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Abstract: This paper introduces three artificial neural network (ANN) architectures for monthly
streamflow forecasting: a radial basis function network, an extreme learning machine, and the
Elman network. Three ensemble techniques, a simple average ensemble, a weighted average
ensemble, and an ANN-based ensemble, were used to combine the outputs of the individual
ANN models. The objective was to highlight the performance of the general regression neural
network-based ensemble technique (GNE) through an improvement of monthly streamflow
forecasting accuracy. Before the construction of an ANN model, data preanalysis techniques, such as
empirical wavelet transform (EWT), were exploited to eliminate the oscillations of the streamflow
series. Additionally, a theory of chaos phase space reconstruction was used to select the most relevant
and important input variables for forecasting. The proposed GNE ensemble model has been applied
for the mean monthly streamflow observation data from the Wudongde hydrological station in
the Jinsha River Basin, China. Comparisons and analysis of this study have demonstrated that
the denoised streamflow time series was less disordered and unsystematic than was suggested by
the original time series according to chaos theory. Thus, EWT can be adopted as an effective data
preanalysis technique for the prediction of monthly streamflow. Concurrently, the GNE performed
better when compared with other ensemble techniques.

Keywords: monthly streamflow forecasting; artificial neural network; ensemble technique;
phase space reconstruction; empirical wavelet transform

1. Introduction

Streamflow forecasting has been one of the key issues in hydrology in recent decades.
Enhancing streamflow forecasting accuracy is of great significance to various aspects of hydrological
system such as water allocation, flood control, and disaster relief. In recent decades,
numerous methods and hydrological models have been studied to obtain accurate streamflow
predictions. These methods can be grouped into two categories: conceptual models and empirical
models [1]. Conceptual models, also known as physically based models, are designed to simulate the
physical mechanism of hydrological processes [2]. However, because of insufficient data collection
both in space and time for conceptual models, these models may not be feasible for streamflow
forecasting [3]. On the other hand, empirical models are data-driven models which are built
using historical information contained in the hydrological time series as opposed to the physical
processes of a certain catchment [4–6]. The various empirical models involved in hydrological
forecasting predominantly include time series models, machine learning methods, and hybrid methods.
Time series models, especially auto-regressive moving average models, have been one of the most
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popular methodologies for streamflow forecasting over the last decades. However, the results of the
previous studies have shown that time series models only provide satisfactory results when the series
are either linear or near-linear; they do not perform well with non-linear series [1,7].

As a result of this limitation of time series models, in recent years, various machine learning
methods have been applied in the forecasting of non-linear hydrological systems. Among the various
machine learning methods, artificial neural networks (ANNs), which include backpropagation neural
network (BPNN), radial basis function (RBF) neural network, generalized regression neural network
(GRNN), Elman neural network, and multi-layer feed-forward (MLFF) network, are among the most
popular techniques for hydrological time series forecasting. Chen et al. [8] applied three different
ANN models, namely a MLFF network, a RBF network, and a GRNN, to predict the streamflow,
and copula–entropy (CE) was utilized to identify the inputs of the networks. Results showed
that the MLFF network with the CE method obtained better results in comparison with traditional
linear correlation analysis. Chang et al. [9] successfully introduced BPNN, Elman neural network,
and NARX network into the forecasting of one-to six-steps ahead of floodwater storage pond water
levels. The results indicated that the proposed NARX model could be beneficial for the control of
urban floods. Hosseini-Moghari and Araghinejad [10] utilized the recursive and direct versions of
Multi-Layer Perceptron (MLP), RBF and GRNN neural networks for forecasting droughts at short-,
mid-, and long-term time scales, respectively. Results showed that the recursive models obtained
better results at smaller time scales of the Standard Precipitation Index while the direct models showed
better performance at longer time scales.

