terms are estimated by Manning
formulae [1]:

S f x =
n2u
√

u2 + v2

h4/3 , S f y =
n2v
√

u2 + v2

h4/3 (2)

in which n is the empirical Manning coefficient.

2.1.2. Numerical Method

One of the widely-used Godunov-type finite volume methods for solving the two-dimensional
shallow water equations, named the MUSCL (Monotone Upstream Scheme for Conservation
Law)-Hancock scheme, is adopted in this work. The computational grids are triangular. The processes
of updating flow states are given as follows:

(1) Wet/dry classification for nodes and cells

Since flood simulations always involve a dry bed case, the computational cells and nodes should
be classified for wet/dry front treatment. In this paper, a nodal water depth-based method is used
for classification. When a nodal depth is greater than 10−3 m [4], the node would be classified as
a wet-node; otherwise, the node would be classified as a dry-node. Based on the nodal wet/dry
classification, a wet-cell is defined as that in which all three nodes of the cell are wetted; and if one or
more nodes of a cell are dry, the cell is classified as a dry-cell. It can be concluded that the subroutine
of wet/dry classification is a computational loop with data independence.

It should be noted that, in general, the threshold for wet and dry classification is non-sensitive to
the final computational results of the maximum water depth and flow velocity. However, it would
influence the time of arrival of the floods. For example, if we set the threshold to be an unreasonable
value of 1 m, then the flood front propagation would be numerically hindered by the wet and dry
classification, as the water depth must be higher than 1 m for flooding. However, if we set the threshold
to be small enough, such as 10−3 m or 10−6 m, the threshold is non-sensitive to the final computational
results, including the maximum water depth, flow velocity, the time of arrival of the floods, and so on.



Water 2018, 10, 589 4 of 16

(2) Gradient calculation for cells

To achieve higher-order accuracy, as well as computational stability, a hybrid method is adopted
for gradient computation. If a cell is classified as dry, the gradients of the water level and velocities
are set to zero. Otherwise, the unlimited gradient is computed based on values at centroids of three
neighboring cells using the plane gradient calculation method. To preserve the TVD (total variation
diminishing) property, the limit function used by Song et al. [1] is adopted for limited gradient
calculations. It can be concluded that the subroutine of the gradient calculation is a computational
loop with data independence.

(3) Prediction calculation for cells

The predictor results at the time step m + 1/2 are computed by using values of the water level,
water depth, velocities, and their limited gradients at the basis time step m:

ηm+1/2
i = ηm

i −
∆t
2
(h∂xu + h∂yv + u∂xh + v∂yh)

∣∣∣∣m
i

(3)

um+1/2
i =

1

1 + gn2h−4/3
√

u2 + v2∆t/2
[u− ∆t

2
(u∂xu + g∂xη + v∂yu)]

∣∣∣∣∣
m

i

(4)

vm+1/2
i =

1

1 + gn2h−4/3
√

u2 + v2∆t/2
[v− ∆t

2
(u∂xv + g∂yη + v∂yv)]

∣∣∣∣∣
m

i

(5)

in which the superscript m is the time step, η is the water level, ∆t is the computational time step, ∂

denotes the limited gradient, and the subscript i is the element index. It can be concluded that the
subroutine of the prediction calculation is a computational loop with data independence.

(4) Variable reconstruction for edges

If the cell is classified as a wet-cell, the linear interpolation method is used for variable
reconstruction based on the limited gradient at the basis time step n and the predictor results. If the
cell is classified as a dry-cell, the reconstructed face values of the velocities are extrapolated from
centric values:

uRec
i,k = ui vRec

i,k = vi (k = 1, 2, 3) (6)

and the reconstructed water depth is given by

hRec
i,k =


0 if ηi ≤ bmin

i,k
(ηi−bmin

i,k )
2

2(bmax
i,k −bmin

i,k )
if bmin

i,k < ηi ≤ bmax
i,k (k = 1, 2, 3)

ηi −
bmin

i,k +bmax
i,k

2 if ηi > bmax
i,k

(7)

in which bmin
i,k and bmax

i,k are the minimum and maximum bed elevations of the two endpoints of edge k
in cell Ci. It can be concluded that the subroutine of variable reconstruction is a computational loop
with data independence.

