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Abstract: This study proposed a hybrid neural network model that combines a self-organizing map
(SOM) and back-propagation neural networks (BPNNs) to model the rainfall-runoff process in a
physically interpretable manner and to accurately forecast typhoon floods. The SOM and a two-stage
clustering scheme were applied to group hydrologic data into four clusters, each of which represented
a meaningful hydrologic component of the rainfall-runoff process. BPNNs were constructed for
each cluster to achieve high forecasting capability. The physical hybrid neural network model was
used to forecast typhoon flood discharges in Wu River in Taiwan by using two types of rainfall data.
The clustering results demonstrated that the rainfall-runoff process was favorably described by the
sequence of derived clusters. The flood forecasting results indicated that the proposed hybrid neural
network model has good forecasting capability, and the performance of the models using the two
types of rainfall data is similar. In addition, the derived lagged inputs are hydrologically meaningful,
and the number and activation function of the hidden nodes can be rationally interpreted. This
study also developed a traditional, single BPNN model trained using the whole calibration data for
comparison with the hybrid neural network model. The proposed physical hybrid neural network
model outperformed the traditional neural network model in forecasting the peak discharges and
low flows.

Keywords: hybrid neural network; flood forecasting; self-organizing map

1. Introduction

Flood forecasting is an important nonstructural measure for flood mitigation during flash floods
caused by typhoons. Machine learning methods have been widely employed to develop flood
forecasting models. Among them, the artificial neural network (ANN) and its hybrids are competent
techniques widely used for flood forecasting. For example, ANNs have been successfully employed to
forecast rainfall and flood for decades [1–7]. Support vector machines (SVMs), which have the same
network architecture as the radial basis function neural network [8], have recently gained popularity
and exhibited good performance in rainfall and flood forecasting [9–17]. In addition, the neurofuzzy
system, which combines the ANN and fuzzy inference system, has been favorably applied in various
hydrologic forecasting studies [18–25].

Although ANN-based models exhibit high forecasting performance, they are regarded as a black
box and their physical interpretation is unattainable. For instance, Zhang et al. [26] and Lange [27]
noted that the ANN has no explicit form for analyzing the relationship between inputs and outputs
and that explaining the results obtained by the networks is difficult. Some studies have attempted
to interpret the physical meaning of the derived network structure and results of ANN models.
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Jain et al. [28] demonstrated that the hidden neurons in the ANN rainfall-runoff model approximate
various components of the hydrologic process, such as infiltration, base flow, and surface flow. Chen
and Yu [12] and Chen [29] demonstrated that the input data mined to construct the hidden nodes of an
SVM network are informative hydrologic data that characterize a flood hydrograph, particularly the
data around the peak flood and in the rising limb.

Separate ANN models trained using different input–output data sets have been proposed to
improve forecasting performance. For example, Furundzic [30] used the self-organizing map (SOM) to
decompose input–output data into three sets and develop separate ANNs for each data set. Abrahart
and See [31], Hsu et al. [32], and Jain and Srinivasulu [33] also applied the SOM to partition data into
different clusters corresponding to the different segments of the hydrograph and developed separate
ANN models for each cluster. They concluded that the performance of the separate ANNs is better
than that of a single ANN trained using the whole dataset. The partitioning of data is based on the fact
that different magnitudes of hydrologic data are produced by different physical processes. A separate
ANN can more closely model a specific dataset corresponding to a hydrologic component. However,
most studies that applied data partitioning focused on the decomposition method and performance
improvement. Efforts in physically partitioning data and interpreting the hydrologic process have
been limited.

The present study, which also partitioned data into clusters and constructed separate ANNs,
focused on the derivation of physically interpretable clusters. The SOM was applied to group
hydrologic data into four clusters. The sequence of these clusters physically represents the
rainfall-runoff process of a storm event according to the quantity of the rainfall and discharge
data. A two-stage clustering scheme was used to obtain the expected meaningful clusters.
A back-propagation neural network (BPNN) was employed to construct the forecasting model for
each cluster to forecast flood discharge. The proposed hybrid neural network model that combines
the SOM and BPNN characterizes the rainfall-runoff process in a physically interpretable manner.
The physical hybrid neural network model was used to forecast typhoon flood discharges in Wu River
in Taiwan. Two types of forecasting model were constructed with respect to two sets of rainfall data
(the basin average rainfall and rainfall from different rain gauges). The clustering results prove that the
proposed clustering scheme captures the behavior of the rainfall-runoff process and properly divides
the hydrologic process into different components. Flood forecasting results reveal that both types of
forecasting models have favorable forecasting capability with high coefficient of efficiency values and
low mean absolute errors. In addition, the proposed hybrid neural network model was compared with
a single traditional neural network model that was constructed using the whole dataset. The following
section introduces the proposed physical hybrid neural network model including the methodologies
of SOM and BPNN. Section 3 provides information of the study area and typhoon flood data. Section 4
presents the model development process and the flood forecasting performed by the hybrid neural
network model. A comparison of the proposed model to the traditional BPNN model is presented as
well. The last section outlines the conclusions of this study.