Numerous successes have been obtained in the applications of ANNs for time series
forecasting; rooms exists to improve single ANN method performance. One trend to enhance
the performance of ANN models for time series forecasting is to employ data-preprocessing
techniques [11,12]. Wang et al. [13] presented a hybrid approach which combined ensemble empirical
mode decomposition (EEMD) and artificial neural networks for medium and long-term runoff
forecasting. Results of this study indicated that EEMD could enhance forecasting accuracy of
medium and long-term runoff time series. Zhu et al. [14] developed signal decomposition techniques,
including discrete wavelet transform (DWT) and empirical mode decomposition (EMD), to improve
the forecasting accuracy of the support vector machine (SVR) models for monthly streamflow
prediction. Results have shown both EMD and DWT can improve the forecasting accuracy of monthly
streamflow, while DWT performed better EMD in enhancing the forecasting accuracy of the SVM
model. Seo et al. [15] compared and evaluated three hybrid models for forecasting daily river stages:
the wavelet package-ANN (WPANN) model, the wavelet package-adaptive neuro-fuzzy inference
system (WPANFIS) model, and the wavelet package-SVM (WPSVM) model. The results obtained
indicated that the WPANFIS models provided better prediction results than the WPANN and WPSVM
models. Although WT- and EMD-based data preprocessing techniques have shown their efficiency
in promoting the performance of machine learning forecasting methods, the performance of WT is
sensitive to the selection of mother wavelets and EMD is likely to be encountered with the mode mixing
problem. The Empirical Wavelet Transform (EWT) proposed by Gilles [16] solves these problems.
The efficiency of EWT as a data preanalysis method to improve the forecasting accuracy of machine
learning methods has been demonstrated in Hu and Wang [17] and Wang and Hu [18] for mean
half-hour wind speed and mean 15 min wind speed forecasting, respectively.

To construct an ANN model for streamflow forecasting, one of the most important steps is to
determinate appropriate input vectors. Numerous studies have confirmed and verified the existence of
chaotic behavior in hydrological time series as that generated by the underlying stochastic processes,
the phase space reconstruction (PSR) method has been utilized as an alternative approach to select
relevant and important input variables for ANN models [19]. Guo et al. [20] introduced the PSR
method to determine the inputs of the SVR streamflow prediction model to overcome the drawbacks
in the empirical judgment within the structure of the forecasting model. Hu et al. [21] investigated
the cross-scale chaotic behaviors of the runoff processes in an inland river of central Asia by using the
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PSR technique and chaos theory. Ouyang et al. [22] successfully introduced the PSR method in the
construction of an input matrix for SVR models for forecasting monthly rainfall.

Several papers have studied the employment of a single ANN [23], while other have compared
the performance of different ANN architectures. Because an ensemble model often can obtain more
accurate results than its constituent components, employing ensemble techniques has become a
popular topic in recent years to enhance the generalizability and reliability of ANNs. Ensemble
techniques have already been successfully applied to numerous time series predictions such as wind
and solar power forecasting [24] as well as heating energy consumption predictions [25]. In this
study, the objective was to investigate the efficiency of various ensemble techniques including simple
averaging ensemble (SAE), weighted averaging ensemble (WAE), and GRNN-based ensemble (GNE)
through the combination of the outputs of various single ANN models. Additionally, to take advantage
of both the superior performance of EWT in data preanalysis and the PSR technique in selecting input
vectors, the EWT and PSR methods were exploited in the proposed ensemble forecasting models.
Mean monthly streamflow observation data from Wudongde hydrological station in Jinsha River Basin,
China was used to demonstrate the efficiency of the proposed GNE ensemble model.

2. Methodology

2.1. Artificial Neural Networks

2.1.1. Radial Basis Function Neural Network

Radial basis function neural network is type of multilayer and feed-forward neural network
(FNN) [26]. Similar to traditional ANNs, the RBF neural network consists of three layers which include:
an input layer which composed of input variables, a hidden layer where the input variables are
transformed by a nonlinear function, and a linear output layer which produces the network response.
In comparison with the most commonly used sigmoidal functions employed by a FNN, the hidden
layer of a RBF neural network uses Gaussian transfer functions as activation functions. The Gaussian
activation function can be written as:

φi(x) = exp
(
−‖x− ci‖2/2q2

i

)
(1)

where x = [x1, x2, . . . , xn]
T is the input vector with N dimensions, ci = [ci1, ci2, . . . , cin]

T is the center of
the ith neuron in the hidden layer, qi is the width of the Gaussian function, and || || is the Euclidean
Norm. The response of the jth node in the output layer can be written as

yj(x) =
h

∑
i=1

wijφi(x)j = 1, 2, . . . , m (2)

where wij is the connecting weight between the ith hidden node and the jth output node.