(5) Numerical flux calculations for edges

The numerical fluxes are computed by using the HLLC Riemann solver, which is given by

F(UL , UR) · n =


F(UL) · n if s1 ≥ 0
F∗L if s1 < 0 ≤ s2

F∗R if s2 < 0 < s3

F(UR) · n if s3 ≤ 0

(8)



Water 2018, 10, 589 5 of 16

in which n = (nx, ny)T is the unit outward normal vector; F(UL) · n, F∗L, F∗R, and F(UR) · n are
computed by

F(U) · n =

 hu⊥
huu⊥ + 1

2 g(h2 − b2)nx

hvu⊥ + 1
2 g(h2 − b2)ny

 (9)

F∗L =

 (EHLL)
1

(EHLL)
2nx − u//,L(EHLL)

1ny

(EHLL)
2ny + u//,L(EHLL)

1nx

 (10)

F∗R =

 (EHLL)
1

(EHLL)
2nx − u//,R(EHLL)

1ny

(EHLL)
2ny + u//,R(EHLL)

1nx

 (11)

and s1, s2, s3 are wave speeds, which are given by

s1 =

{
min(u⊥,L −

√
ghL, u⊥,∗ −

√
gh∗) if hL > 0

u⊥,R − 2
√

ghR if hL = 0
(12)

s3 =

{
max(u⊥,R +

√
ghR, u⊥,∗ +

√
gh∗) if hR > 0

u⊥,L + 2
√

ghL if hR = 0
(13)

s2 =
s1hR(u⊥,R − s3)− s3hL(u⊥,L − s1)

hR(u⊥,R − s3)− hL(u⊥,L − s1)
(14)

in which h∗ and u⊥,∗ are middle states estimation given by

h∗ =
1
2
(hL + hR) u⊥,∗ =

√
hLu⊥,L +

√
hRu⊥,R√

hL +
√

hR
(15)

and u⊥ = unx + vny, u// = −uny + vnx. (EHLL)
1, and (EHLL)

2 are the first two components of the
normal flux EHLL, which is computed by using the HLL formula

EHLL =
s3E(TUL)− s1E(TUR) + s1s3(TUR − TUL)

s3 − s1
(16)

It can be concluded that the subroutine of the numerical flux calculation is a computational loop
with data independence.

(6) Bed slope term approximation for cells

The cell-centered bed slope term approximation method is adopted in this work:

Si,0x = −
∫
Ci

g(h + b)
∂b
∂x

dΩ = −g(hi + bi)
∂b
∂x

∣∣∣∣
i
Ωi (17)

Si,0y = −
∫
Ci

g(h + b)
∂b
∂y

dΩ = −g(hi + bi)
∂b
∂y

∣∣∣∣
i
Ωi (18)

in which Ω is the cell area. It can be concluded that the subroutine of the bed slope term approximation
is a computational loop with data independence.



Water 2018, 10, 589 6 of 16

(7) Correction calculation for cells

The flow states at the next time step n + 1 are calculated by

Um+1
i = Um

i −
∆t
Ωi

3

∑
k=1

Fk · nkLk +
∆t
Ωi

Si (19)

in which L is the edge length and Si is the source approximation. It can be concluded that the
subroutine of the correction is a computational loop with data independence.

2.2. GPU Parallel Computing

The OpenACC application programming interface provided by the PGI compiler is a collection
of runtime routines and compiler directives that use the Fortran or C/C++ language to compile the
specified code blocks of computational loops. In shallow water models, the key to an OpenACC-based
parallel implementation is that all the data and computationally-intensive work should be offloaded
from the CPU to the GPU with minimal data transportation. The flood simulation is iterated over a
series of computational time-steps, and all calculation subroutines in a time-step should be run in
parallel on the GPU for high-performance computation.

As the finite volume scheme adopted in this work is explicit, the main computational subroutines
described above are presented as loops with data independence and natural parallelism. Thus, in a
computational time-step, the calculations for each cell or edge are numerically decoupled, and the
computational loops can be executed in parallel by the GPU device. Therefore, OpenACC clauses
can be directly added to the original serial model codes to realize GPU computation, accelerating the
program in an incrementally-developing way with minimal recoding work. In this study, a GPU-based
high-performance computing method using the OpenACC application is adopted to parallelize the
shallow water model.