2. Physical Hybrid Neural Network Model

2.1. Rainfall-Runoff Clusters Based on the Hydrologic Process

The rainfall-runoff process can be divided into several temporal steps corresponding to respective
hydrologic phenomena. This study grouped rainfall-runoff data into clusters to represent different
components of the rainfall-runoff process. An example of a typical rainfall event is shown in Figure 1a.
Such an event generally begins with low rainfall (R), followed by intense, heavy rainfall, and finally
ends with sprinkling rainfall. A storm hydrograph recorded during a storm rainfall event is presented
in Figure 1b. At the beginning of the event, the discharge (Q) rises slowly and the discharge increment
(∆Q) is small. As the high intensity rainfall continues, the discharge increases rapidly to the peak
discharge during the rising limb of the hydrograph. In the major part of the rising limb, the discharge
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increment is large. After cessation of the intense rainfall, the discharge declines sharply, but the
discharge increment remains large. In the lower part of the recession limb, the discharge decreases
slowly to the base flow and the discharge increment is small.

On the basis of the typical rainfall-runoff event illustrated in Figure 1, the rainfall-runoff process
can be divided into several steps, as shown in Figure 2. At the beginning of a rainfall event, the rainfall
is generally low and does not significantly contribute to the runoff. The rainfall-runoff data during this
step are low rainfall and small discharge increments, and the data are grouped as Cluster A. Next, the
rainfall increases and becomes large; however, the initial losses and high infiltration losses during this
period cause only a gradual increase in the discharge. The high rainfall and small discharge increment
data during this period are grouped as Cluster B. Subsequently, the infiltration losses decrease and
increasingly more surface runoff reaches the basin outlet. The discharge increases rapidly to the crest
segment of the hydrograph. The high rainfall and large discharge increment data are grouped as
Cluster C. When the rainfall diminishes and the discharge starts to decrease, the data with low rainfall
and large discharge increment are grouped as Cluster D. Subsequently, the segment of a hydrograph
with low rainfall and small discharge increment is similar to the initial part of the hydrograph, and
the corresponding data are thus also grouped as Cluster A. Thus, the rainfall-runoff process can be
described by the sequence through Clusters A, B, C, D, and A. For an actual storm hydrograph, the
rainfall-runoff phenomenon can be more complex, and the translation and storage effects can be
significant in large watersheds. However, the proposed four clusters represent the rainfall-runoff
process for a typical storm hydrograph.
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Figure 1. Example of a typical rainfall and runoff event. (a) Rainfall hyetograph; (b) Flood hydrograph.

2.2. Hybrid Neural Network Model

The proposed hybrid neural network model based on physically clustered hydrologic data is
illustrated in Figure 3. The input rainfall and discharge increment data are grouped into four clusters
using the SOM. Each cluster meaningfully corresponds to a typical step in the rainfall-runoff process.
Then, BPNNs are constructed with respect to each cluster to forecast the discharge increment. The
discharge forecasts are obtained when the forecasted discharge increment is added to the observed
discharge at the present time. The detailed methodology of the SOM and BPNN has been well
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documented in the literature. Therefore, a brief description of the two neural network models is
provided herein.
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Figure 2. Rainfall-runoff clusters based on the hydrologic process.
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Figure 3. Structure of the proposed hybrid neural network model.

2.2.1. SOM

The SOM, proposed by Kohonen [34], is an unsupervised-learning neural network that automatically
groups input data into several clusters without assigning the target outputs. The SOM uses a competitive
learning strategy to map the input data onto a low-dimensional topological map. The process of
constructing an SOM neural network is described briefly as follows.