2.1.2. Extreme Learning Machine

Extreme Learning Machine (ELM) developed by Huang et al. [27] is a new type of single hidden
layer feed-forward network (SLFN). Given a set of N samples (xi, ti), i = 1, 2, . . . , N, the ELM network
with L hidden neurons and activation function g can be referred to as:

fL =
L

∑
i=1

βig
(
ai·xj + bi

)
(3)

where xi = [xi1, xi2, . . . , xin]
T ∈ Rn; ti = [ti1, ti2, . . . , tim]

T ∈ Rm, ai = [a1i, a2i, . . . , ani] is the weight
vector that connects the n input neurons with the ith hidden neuron; βi = [βi1, βi2, . . . , βim]

T is the
weight vector that connects the ith hidden neuron with the m output neurons; bi is the bias.
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Equation (3) can be abbreviated as:
Hβ = T (4)

where

H =

 h(x1)
...

h(xN)

 =

 g(a1·x1 + b1) · · · g(aL·x1 + bL)
... · · ·

...
g(a1·xN + b1) · · · g(aL·x1 + bL)


N×L

(5)

β =

 β1
T

...
βL

T


L×m

andT =

 t1
T

...
tN

T


N×m

(6)

and H is the output matrix of the hidden layer. The output weights of ELM can be obtained by
calculating the least square solution of the following equation:

‖Hβ̂− T‖ = ‖HH†T − T‖ = min
β
‖Hβ− T‖ (7)

The least square solution can be given as:

_
β = H†T (8)

where H† denotes the Moore-Penrose generalized inverse of H [27].

2.1.3. Elman Neural Network

Elman neural network is a kind of dynamic recurrent neural network [28]. In addition to the
input layer, hidden layer, and output layer, an Elman network has a special recurrent layer which
connects every input unit to a hidden unit; every hidden unit has a corresponding time delay [9].
The recurrent layer is used to store the output information of the hidden layer within a certain time
delay; that information is then used as the input for the hidden layer. Therefore, the outputs of the
Elman network depend not only on the preset inputs but also on the previous states of the hidden
units [9]. In this study, the Elman network was trained using a gradient descent with momentum;
the transfer functions of hidden and output layers were of sigmoid and linear types, respectively.

2.1.4. General Regression Neural Network

The GRNN was first introduced by Specht [29] and was a variation of RBF. Assuming a random
vector X and the joint continuous probability density function p(X, y) is known, the regression of Y on
x can be given by [29,30]:

E[y|X] =

∫ ∞
−∞ yp(X, y)dy∫ ∞
−∞ p(X, y)dy

(9)

where E[y|X] is the conditional expect of the output y given the input vector X. The joint density
p(X, y) is usually unknown and can be estimated by the Gaussian kernel estimator:

p̂(X, y) =
1

n(2π)(d+1)/2σ(d+1)

n

∑
j=1

exp

[
−

D2
j

2σ2

]
exp

[
−
(
y− yj

)2

2σ2

]
(10)

where D2
j =

(
X− X j)T(X− X j), n is the number of observations, d is the dimension of X, and σ is the

smoothing parameter.
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According to Equations (9) and (10), the general version of GRNN can be obtained as follows:

ŷ(X) =

n
∑

j=1
yj exp

(
−

D2
j

2σ2

)
n
∑

j=1
exp

(
−

D2
j

2σ2

) (11)

where ŷ(X) is the probability estimate function of y(x).

2.2. Phase Space Reconstruction

To transfer a one-dimension time series into a multi-dimensional phase-space, Packard et al. [31]
proposed a PSR method. The PSR method can fully uncover the hidden information of the time
series. For a given time series x(i), i = 1, 2, . . . , n, the key of the PSR method is to find the embedded
dimension m and the parameter of time delay τ, such that{

Xk = {x(k), x(k + τ), · · · , x(k + (m− 1)τ)}
Yk = {x(k + mτ)}

k = 1, 2, · · · , n− (m− 1)τ (12)

where Xk represents the kth phase point of the input vector and Yk represents the kth phase point of
the output vector.