The most significant issue of GPU-based parallelization is the design of the calculation flow,
which involves three steps: data input, numerical computing, and results output. Since the Peripheral
Component Interface express (PCIe) bus used for data transportation between the CPU and the GPU is
relatively time-consuming, all data should be offloaded from the CPU to the GPU at the initial stage,
and then the massive amounts of data should be consecutively processed in the GPU device space.
Figure 1 presents the computational flow diagram for the GPU-based parallel model, from which it can
be seen that the role of the CPU is designed as a calculation flow controller, as well as an I/O interface
for data files, and the intensive computational work and data are consecutively processed in the GPU
device space. Moreover, the unstructured data management method described above can control the
data transportation between the GPU and the CPU with minimal overhead and, thus, can exploit the
computational capability of the GPU as much as possible. It should be noted that the program targeted
by the OpenACC application programming interface is host (CPU)-directed execution with an attached
accelerator device (GPU). In the serial model, the subroutines are sequentially called and executed
by the CPU. However, in the GPU-based parallel model, the subroutines are sequentially called by
the CPU, but each of the subroutines are executed in parallel on the GPU, since the computation is
offloaded from the CPU to the GPU. It should be noted that the GPU-based parallelization approach
presented in this paper is not suitable for implicit schemes, since the problem of data dependence is
difficult to resolve.



Water 2018, 10, 589 7 of 16

Figure 1. The computational flow diagram for a GPU-based parallel model.

3. Model Validations

3.1. Flooding a Disconnected Water Body

To assess basic capabilities, such as handling disconnected water bodies, the conservation of
momentum, and the wetting and drying of floodplains, the test case used by Néelz and Pender [18] as
a benchmark for 2D hydraulic modeling package testing is adopted in this work. The computational
area consists of a 100 m wide, 700 m long domain with a longitudinal profile as illustrated in Figure 2.
From the longitudinal profile, it can be seen that there is a pond located at x = 300–700 m. A water
level boundary condition is applied upstream of the domain: in the first 1 h the water level rises from
9.7 m to a peak level of 10.35 m, and after a 10 h maintenance of the peak level for the depression on
the right-hand side to fill up to a level of 10.35 m, the water level is lowered to 9.7 m in 1 h. The lateral
and downstream boundaries are zero mass flux.

Figure 2. Plan and profile of the DEM used in the test case of flooding a disconnected water body [18].



Water 2018, 10, 589 8 of 16

The initial water level is 9.7 m, and a uniform Manning coefficient of 0.03 is used in this case.
The computed water levels at two points, P1 (400, 50) and P2 (600, 50), are presented in Figure 3a.
Figure 3b,c shows the computed results of different models from Néelz and Pender [18]. The results
show that the proposed model successfully simulates the sheet flow, of which the water depth is up
to 0.05 m, at point 1, starting at t = 1 h and lasting for about 45 min until the water level in the pond
reaches the ground elevation of P1. From Figure 3, it can be seen that the computed results of the
proposed model match well with those of the MIKE model. Additionally, the water difference between
P1 and P2 was negligible after t = 2 h. The final level elevation at P1 and P2 is 10.25 m, which equals
the exact solution.

Figure 3. The computed water levels at points P1 and P2 in the test case of flooding a disconnected
water body: (a) computed results of the present model at P1 and P2; (b) computed results of different
models at P1; (c) computed results of different models at P2.

3.2. The Toce River Dam-Break Case with Overtopping

In this case, the parallel model is applied to simulate the dam break flood event in the
physical model of the Toce River [19]. This case is used to test the shock-capturing property of
the proposed model. Figure 4 shows the plan view of the topography of the Toce River physical
model. The computational domain is approximately 50 × 11 m. Three selected gauges (P1, P18, and
P26) along the main river axis are used for comparing the computed results with the measured data.
A rectangular tank was located at the upstream end (i.e., the left end in Figure 4) of the physical model.
The water level of the rectangular tank rose suddenly to model the dam-break flooding. In the middle
of the domain there is an empty reservoir. The bank of the reservoir would be overtopped by river
floods. In this case, discharge from the rectangular tank was used as an inflow boundary condition
(Figure 5). The channel downstream of the tank is initially dry. The downstream boundary is an open



Water 2018, 10, 589 9 of 16

flow condition. The lateral boundaries are zero mass flux. The value of the Manning coefficient is
taken to be 0.016.

Figure 4. The plan view of the topography of the Toce River physical model.

Figure 5. The inflow discharge boundary condition of the Toce River physical model.

This case was simulated until t = 0.05 h. A comparison of the computed stage-time hydrographs
with the measured data at three gauge points is shown in Figure 6. The results show that the proposed
model is in agreement with the measured data.