The SOM network comprises one input layer and one output layer (the topological map), and the
input neurons are fully connected to the output neurons. Let the input variables xi (i = 1, 2, . . . , m)
form an input vector X, where m is the number of input neurons. Each output neuron uj (j = 1, 2, . . . ,
n) on the topological map has a weight wij with respect to each input variable xi, and n is the number
of output neurons. The SOM is trained iteratively using randomly assigned initial weights. The SOM
algorithm calculates the similarity between the input vector X and weight vector Wj for each output
neuron. The similarity is defined as the Euclidean distance dj:
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dj = ‖X−Wj‖ =
(

m

∑
i=1

(xi − wij)
2

)1/2

(1)

The output neuron whose weight vector is closest to the input vector has the minimum distance
and is declared the winning neuron. The weights of this winning neuron u∗j and its neighboring
neurons uj are then adjusted to approach the input vector. A typical neighborhood function is the
Gaussian function hj:

hj = exp

−‖uj − u∗j ‖
2

2σ2

 (2)

where σ is the width of the topological neighborhood. The neighborhood function hj and width σ are
usually set to decrease monotonically during the iterative process. The adjusted weight at iteration
time r + 1 is defined as

Wj(r + 1) = Wj(r) + η(r) · hj(r) · [X−Wj(r)] (3)

where η is the learning rate (0 < η < 1) and is also set to decrease during the iterative process. Iterations
are performed until the weight vector converges. Thereafter, similar input vectors are mapped to a
specific region (cluster) on the topological map, and several clusters are automatically grouped.

2.2.2. BPNN

The BPNN, developed by Rumelhart et al. [35], is the most representative and popularly
used neural network. A supervised multilayer feed-forward neural network, the BPNN uses the
back-propagation algorithm for network training. The BPNN typically comprises three layers: the
input, hidden, and output layers. Let the input variables xi (i = 1, 2, . . . , m) be the neurons in the input
layer, and ŷk (k = 1, 2, . . . , p) be the output variable of the k-th neuron in the output layer. The BPNN
output ŷk is expected to fit the target (actual) output yk. The BPNN (with n neurons in the hidden
layer) can be expressed in the following form:

ŷk =
n

∑
j=1

wjk · F
(

m

∑
i=1

wij · xi + bj

)
+ ck (4)

where wij is the weight connecting the i-th neuron in the input layer to the j-th neuron in the hidden
layer; bj is the bias of the j-th hidden neuron; wjk is the weight connecting the j-th neuron in the hidden
layer to the k-th neuron in the output layer; ck is the bias of the k-th output neuron; and F( ) is the
activation function of the hidden neuron. Among the various activation functions that exist, linear,
sigmoid, and hyperbolic tangent functions are the most widely used functions.

In the learning process of the back-propagation algorithm, the weights of the network are adjusted
to minimize the objective function E:

E =
1
2

p

∑
k=1

(ŷk − yk)
2 (5)

To minimize E, the gradient descent method is used to tune the weights along the negative
direction of the gradient of E. The iteration of weight adjustment is repeated until convergence is
reached. The detailed process of determining the weights can be found in the literature [36,37].

3. Study Area and Hydrologic Data

The study area is Wu River, located in central Taiwan (Figure 4). Wu River flows through the
metropolitan area of Taichung City and empties into the Taiwan Strait. Wu River encloses a basin area
of 2026 km2 and has a mainstream length of 119 km. The average annual precipitation in the Wu River
basin is approximately 2087 mm, much of which is typhoon rainfall.
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The downstream Dadu Bridge discharge station (Figure 4) near the metropolitan area is the
forecasting object. This study collected hourly discharge data from Dadu Bridge and hourly rainfall
data from eight rainfall gauges (named G1 to G8 and shown in Figure 4). Data for thirteen typhoon
flood events with complete records were obtained. Among these flood events, 10 events (488
datasets) were used for calibration and three events (206 datasets) that caused flooding disasters
in the downstream metropolitan area were used for validation. Table 1 lists the characteristics of the
typhoon flood events, including the date and name of the typhoon, total amount of average rainfall
(Thiessen polygon method) in the Dadu Bridge Basin, and peak discharge at Dadu Bridge.

Table 1. Characteristics of collected typhoon flood events.