In this study, the auto-correction function (ACF) value and Average Mutual Information (AMI)
were utilized to determine the time delay τ; the Cao method [32] was utilized to determine the
embedded dimension m. Generally, the time delay τ is selected when the ACF first passes through
zero value or the AMI arrives at the first minimum [33]. The value of m is determined according to
Cao [32], once E1 stops changing when d is greater than some value d0. Subsequently, the minimum
embedding dimension is selected as d0 + 1. Readers may refer to Cao [32] for more information about
the Cao method.

Only time series with chaotic characteristics can obtain accurate forecasting results using chaotic
theories. After the time delay and embedded dimension are determined, the chaotic characteristics of
the time series should be confirmed. The most commonly used method is the maximum Lyapunov
exponent method. If the maximum Lyapunov exponent λ of the time series is positive, then the time
series shows chaos features. Otherwise, τ and m needs to be redefined. In this study, the small data sets
method proposed by Rosenstein et al. [34] was used to calculate the maximum Lyapunov exponent of
a time series.

2.3. Empirical Wavelet Transform

Empirical wavelet transform developed by Gilles [16] is used to decompose the given signal
into a collection of amplitude modulated–frequency modulated (AM-FM) signals according to
the information contained in the Fourier spectrum of the signal. For a given time series x(t),
the decomposition processes using EWT can be described in the following five steps.

Firstly, the Fourier spectrum F(ω) of the original time series was calculated using Fast Fourier
Transform Algorithm;

Secondly, the boundaries ωi were determined by proper segmentation of the Fourier spectrum:

ωi =
fi + fi+1

2
f or1 ≤ i ≤ N − 1 (13)

where { fi}, i = 1, 2, . . . , N denotes the frequencies corresponding to the local maxima and f0 = 0,
fN = π.
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Thirdly, the empirical wavelets ψi(ω) and scaling function ϕi(ω) were constructed:

ψi(ω) =


1 , i f (1 + γ)ωi ≤ |ω| ≤ (1− γ)ωi+1

cos
[

π
2 β
(

1
2γωi+1

(|ω| − (1− γ)ωi+1)
)]

, i f (1− γ)ωi+1 ≤ |ω| ≤ (1 + γ)ωi+1

sin
[

π
2 β
(

1
2γωi

(|ω| − (1− γ)ωi)
)]

, i f (1− γ)ωi ≤ |ω| ≤ (1 + γ)ωi

0 , otherwise

(14)

ϕ1(ω) =


1 , i f |ω| ≤ (1− γ)ω1

cos
[

π
2 β
(

1
2γω1

(|ω| − (1− γ)ω1)
)]

, i f (1− γ)ω1 ≤ |ω| ≤ (1 + γ)ω1

0 , otherwise

(15)

where β(x) = x4(35− 84x + 70x2 − 20x3), γ < mini

(
ωi+1−ωi
ωi+1+ωi

)
.

Fourthly, and the approximate and detail coefficients were calculated:

Wx(i, t) = 〈x(t), ψi(t)〉 =
∫

x(τ)ψi(τ − t)dτ = F−1[x(ω)ψ(ω)] (16)

Wx(1, t) = 〈x(t), ϕ1(t)〉 =
∫

x(τ)ϕ1(τ − t)dτ = F−1[x(ω)ϕ1(ω)] (17)

Finally, the original signal was reconstructed to obtain different modes:

x(t) = Wx(1, t)× ϕ1(t) +
N

∑
i=2

Wx(i, t)× ψi(t) (18)

Readers may refer to Gilles [16] for more information about EWT.

2.4. Ensemble Techniques

The generalizability and reliability of an ANN model can be often improved by appropriate
ensemble techniques. Because the forecasting results of the individual models can vary in different
data points, the error of the individual networks can be compensated by combining the outputs [25].
In this study, three kinds of ensemble techniques, namely, SAE, WAE, and GNE, were introduced to
combine the outputs of different ANNs and were studied.

2.4.1. Simple Averaging Ensemble

The SAE takes advantage of the concept of the arithmetic mean. Consider an ANN ensemble
model with K sub-ANNs, the output of the SAE model can be defined as:

y =
1
K

K

∑
k=1

yk
i i = 1, 2, . . . , N. (19)

where yk
i is the output of the kth sub-ANN and N denotes the length of the data set.