Figure 6. Comparison of the stage-time hydrographs in the Toce River physical model.



Water 2018, 10, 589 10 of 16

4. Case Study: A Real Flood Simulation in the Wei River

4.1. Study Area

The Wei River Basin is located on the windward slope (i.e., east slope) of Taihang Mountain, so
there are frequent and heavy rainstorms, leading to serious flood disasters in most years. From 1670 to
2005 there were 110 recorded great floods, and the flood disasters occurred, on average, once every
three years. In August 1996, the economic loss due to flood was up to RMB 1.04 billion, and the flood
inundation area was about 191 km2. The flood control protection zone of the Wei River right bank
involves Shandong, Hebei, and Henan provinces in China (Figure 7), and in Figure 7 the blocks of hatch
pattern with different colors belong to different provinces. There are about 180 townships in the flood
control protection zone. The study area is bounded by the left embankment of the Tuhaimajia River,
the left embankment of the Majia River, the Bohai Estuary, the right embankment of the Zhangweixin
River, the right embankment of the Weiyunhe Canal, and the right embankment of the Wei River. The
total area is about 9503 km2, which is a large-scale field and is time-consuming for flood simulation.

Figure 7. The flood control protection zone of the Wei River right bank (the blocks of hatch pattern
with blue, yellow, and green belong to Henan Province, Hebei Province, and Shandong Province,
respectively).

4.2. Computational Mesh

In this work, three grid division schemes with different resolutions are considered to test the
performance of the parallel model. The first division is a basis of 179,296 triangular grids with average
side-lengths varying form 50–250 m, and the average area of grids is 0.053 km2. The other two divisions
are refined, in turn, by evenly dividing one grid into four grids from the middle points of the edges,
and the corresponding total triangular grid numbers are 717,184 and 2,868,736, respectively. For
simplified expression, the three grid divisions are denoted as mesh-1, mesh-2, and mesh-3, respectively.
Figure 8 shows the topography of the study area using Gauss-Kruger projection.



Water 2018, 10, 589 11 of 16

Figure 8. The topography of the flood control protection zone of the Wei River right bank.

4.3. Dyke-Break Flood Simulation

We consider a hypothetical dyke breach, and the position is shown in Figure 8. The discharge
across the breach is shown in Figure 9, assuming the dyke breach occurred at time t = 0. The peak
discharge is 496 m3/s, and the flooding duration time is about 263 h. To simulate the whole process of
flooding and recession, the computation time is set to 878 h, and the discharge across the breach is 0
during time t = 264–878 h.

Figure 9. The test case of real flood simulation in the Wei River: the discharge across the hypothetical
dyke breach (the dyke breach occurred at time t = 0).

Figure 10 shows the distribution of the computed water depth at different times using mesh-1,
from which it can be seen that the flood propagation is well simulated. Both the direction and extent of
the flood propagation are consistent with the topography. Figure 11 shows the water volume of the
inflow and the cells’ storage, from which it can be seen that the computed cells’ water storage equals
the inflow water volume, validating the property of mass conservation of the proposed model.



Water 2018, 10, 589 12 of 16

Figure 10. The test case of real flood simulation in the Wei River: the distribution of the computed
water depth at different times using Mesh-1.

Figure 11. The test case of real flood simulation in the Wei River: the water volume of inflow and the
cells’ storage.

Table 1 gives the comparison of the final flooded area at different water depth intervals between
the proposed model and the MIKE21 FM model. The results show that the total flooded area computed
by the proposed model matches well with the MIKE21 FM model, and the differences at five water
depth intervals are very small in the view of practical application. From Table 1, it can be seen that
the absolute relative error increases with the increase of the water depth. The flooded area computed
by the proposed model is larger than that of MIKE21 FM for water depth intervals of 0.5–1 m and
≥3 m, while the flooded area computed by the proposed model is smaller than that of MIKE21 FM for
water depth intervals of 0.05–0.5 m, 1–2 m, and 2–3 m. These differences are produced by the model
structure error. Since the real topography is very complex, the flooded area of higher water depth
would have a more complicated flow pattern, which should introduce more numerical error between
the proposed model and the MIKE21 FM model.



Water 2018, 10, 589 13 of 16

Table 1. The test case of real flood simulation in the Wei River: the comparison of the final flooded area
at different water depth intervals (km2).