Event No. Date Typhoon Total Rainfall (mm) Peak Discharge (m3/s) Note

01 4 August 1998 Otto 100.9 1440 Calibration
02 30 July 2001 Toraji 290.4 10,000 Calibration
03 16 September 2001 Nari 165.0 2930 Calibration
04 20 June 2012 Talim 95.5 1067 Calibration
05 1 August 2012 Saola 452.1 7199 Calibration
06 12 July 2013 Soulik 358.6 11,004 Calibration
07 21 August 2013 Trami 319.6 2011 Calibration
08 29 August 2013 Kongrey 127.0 1786 Calibration
09 7 August 2015 Soudelor 138.8 720 Calibration
10 28 September 2015 Dujuan 134.9 967 Calibration
11 31 July 1996 Herb 415.3 5630 Validation
12 1 July 2004 Mindulle 898.4 14,802 Validation
13 22 July 2014 Matmo 193.8 1704 Validation

4. Model Development and Forecasting Results

4.1. Determining the Input Variables

This study analyzed the lags between the discharge at Dadu Bridge with various lagged rainfall
and discharge variables. The derived lagged variables were used as inputs of the proposed hybrid
neural network model to forecast the discharge at Dadu Bridge. This study applied the linear transfer
function (LTF) to determine the lagged variables by applying the least-squares technique to construct
a linear function with lagged input variables. The t-test was employed to examine the statistical
significance of the input variables. An advantage of using the LTF is that the lagged variables can
be objectively determined by the statistical significance test. The process of using the LTF and the
statistical significance test to determine the lags of input variables can be found in Chen et al. [38].
The time step for the analysis of lags and the following flood forecasting is one hour in this study.
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This study used two types of hourly rainfall data as input variables: multiple rainfall data from
eight rain gauges and average rainfall data. The most significant lags between the discharge at Dadu
Bridge and the rainfall from each rain gauge were determined by the LTF. The lag for rain gauges G1
and G2 was 1 h, and the lag for G3 was 2 h. Rain gauges G4, G5, and G6 exhibited a lag of 3 h, and G7
and G8 exhibited a lag of 4 h. The determined lags were hydrologically rational. When the distance of
a rain gauge to Dadu Bridge was longer, the most statistically significant time lag was also longer. For
the average rainfall, the Thiessen polygon method was used to calculate the average rainfall in the
Dadu Bridge watershed. The lagged average rainfall variables for 1–4 h were statistically significant at
the 5% significance level, with the most significantly lagged variable for 3 h. The lagged discharge
variables (discharge increment) were also examined. Only the lagged discharge variable for 1 h was
statistically significant at the 5% significance level.

Let the hourly discharge of Dadu Bridge at the present time t be Q(t). For flood forecasting,
the forecasted discharge with the lead-time of 1 h is Q̂(t + 1). When the multiple rainfall data from
eight rain gauges are used as inputs according to the most significant lags, the input variables are
denoted as RG1(t), RG2(t), RG3(t − 1), RG4(t − 2), RG5(t − 2), RG6(t − 2), RG7(t − 3), and RG8(t − 3),
where RG1(t) indicates the rainfall variable for rain gauge G1 at time t; the same notation applies to
the other rain gauges. Let the discharge increment be ∆Q(t), which is defined as ∆Q(t) = Q(t) − Q(t
− 1). The proposed hybrid neural network model using multiple rainfall data (denoted as f I[ ]) for
forecasting the one-hour-ahead discharge increment ∆Q̂(t + 1) can be formulated as

∆Q̂(t + 1) = fI [∆Q(t), RG1(t), RG2(t), RG3(t− 1), RG4(t− 2),
RG5(t− 2), RG6(t− 2), RG7(t− 3), RG8(t− 3)]

(6)

When the discharge increment ∆Q̂(t + 1) is computed by the model and added to the observed
discharge Q(t), the one-hour-ahead discharge Q̂(t + 1) can be forecasted. The model that uses the
basin average rainfall data RA(t) (denoted as f II[ ]) is formulated as

∆Q̂(t + 1) = fII[∆Q(t), RA(t), RA(t− 1), RA(t− 2), RA(t− 3)] (7)

For convenience, the hybrid neural network model using multiple rainfall data is hereafter termed
Model I, and that using average rainfall data is termed Model II.