2.4.2. Weighted Averaging Ensemble

In the WAE model, the weighted means of the outputs of the sub-ANNs constructed the ensemble
output. The output of the WAE model with K sub-ANNs can be defined as:

yi =
K

∑
k=1

wkiyk
i i = 1, 2, . . . , N. (20)
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where wki denotes the weight of the kth model at point i and
K
∑

k=1
wki = 1, wki ≥ 0. The specific value

of wki is determined according to the absolute error between the observed values and the simulated
values. The weights of different models at different points are variational, and the point with smaller
absolute error will be given bigger weight. The weight can be calculated as:

wki =
1/|eki|

K
∑

k=1
1/|eki|

(21)

where |eki| denotes the absolute error of the kth model at point i.

2.4.3. Artificial Neural Network-Based Ensemble

Because the spread of the GRNN model is the only parameter to be optimized, error caused by
uncertainty in the parameters can be decreased. Thus, the GRNN network was chosen as the ensemble
technique to enhance the performance of the single ANN. In the GNE model, the forecasting results
of the RBF, ELM, and Elman networks were taken as input variables, while the target variable was
taken as the output variable. The GRNN network was trained to obtain the best model parameter.
The forecasting result of the GRNN network was taken as the result of the GNE model. The weight
coefficients of the RBF, ELM, and Elman models were variational and the accurate weight of these
models could not be obtained because of the black-box principle of the GRNN neural network.
The structure of the GRNN ensemble forecasting model, using the RBF, ELM, and Elman models,
is shown in Figure 1.
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2.5. Model Performance Evaluation

It is important to apply multiple error measure indices when evaluating the forecasting ability of
the developed models. Four measures, the root mean square error (RMSE), the mean absolute error
(MAE), the mean absolute percent error (MAPE), and the coefficient of correlation (R,) have been used
in this paper [35]. Among the four statistical measures, RMSE was sensitive to the extremely large
or small values of a time series and reflected the degree of variation, the MAE reflected the actual
forecasting error in a more balanced perspective, and the MAPE was a measure of accuracy for the
forecasted streamflow series with no units. The RMSE, MAE, and MAPE are defined as:

RMSE =

√√√√ 1
N

N

∑
i=1

(
qp(i)− qo(i)

)2 (22)

MAE =
1
N

N

∑
i=1

∣∣qp(i)− qo(i)
∣∣ (23)

MAPE =
1
N

N

∑
i=1

∣∣qp(i)− qo(i)
∣∣

qo(i)
× 100% (24)

where qp(i) and qo(i) are the predicted and observed monthly streamflow series, respectively, and N is
the length of the data.

The R describes the degree to which two data sets are related and ranges from −1 to 1. The larger
the absolute value of the correlation coefficient, the more the predicted and observed data is related.
The correlation coefficient is defined as:

R =
(1/N)∑N

i=1

(
qp(i)− qp

)
(qo(i)− qo)√

(1/N)∑N
i=1

(
qp(i)− qp

)2
×
√
(1/N)∑N

i=1(qo(i)− qo)
2

(25)

where qp and qo indicate the average value of the predicted and observed runoffs, respectively.

2.6. Modeling Framework

Figure 2 illustrates the detailed procedures of schematic structures of the various models used
in this study. The proposed EWT-GNE model could be implemented in four steps. The first step
was the denoising process of the original streamflow time series. In this step, the streamflow series
was divided into four independent modes using the EWT algorithm. The mode with the highest
frequency was removed to eliminate redundant noise. In the second step, the PSR method was
used to construct the phase space matrix, namely, the input matrix of the neural networks. In the
third step, three individual ANN models, RBF, ELM, and Elman networks, were used to forecast the
monthly streamflow time series independently. The three varying architectures of ANNs were chosen
because they are three of the most representative ANNs that have been used for forecasting. The RBF
network is one of the most widely used FNNs. The ELM network is a new type of SLFNs in which
weights and biases are randomly assigned. The Elman network is a type of dynamic recurrent neural
network. The last step was to group the results of the three individual models using GRNN. In this
part, the forecasted outputs of the RBF, ELM, and Elman networks were taken as input variables of
the GNE model. The forecasting result of the GRNN model was the result of the proposed EWT-GNE
model. The GRNN network was chosen as an ensemble technique because it has only one parameter to
be optimized. Accordingly, errors caused by parameter uncertainty can be decreased. The left portion
of Figure 2 illustrates the modelling framework of the models without the EWT denoising technique,
while the right portion of Figure 2 illustrates that of the models with the EWT denoising technique.
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3. Model Construction and Development