Model In All
Water Depth Intervals

0.05–0.5 m 0.5–1 m 1–2 m 2–3 m ≥3 m

MIKE21 FM 864.26 370.35 234.5 200.34 50.14 8.93
The proposed model 856.28 364.62 241.19 193.46 47.03 9.98

Relative error (%) −0.92% −1.55% 2.85% −3.43% −6.20% 11.76%

4.4. Parallel Performance Analysis

The parallel performance analyses of the flood simulation model are based on executions of the
OpenACC-directed codes on the GPU, compared to the executions of serial codes on the CPU. In this
work, we use an Intel Xeon CPU E5-2690 @ 3.0 GHz (Intel, CA, USA) for running the serial model
and additionally adopt one Tesla K20 card for the parallel model. The GPU card has a Kepler GK110
GPU (Nvidia, CA, USA) and 2496 NVIDIA CUDA cores (Nvidia, CA, USA), and the clock frequency is
706 MHz.

Two quantitative indicators, speedup ratio, and time-saving ratio are used for
performance evaluation.

The speedup ratio is defined as
S = TCPU/TGPU (20)

in which S is the speedup ratio, and TCPU and TGPU are the run time of the serial model and the
GPU-based parallel models, respectively.

The time saving ratio TS is given by

TS = (TCPU − TGPU)/TCPU (21)

It can be concluded that greater speed up and time-saving ratio result in greater computational
efficiency. The dyke-break flood simulation described above and the three grid division schemes are
used in this section for parallel performance analysis.

To analyze the stability of run time for replicate running, we have implemented the multiple
replicate runs, up to 10 times, by using the Mesh-1 and the GPU computing. Figure 12 shows the run
time distribution, from which it can be seen that the standard deviation is 3.3 s, which is on the order of
seconds. Since the average run time is about 0.15 h, and the standard deviation is far below the average
run time, it can be concluded that the run time of one running can be used for performance analysis.

Figure 12. The test case of real flood simulation in the Wei River: the run time distribution of replicate
running by using the Mesh-1 and the GPU computing.



Water 2018, 10, 589 14 of 16

For the three mesh division schemes of the flood control protection zone of the Wei River right
bank, the different capacity levels were compiled on both the CPU and the GPU device. Table 2 gives
the running time, speedup ratio, and time-saving ratio of the calculations, from which it can be seen
that all three cases attained a dramatic reduction in running time. For mesh-1 of 179,296 grids, the
878 h (36.6 days) flood inundation process took approximately 1.70 h to calculate with the serial model,
whereas only 0.15 h was required with a parallel model on the GPU K20 card (Nvidia, CA, USA).
For mesh-2 of 717,184 grids, the 878 h (36.6 days) flood inundation process required approximately
10.69 h to calculate with a serial model. With the GPU-based parallel model, only 0.62 h were needed
to complete the flood simulation. Furthermore, for mesh-3 of 2,868,736 grids, the running time of
the serial model and parallel model are 86.72 h and 2.79 h, respectively. Since the accuracy of the
flood simulation is largely dependent upon the topographical resolution, it can be concluded that the
precision and speed of the flood model can be improved by mesh refinement and parallel computing,
and the proposed GPU-based parallel model will contribute to large-scale flood simulations and
real-time responses of disaster prevention and mitigation.

Table 2. The test case of real flood simulation in the Wei River: results of different calculation schemes
(T = running time; S = speedup ratio; TS = time saving ratio).

Mesh Type Grid Number Average Grid Area (m2) TCPU (h) TGPU (h) S TS (%)

Mesh-1 179,296 53,000 1.70 0.15 11.3 91
Mesh-2 717,184 13,250 10.69 0.62 17.2 94
Mesh-3 2,868,736 3313 86.72 2.79 31.1 97

The running time, speedup ratio, and time-saving ratio all increased with the number of grids.
Additionally, the speedup ratio and time-saving ratio also improved as the number of grids increased.
For the three mesh division schemes, the speedup ratios of 11.3, 17.2, and 31.1 were achieved
with 179,296, 717,184, and 2,868,736 grids, respectively. Thus, it can be concluded that the parallel
model performs better with an increased grid number. In the view of real-time simulation, the
calculation scheme using mesh-2 would be the best for the tradeoff between computational speed and
mesh resolution.