4.2. Clustering by Using the SOM

According to the proposed hybrid neural network model, input data were grouped into four
hydrologically meaningful clusters formed by using the SOM. A two-stage clustering process (Figure 5)
was proposed based on the properties of the rainfall and discharge data. In the first stage, input
variables were grouped into two clusters (low and high rainfall clusters) by using only the rainfall
data. In the second stage, the low rainfall cluster was further separated into two clusters (small and
large discharge increment clusters) by using the discharge increment data. The high rainfall cluster
was also divided into small and large discharge increment clusters. Consequently, four hydrologically
meaningful clusters (with low and high R vs. small and large ∆Q) were obtained. This study applied
the two-stage scheme to ensure that the rainfall and discharge increment data could be grouped into
the expected four clusters. Because two forecasting models, Model I and Model II, were proposed
corresponding to the two types of input rainfall variables, the clustering process was performed with
respect to both the multiple rainfall data and average rainfall data.

Table 2 lists the clustering results for the calibration events (totally 488 datasets). The numbers of
clusters corresponding to the two types of rainfall data are comparable. Cluster A (low R and small
∆Q) has the most data, and Cluster C (high R and large ∆Q) has the fewest data. The clustering results
corresponding to the number of clusters are rational. The initial and final parts of the hydrograph
(grouped as Cluster A) normally contain a large portion of the whole dataset. The rapidly rising limb
of the hydrograph (grouped as Cluster C) encloses fewer data.
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Table 2. Number of clusters for the calibration data sets.

Cluster Model I(Multiple Rainfall) Model II(Average Rainfall)

Cluster A (Low R, Small ∆Q) 222 231
Cluster B (High R, Small ∆Q) 98 89
Cluster C (High R, Large ∆Q) 33 35
Cluster D (Low R, Large ∆Q) 135 133

Table 3 lists the ranges (minimum and maximum) of rainfall R and discharge increment ∆Q for
different clusters with respect to the average rainfall data. The average rainfall 54.66 mm was grouped
into the low rainfall cluster, and that =4.67 mm was grouped into the high rainfall cluster at the first
clustering stage. During the second-stage clustering process, the discharge increment data were further
classified, and four clusters were obtained. The ranges of clusters are comparable to the physical
meaning of clusters. According to the ranges listed in Table 3, Cluster A (low R and small ∆Q) has
small rainfall and discharge increment data, and Cluster C (high R and large ∆Q) encloses the largest
range among the clusters.

Table 3. Ranges of rainfall and discharge increment for different clusters.

Cluster
Rainfall (mm) Discharge Increment (m3/s)

Min. Max. Min. Max.

Cluster A 0 4.66 −80 261
Cluster B 4.67 45.21 −303 4756
Cluster C 4.84 51.83 −3170 6280
Cluster D 0 4.56 −750 841

Figure 6 illustrates the clustering results of the SOM for the calibration events using three large,
medium, and small flood events as an example. The clustering results concerning the multiple rainfall
data (left panel) and average rainfall data (right panel) are similar. Event 02 (upper panel) is a large
flood with a single peak caused by a concentrated and severe storm. The rainfall and discharge (also
the discharge increment) data are large. Therefore, very few data (only two for the average rainfall
case) are grouped as Cluster A. However, the rainfall-runoff process from Cluster B to Clusters C
and D is appropriately identified by the clustered data. Event 03 (middle panel) is a medium flood
with multiple peaks caused by a series of intermittent storms. The hydrologic process shown by the
clusters is somewhat complicated. Nevertheless, progress from Cluster A to Clusters B, C, and D can
be observed, with some data of Cluster C in the peak segment. Event 10 (lower panel) is an event with
small peak discharge and low rainfall. The hydrograph is favorably described by the clusters; however,
no data is grouped as Cluster C due to the low rainfall and discharge.
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The SOM clustering was validated using the validation events, and the results are as follows.
Two of the three events that caused flooding disasters in the metropolitan area were relatively large
flood events. The greater numbers of Clusters C and D (with large discharge increments) than those
of Clusters A and B (with small discharge increments) listed in Table 4 indicate the circumstances.
Figure 7 presents the clustering results for the validation events. Event 11 is a large flood, with lots of
data around the peak grouped as Cluster C and no data grouped as Cluster A. Event 12 is an extremely
large flood with a peak discharge much higher than is present in the calibration data (cf. Table 1).
Many high discharge data were reasonably classified as Cluster C. The clustering results show a clear
progression from Cluster A to Clusters B, C, and D for the first hydrograph, and also an obvious
sequence of Clusters B, C, D, and A for the second hydrograph. Event 13 is a small flood event that
shows a similar result as Event 10 in the calibration set. The hydrograph is well explained by the
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clusters; however, no data is grouped as Cluster C. The calibration and validation results prove that
the proposed clustering method based on the hydrologic process meaningfully depicts the physical
processes behind rainfall and discharge data.Water 2018, 10, x FOR PEER REVIEW  10 of 17 
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Table 4. Number of clusters for the validation datasets.