3.1. Study Area and Data Collection

The Jinsha River is located in the upper portion of the Yangtze River and originates in the
Tanggula Mountains. It flows through Sichuan, Yunan and Tibet provinces in China. The upper
portion of the Yangtze River located in Zhimenda, Yushu in Qinghai Province is called the Jinsha
River, the length of which is 2326 km and the height difference is 3280 km. The catchment area of
Jinsha River basin is 473,000 km2. The Jinsha River Basin can be subdivided into upper, middle,
and lower sections. The monthly streamflow data of the Wudongde hydropower station, which is
located in the lower portion of the Jinsha River basin, is studied in this paper. The catchment area of
the Wudongde hydropower station is 406,100 km2, which accounts for 86% of the total area of the
Jinsha River basin. The average annual discharge is 3810 m3/s and the total runoff is 1200 billion m3.
The observed data ranged from January 1958 to December 2012, with a total length of 55 years (660
months). The first 525 months of the streamflow data (January 1958 to September 2001) were selected
for training. The remaining 135 months (October 2001 to December 2012) were used for validation.
Figure 3 illustrates the locations of the Jinsha River basin and the Wudongde hydrological station.

3.2. Data Preprocessing Using Empirical Wavelet Transform

Before submitting the streamflow series into the forecasting model, the original series was
preprocessed using EWT. The original streamflow series was divided into four independent modes.
The mode with the highest frequency was discarded. A visual representation of the decomposed
subseries and the comparison between the original and denoised series is shown in Figure 4. Following
preprocessing, the peaks of the original series were weakened and the troughs were lowered.
The oscillations of the monthly streamflow time series were eliminated to a certain extent using EWT.
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3.3. Determination of Phase Space Reconstruction Parameters

After the denoising process was completed, the one-dimensional denoised streamflow series was
reconstructed into a multi-dimensional phase space matrix for forecasting. To determine the delay
time τ of the PSR method, the ACF and AMI values of the original and reconstructed series were
calculated. As can be seen in Figure 5, for both the original and the reconstructed series, the AMI
values reached the first minimum at lag 3; the ACF values also attained zero. Because the ACF and
AMI values gave the same determination of delay time τ, τ was chosen as 3 for both the original
and the reconstructed time series. After determining the delay time, the Cao method was used to
determine the embedded dimension m. As can be seen in Figure 5, because E1(m) almost stopped
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changing when m was greater than 11, m was chosen as 12 for the original time series, while 8 was
chosen for the reconstructed series. After the determination of τ and m, the maximum Lyapunov
exponent λm was computed for both series. λm was calculated as 2.263 and 4.142 for the original series
and the reconstructed series, respectively. Since the largest Lyapurov exponent was determined to
be positive, the streamflow series was identified as chaotic. Additionally, the maximum Lyapunov
exponent of the original series was much larger than the reconstructed series, which demonstrated
that the reconstructed streamflow time series was less disordered and unsystematic than the original
time series, according to chaos theory. Discarding the mode with the highest frequency eliminated
the redundant noises of the original monthly streamflow time series. Subsequently, the EWT method
could be used as a data preanalysis technique in the forecasting of the monthly streamflow series in
this study.

Figure 5. The auto-correction function (ACF) & Average Mutual Information (AMI) values and Cao
method results plot for the original and reconstructed streamflow series.

3.4. Parameter Settings of Different ANNs

The diversity of the submodels was realized through the use of various ANN architectures.
For the three submodels, the total number of hidden neurons was determined using a gird search
(GS) algorithm to assure fair and valid comparisons. The search range was set as [m, 2n + 20], where n
denotes the number of input neurons, m is set as 2n− 20 if n is bigger than 10; otherwise m was set at 1.
The searching step was set at 1. The transfer functions of hidden and output layers were of sigmoid
and linear types for the Elman neural networks, respectively, while that of the hidden layer of the
ELM network was linear. With regard to the RBF neural network, the spreads ranged from 0.1 to 4.0,
with 0.1 increment to obtain the best forecasting performance. The spread was the only parameter
to be optimized for the GRNN network. The spreads ranged from 0.02 to 0.1, with 0.01 increment.
The optimal parameters for neural networks used in this study for streamflow forecasting are shown
in Table 1.
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Table 1. Optimal parameters of the ANN models used for streamflow forecasting.