5. Conclusions

A two-dimensional shallow water model was established for flood simulation based on an
unstructured Godunov-type finite volume scheme. The MUSCL-Hancock scheme was used for
time-stepping, and the HLLC approximate Riemann solver was used for computation of the fluxes.
The main computational subroutines were presented as loops with data independence and natural
parallelism. Thus, in a computational time-step, the calculations for each cell or edge are numerically
decoupled, and the computational loops can be executed in parallel.

To realize a fast simulation of large-scale floods on a personal computer, a GPU-based
high-performance computing method using the OpenACC application was adopted to parallelize the
shallow water model. An unstructured data management method was presented to control the data
transportation between the GPU and CPU with minimal overhead, and then both computation and
data were offloaded from the CPU to the GPU, which can exploit the computational capability of the
GPU as much as possible. As the finite volume scheme adopted in this work is explicit, and there is
no correlation between grid calculations in a computational step, OpenACC clauses can be directly
added to the original serial model codes to realize GPU computation, accelerating the program in an
incrementally developing way with minimal recoding work.

The parallel model was validated through two benchmark cases. Furthermore, the flood control
protection zone of the Wei River right bank was used as a case study. The total area is about 9503 km2,
and three grid division schemes with different resolutions were considered to test the performance
of the parallel model, which was executed on the NVIDIA Kepler K20 platform (Nvidia, CA, USA).



Water 2018, 10, 589 15 of 16

Results show that all three cases attained a dramatic reduction in the running time by using the
GPU-based parallel model. For the mesh-1 of 179,296 grids, the 878 h (36.6 days) flood inundation
process took approximately 1.70 h to calculate with the serial model, whereas only 0.15 h was required
with a parallel model on the GPU K20 card. For the mesh-3 of 2,868,736 grids, the running times of
the serial model and parallel model are 86.72 h and 2.79 h, respectively. Additionally, the running
time, speedup ratio, and time-saving ratio all increased with the number of grids. For the three mesh
division schemes, the speedup ratios of 11.3, 17.2, and 31.1 were achieved with 179,296, 717,184, and
2,868,736 grids, respectively. Since the accuracy of flood simulations is largely dependent upon the
topographical resolution, it can be concluded that the precision and speed of the flood model can
be improved by mesh refinement and parallel computing, and the proposed GPU-based parallel
model will contribute to large-scale flood simulations and the real-time response of disaster prevention
and mitigation.

Author Contributions: Q.L., Y.Q., and G.L. conceived and designed the framework of this study, analyzed and
discussed the results, and wrote the paper. Q.L. treated test data, performed the model simulation, and conducted
the statistical analysis.

Funding: This research was funded by [National Natural Science Foundation of China] grant number [51679184]
and [Special Research Project of Tianjin Water Authority] grant number [KY2015-10].

Acknowledgments: The authors are grateful to the anonymous reviewers for providing many
constructive suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Song, L.; Zhou, J.; Guo, J.; Zou, Q.; Liu, Y. A robust well-balanced finite volume model for shallow water
flows with wetting and drying over irregular terrain. Adv. Water Resour. 2011, 34, 915–932. [CrossRef]

2. Bi, S.; Zhou, J.; Liu, Y.; Song, L. A finite volume method for modeling shallow flows with Wet-Dry fronts on
adaptive cartesian grids. Math. Probl. Eng. 2014, 2014, 805–808. [CrossRef]

3. Wu, G.; He, Z.; Liu, G. Development of a cell-centered godunov-type finite volume model for shallow water
flow based on unstructured mesh. Math. Probl. Eng. 2014, 2014, 1–15. [CrossRef]

4. Liu, Q.; Qin, Y.; Zhang, Y.; Li, Z. A coupled 1D–2D hydrodynamic model for flood simulation in flood
detention basin. Nat. Hazards 2015, 75, 1303–1325. [CrossRef]

5. Rehman, K.; Cho, Y.S. Novel slope source term treatment for preservation of quiescent steady states in
shallow water flows. Water 2016, 8, 488. [CrossRef]

6. Kvočka, D.; Ahmadian, R.; Falconer, R.A. Flood inundation modelling of flash floods in steep river basins
and catchments. Water 2017, 9, 705. [CrossRef]

7. Chen, J.; Zhong, P.-A.; Wang, M.-L.; Zhu, F.-L.; Wan, X.-Y.; Zhang, Y. A risk-based model for real-time flood
control operation of a cascade reservoir system under emergency conditions. Water 2018, 10, 167. [CrossRef]