Cluster Model I
(Multiple Rainfall)

Model II
(Average Rainfall)

Cluster A (Low R, Small ∆Q) 42 43
Cluster B (High R, Small ∆Q) 40 40
Cluster C (High R, Large ∆Q) 59 60
Cluster D (Low R, Large ∆Q) 65 62

4.3. Flood Forecasting Using the Hybrid Neural Network Model

For each cluster, BPNNs were constructed with respect to the structures of Model I and Model II.
The calibration data used in constructing the BPNNs were linearly normalized to the interval between
0 and 1 according to the minimum and maximum values in the calibration data. The hidden nodes and
activation functions of the BPNNs were determined through trial and error. Table 5 lists the calibration
results regarding the number of hidden nodes and types of activation functions. The numbers of
hidden nodes of the BPNNs using multiple rainfall data are generally greater than those of the BPNNs
using average rainfall data. The multiple rainfall data possess a more complex spatial pattern than the
average rainfall data. Therefore, more hidden nodes are required to describe the complex relationship
between the inputs and output. An interesting result is the derived activation functions. The BPNNs
corresponding to Cluster A (small R and small ∆Q) and Cluster C (large R and large ∆Q) use the linear
function. The BPNNs for Cluster B (large R and small ∆Q) and Cluster D (small R and large ∆Q) use the
sigmoid function. When the rainfall and discharge increment data in a cluster have similar properties
(i.e., all small or all large), the linear function is sufficient to model the input–output relationship.
When the data in a cluster are different (i.e., small vs. large), the nonlinear sigmoid function is used to
model the complex input–output relationship.

Table 5. Calibrated numbers of hidden nodes and types of activation functions.

Cluster
Model I Model II

Number of
Hidden Nodes Activation Function Number of

Hidden Nodes Activation Function

Cluster A (Low R, Small ∆Q) 3 Linear 2 Linear
Cluster B (High R, Small ∆Q) 3 Sigmoid 2 Sigmoid
Cluster C (High R, Large ∆Q) 2 Linear 2 Linear
Cluster D (Low R, Large ∆Q) 4 Sigmoid 2 Sigmoid

With the constructed SOMs and BPNNs, the hybrid neural network model was established for
flood forecasting with respect to the calibration and validation events. Performance indices—the
coefficient of efficiency (CE), mean absolute error (MAE), and error of time to peak discharge
(ETP)—were obtained as follows:

CE = 1−

n
∑

t=1

(
Q(t)− Q̂(t)

) 2

n
∑

t=1

(
Q(t)−Q

) 2
(8)

MAE =

n
∑

t=1

∣∣Q(t)− Q̂(t)
∣∣

n
(9)

ETP = T̂p − Tp (10)

where Q(t) is the observed discharge at time t; Q̂(t) is the forecasted discharge; Q is the average
observed discharge; n is the number of data; Tp is the time to peak for observed discharge; and T̂p is
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the time to peak for forecasted discharge. CE is a dimensionless index with a value of unity indicating
perfect fit. MAE is an index that directly describes the average forecast error with the same unit of the
data. ETP is positive if the forecasted peak discharge is delayed. This lag often exists in hydrological
forecasting. The model that has a smaller absolute value of ETP is better in forecasting performance.

Table 6 lists the performance indices of the hybrid neural network model for the calibration and
validation events. The CE values for the calibration data are 0.97 and 0.98 corresponding to Model I
and Model II, respectively, whereas the MAE values are 92.9 and 68.2 m3/s, which are small compared
to the discharge magnitude of the flood events. For the validation events, CE is 0.94 and 0.91 and MAE
is 188.0 and 248.2 m3/s, respectively. ETPs for calibration events range from −2 to 1 h; ETP is zero for
half of the events. The average ETPs are small as shown in Table 6. The performance indices prove
that the proposed hybrid neural network model favorably forecasts the flood discharge and that the
performance of Model I and Model II is similar.

Table 6. Performance indices of the hybrid neural network model.