Models RBF EWT-RBF ELM EWT-ELM Elman EWT-Elman GNE EWT-GNE

Neurons 20 20 43 35 9 20 – –
Spread 1.4 1.8 – – – – 0.045 0.029

4. Results and Analysis

The comparison and analysis of results can be divided into four steps. First, the comparisons
between the methods with and without EWT were conducted to demonstrate the effectiveness
of the EWT-based preprocessing method in increasing the accuracy of streamflow time series
forecasting. Second, the performance of the three ANN models, e.g., the RBF, Elman, and ELM
models, were analyzed to investigate their ability in monthly streamflow forecasting as well as
to recommend the most appropriate model. Thirdly, comparisons among the predictions of the
various individual and ensemble models were investigated to verify the efficiency of the ensemble
techniques. Finally, the performance of the various ensemble techniques, including SAE, WAE,
and GNE, were compared to highlight the effectiveness of the GRNN-based ensemble technique.

The performance evaluation indices of the 12 models developed in this study, including RBF,
ELM, Elman, SAE, WAE, and GNE model, with and without the EWT algorithm, in the training
and validation periods are shown in Tables 2 and 3, respectively. It can be concluded from the
preliminary analysis of results between the non-denoising models and the EWT-based models that
the performances of the latter were superior to that of the former in terms of the four performance
indices. It can be seen from Tables 2 and 3 that the EWT-based models performed much better than
the corresponding non-denoising models. The RMSE, MAE, and MAPE values of the former were
all smaller than the latter, while the R value was significantly larger. To display the efficiency of the
EWT-based denoising technique, the model performance of the Elman and GNE models with and
without EWT in the validation period are shown in Figure 6, where the solid lines on the left represent
both the predicted and the observed values, while the right shows the scatter plots. It can be seen
from Figure 6 that the EWT-based models (EWT-Elman and EWT-GNE) approximated the original
streamflow time series better than the corresponding non-denoising models (Elman and GNE), and the
scatters distributed more tightly around the least-square regression line.

Table 2. The forecasting results of the models in the training period.

Models RMSE
(m3/s)

MAE
(m3/s) R MAPE

(%) Models RMSE
(m3/s)

MAE
(m3/s) R MAPE

(%)

RBF 1175.70 710.11 0.931 17.751 EWT-RBF 748.72 480.94 0.973 13.508
ELM 1138.34 711.62 0.935 19.445 EWT-ELM 712.07 462.07 0.975 13.046

Elman 1071.81 641.72 0.943 15.380 EWT-Elman 715.71 463.51 0.975 13.551
SAE 1103.51 648.95 0.939 15.513 EWT-SAE 711.13 443.49 0.975 11.362
WAE 1070.36 574.04 0.943 12.268 EWT-WAE 693.70 399.46 0.976 9.204
GNE 920.53 548.81 0.958 13.055 EWT-GNE 613.16 385.95 0.982 10.237

Table 3. The forecasting results of the models in the validation period.

Models RMSE
(m3/s)

MAE
(m3/s) R MAPE

(%) Models RMSE
(m3/s)

MAE
(m3/s) R MAPE

(%)

RBF 1351.04 796.64 0.898 20.342 EWT-RBF 854.68 574.94 0.959 17.446
ELM 1308.82 796.89 0.903 19.350 EWT-ELM 833.07 554.03 0.961 15.679

Elman 1292.60 796.78 0.906 20.045 EWT-Elman 821.11 543.21 0.962 14.455
SAE 1293.75 752.28 0.906 17.159 EWT-SAE 820.40 538.90 0.962 13.699
WAE 1264.56 677.82 0.910 14.016 EWT-WAE 796.13 481.35 0.965 11.410
GNE 1246.47 753.16 0.913 17.602 EWT-GNE 790.35 527.15 0.965 13.541
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validation stage.