8. Sanders, B.F.; Schubert, J.E.; Detwiler, R.L. ParBreZo: A parallel, unstructured grid, Godunov-type,
shallow-water code for high-resolution flood inundation modeling at the regional scale. Adv. Water Resour.
2010, 33, 1456–1467. [CrossRef]

9. Lai, W.; Khan, A.A. A parallel two-dimensional discontinuous galerkin method for shallow-water flows
using high-resolution unstructured meshes. J. Comput. Civ. Eng. 2016, 31, 04016073. [CrossRef]

10. Wang, X.; Shangguan, Y.; Onodera, N.; Kobayashi, H.; Aoki, T. Direct numerical simulation and large
eddy simulation on a turbulent wall-bounded flow using lattice boltzmann method and multiple GPUs.
Math. Probl. Eng. 2014, 2014, 1–10. [CrossRef]

11. Wang, Y.; Yang, X. Sensitivity analysis of the surface runoff coefficient of HiPIMS in simulating flood
processes in a Large Basin. Water 2018, 10, 253. [CrossRef]

12. Zhang, S.; Yuan, R.; Wu, Y.; Yi, Y. Parallel computation of a dam-break flow model using OpenACC
applications. J. Hydraul. Eng. 2016, 143, 04016070. [CrossRef]

13. Zhang, S.; Li, W.; Jing, Z.; Yi, Y.; Zhao, Y. Comparison of three different parallel computation methods for a
two-dimensional dam-break model. Math. Probl. Eng. 2017, 2017, 1–12. [CrossRef]

http://dx.doi.org/10.1016/j.advwatres.2011.04.017
http://dx.doi.org/10.1155/2014/209562
http://dx.doi.org/10.1155/2014/257915
http://dx.doi.org/10.1007/s11069-014-1373-3
http://dx.doi.org/10.3390/w8110488
http://dx.doi.org/10.3390/w9090705
http://dx.doi.org/10.3390/w10020167
http://dx.doi.org/10.1016/j.advwatres.2010.07.007
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000647
http://dx.doi.org/10.1155/2014/742432
http://dx.doi.org/10.3390/w10030253
http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0001225
http://dx.doi.org/10.1155/2017/1970628


Water 2018, 10, 589 16 of 16

14. Liang, Q.; Xia, X.; Hou, J. Catchment-scale high-resolution flash flood simulation using the GPU-based
technology. Procedia Eng. 2016, 154, 975–981. [CrossRef]

15. Zhao, X.D.; Liang, S.X.; Sun, Z.C.; Zhao, X.Z.; Sun, J.W.; Liu, Z.B. A GPU accelerated finite volume coastal
ocean model. J. Hydrodyn. 2017, 29, 679–690. [CrossRef]

16. Chen, T.Q.; Zhang, Q.H. GPU acceleration of a nonhydrostatic model for the internal solitary waves
simulation. J. Hydrodyn. 2013, 25, 362–369. [CrossRef]

17. Wu, J.; Zhang, H.; Yang, R.; Dalrymple, R.A.; Hérault, A. Numerical modeling of dam-break flood through
intricate city layouts including underground spaces using GPU-based SPH method. J. Hydrodyn. 2013, 25,
818–828. [CrossRef]

18. Néelz, S.; Pender, G. Benchmarking the Latest Generation of 2D Hydraulic Modelling Packages; Environment
Agency: Bristol, UK, 2013.

19. Ying, X.; Khan, A.A.; Wang, S.S.Y. Upwind conservative scheme for the Saint Venant equations.
J. Hydraul. Eng. 2004, 130, 977–987. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.proeng.2016.07.585
http://dx.doi.org/10.1016/S1001-6058(16)60780-1
http://dx.doi.org/10.1016/S1001-6058(11)60374-1
http://dx.doi.org/10.1016/S1001-6058(13)60429-1
http://dx.doi.org/10.1061/(ASCE)0733-9429(2004)130:10(977)
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodologies 
	Hydrodynamic Model 
	Governing Equations 
	Numerical Method 

	GPU Parallel Computing 

	Model Validations 
	Flooding a Disconnected Water Body 
	The Toce River Dam-Break Case with Overtopping 

	Case Study: A Real Flood Simulation in the Wei River 
	Study Area 
	Computational Mesh 
	Dyke-Break Flood Simulation 
	Parallel Performance Analysis 

	Conclusions 
	References