Data Model Type CE MAE (m3/s) ETP (h)

Calibration
Model I 0.97 92.9 –0.2
Model II 0.98 68.2 –0.1

Validation
Model I 0.94 188.0 0.3
Model II 0.91 248.2 0.0

Figures 8 and 9 present the forecasted hydrographs for the calibration and validation events,
respectively. In general, the forecasted hydrograph matches the observed hydrograph. However, the
forecasted discharge for Cluster C is not as close as that for the other clusters. During the model
learning process, only 33 and 35 datasets were used to train the BPNNs for Cluster C (Table 2).
Although the BPNNs trained using fewer data have larger errors, Event 12 has a peak discharge much
higher than the calibration data. The forecasted discharges around the crest segment are reasonable,
indicating that the hybrid neural network model extrapolates successfully. Overall, the forecasting
results demonstrate that the proposed hybrid neural network model accurately forecasts typhoon
floods, including small, medium, and large events, and the two types of model (Model I and Model II)
have comparable capability.

4.4. Comparison with Traditional Neural Network Model

This study also developed a traditional neural network model to assess and compare its
performance with that of the hybrid neural network model. The traditional neural network model,
which does not group data into clusters, uses all the calibration data to construct a single BPNN
using the same calibration scheme as the hybrid neural network model. The single BPNN was also
trained by using the two types of rainfall variable (Model I and Model II). The constructed traditional
BPNNs have three hidden nodes that use the sigmoid activation function. Table 7 lists the performance
indices of the traditional neural network model. The CE value for calibration is 0.95, which is a
little lower than the CE values (0.97 and 0.98) of the hybrid neural network model. However, the
CE value of 0.85 for validation is considerably lower than those (0.94 and 0.91) of the hybrid neural
network model. The MAE and the ETP values of the traditional BPNN are larger than those of the
hybrid neural network model (cf. Tables 6 and 7). Although the traditional BPNN also exhibits
good forecasting performance in view of the performance indices, the hybrid neural network model
apparently outperform the traditional neural network model.

Figure 10 displays the forecasted hydrographs obtained using the hybrid and traditional neural
network models pertaining to the validation events. In general, the two sets of the forecasted
hydrographs have similar patterns. However, the hydrographs obtained using the traditional BPNN
exhibit minor underestimation for large discharges (especially for the peak discharge in Event 12) and
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overestimation for small discharges (especially for the case in Event 13). The traditional BPNN was
trained using small and large discharge data simultaneously. The learning mechanism matches the
whole calibration data. Thus, the single BPNN does not perform very well in some cases of small and
large discharges. However, the proposed hybrid neural network model was trained using different
clusters with respective small and large datasets. The hybrid neural network model is more robust
and flexible for various rainfall-runoff processes.
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5. Conclusions

ANNs, usually regarded as black boxes, suffer from a lack of physical interpretation of the
constructed model architecture. This study proposed a physical hybrid neural network model that
combines the SOM and BPNNs and applied this proposed model to real-time flood forecasting.
The SOM was used to group the rainfall and discharge data into four clusters with clear physical
meanings to characterize the rainfall-runoff process. Then, a BPNN was constructed for each cluster
with specific properties of rainfall and discharge data, which gave the BPNNs higher capability and a
network structure that could be meaningfully discussed.

Typhoon flood discharges at Dadu Bridge and rainfall from eight rain gauges in the Wu River
basin in Taiwan were used as the study data. Two types of rainfall data (multiple rainfall and average
rainfall) were used to construct two types of hybrid neural network model (Model I and Model II). The
lagged input variables of the models were determined by using the LTF. The derived lags of the rainfall
variables are hydrologically rational and represent the distance from the rain gauge to the basin outlet.

The clustering results of the SOM pertaining to calibration and validation events prove that
the hydrologic process is meaningfully described by the clusters. The rainfall-runoff process can
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be identified by the sequence of Clusters A, B, C, D, and A. The training of the BPNNs reveals that
more hidden nodes are required to describe the complex relationship between multiple rainfall and
discharge. The simple linear activation function was adopted in the clusters with similar data, whereas
the nonlinear sigmoid activation function was used in clusters where the rainfall and discharge data
were different.

Flood forecasting using the hybrid neural network model revealed that the proposed model
successfully forecasts flood discharge with high efficiency and small errors. Both Model I and Model II
have comparable forecasting performance. This study also developed a traditional neural network for
comparison with the hybrid neural network model. The traditional neural network model that was
trained with the whole calibration dataset did not perform favorably in some cases of small and large
discharges. With respect to the performance indices and forecast hydrographs, the proposed physical
hybrid neural network model exhibits robust flood forecasting and outperforms the traditional neural
network model.
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