To further demonstrate variations in the forecasting performance between the non-denoising
models and the EWT-based models, the improved percentages between the two kinds of methods were
calculated. The RMSE, MAE, R, and MAPE differences within the EWT-Elman model and the Elman
model were 33.22%, 27.77%, 3.39%, 11.89% in the training stage and 36.48%, 31.82%, 3.39%, 27.89% in
the validation stage, respectively. For the EWT-GNE model and the GNE models, the RMSE, MAE, R,
and MAPE differences were 35.55%, 32.27%, 2.75%, 24.16% and 36.56%, 29.99%, 5.77%, 22.93% in the
training and validation stages, respectively. The comparisons between the EWT-based models and the
non-denoising models have demonstrated that the EWT denoising process is effective in improving
the prediction accuracy of the monthly streamflow.

From the results of Tables 2 and 3, it can also be seen that the Elman model performed the best
in comparison with the RBF and ELM models; additionally, the performance of the RBF model was
the worst. The differences between ELM and Elman models were not significant with respect to
RMSE, MAE, MAPE, and R criteria. The RMSE, MAE, MAPE, and R of the Elman model consistently
performed either equal to or better than the ELM model. The improvements of the RMSE, MAE, MAPE,
and R of the Elman model to ELM model were 1.44%, 1.95%, −0.10%, and 7.81% in the validation
stage, respectively.

It can also be seen in Tables 2 and 3 that all ensemble models performed better than the individual
models. The ensemble models (GNE and EWT-GNE) performed better than the corresponding
best-performing individual model (Elman and EWT-Elman). The RMSE, MAE, R ,and MAPE
differences between the GNE and Elman models were 11.23%, 11.20%, 1.31%, 12.24% in the training
stage and 3.62%, 5.49%, 0.74%, 12.35% in the validation stage. In contrast, those between the
EWT-GNE and EWT-Elman models were 14.33%, 16.73%, 0.68%, 24.46% in the training stage and 3.75%,
2.96%, 0.35%, 6.32% in the validation stage, which demonstrated the effectiveness of the proposed
GRNN-ensemble technique in enhancing the predicting ability of ANN models.

From a detailed comparison of the different ensemble models with EWT, according to
Tables 2 and 3, it can be seen that the four indices of both the EWT-WAE and EWT-GNE models
were superior to those of the EWT-SAE model. The EWT-GNE model performed slightly better than
the EWT-WAE model. The improvement of RMSE, MAE, R, and MAPE was 11.61%, 3.38%, 0.58%,
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−11.22% in the training stage and 0.73%, −9.52%, 0.03%, −18.68% in the validation stage between
EWT-WAE and EWT-GNE models. Additionally, to display the differences between the various
ensemble models, the forecasting results of the EWT-SAE, EWT-WAE, and EWT-GNE models are
shown in Figure 7. From the illustrations of Figure 7, it can be seen that the predicted values of
the EWT-GNE approximated the observed values better than the EWT-SAE model, with the scatters
distributed more tightly around the regression line. Thus, the superiority of the proposed GRNN-based
ensemble technique over the other ensemble techniques was demonstrated.
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5. Conclusions

The present study developed and tested an ANN ensemble model for monthly streamflow
forecasting through an application to a case study in China. Three neural network architectures
(RBF, ELM, and Elman) were used as sub-ANNs for forecasting. Results demonstrate that all three
ANNs performed well, with the best performance achieved by the Elman network. To improve
the generalizability and prediction accuracy of the ANNs, various ensemble techniques as the SAE,
the WAE, and the GNE were proposed to combine the outputs of the sub-ANNs. The ensemble models
achieved better prediction results compared with individual models, with the GRNN-ensemble model
having performed the best. As a result of the volatility of the monthly streamflow time series, EWT was
used to filter noise. The denoised streamflow time series was less disordered and unsystematic than
the original time series according to chaos theory. The models with the EWT-based denoising process
outperformed the non-denoising ones. Overall, results show that the proposed EWT-GNE model
can be used as a successful tool for monthly streamflow forecasting. The proposed GRNN-ensemble
technique can decrease the unpredictability of single ANN forecasting models, and the EWT algorithm
can filter the noises of the streamflow series, providing more accurate forecasting results.
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In the future, one can apply the techniques developed in this study to streamflow data in different
time scales and from other hydrological stations. Hydro-meteorological data such as rainfall [8,14],
precipitation, and streamflow data from adjacent hydrological stations [30] can be considered as
model inputs to enhance streamflow forecasting accuracy. Additionally, the newest machine learning
techniques, such as deep learning [36], can be considered in terms of streamflow forecasting.
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